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Abstract: Since 2019, the coronavirus disease-19 (COVID-19) has been spreading rapidly worldwide, posing an

unignorable threat to the global economy and human health. It is a disease caused by severe acute respiratory

syndrome coronavirus 2, a single-stranded RNA virus of the genus Betacoronavirus. This virus is highly infectious

and relies on its angiotensin-converting enzyme 2-receptor to enter cells. With the increase in the number of

confirmed COVID-19 diagnoses, the difficulty of diagnosis due to the lack of global healthcare resources becomes

increasingly apparent. Deep learning-based computer-aided diagnosis models with high generalisability can effectively

alleviate this pressure. Hyperparameter tuning is essential in training such models and significantly impacts their final

performance and training speed. However, traditional hyperparameter tuning methods are usually time-consuming

and unstable. To solve this issue, we introduce Particle Swarm Optimisation to build a PSO-guided Self-Tuning

Convolution Neural Network (PSTCNN), allowing the model to tune hyperparameters automatically. Therefore, the

proposed approach can reduce human involvement. Also, the optimisation algorithm can select the combination of

hyperparameters in a targeted manner, thus stably achieving a solution closer to the global optimum. Experimentally,

the PSTCNN can obtain quite excellent results, with a sensitivity of 93.65% ± 1.86%, a specificity of 94.32% ± 2.07%,

a precision of 94.30% ± 2.04%, an accuracy of 93.99% ± 1.78%, an F1-score of 93.97% ± 1.78%, Matthews Correlation

Coefficient of 87.99% ± 3.56%, and Fowlkes-Mallows Index of 93.97% ± 1.78%. Our experiments demonstrate that

compared to traditional methods, hyperparameter tuning of the model using an optimisation algorithm is faster and

more effective.

Introduction

COVID-19 is a new global epidemic characterised by high
infectivity and variability, posing a significant threat to
human life and the global economy (Chakraborty and Maity,
2020). The pathogen of COVID-19 is severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (Hasöksüz et al.,
2020), a single-stranded RNA virus of the genus Beta
coronavirus and shares 79% nucleotide sequence identity
with SARS-CoV, the causative agent of the 2002 SARS
epidemic. Other viruses in the same genus include human
coronavirus HCoV-HKu1, HCoV-OC43, and Middle East
respiratory syndrome coronavirus (MERS-CoV). These

coronavirus particles are composed of four structural
proteins, including nucleocapsid (N), membrane (M),
envelope (E), and spike (S) proteins. The S protein mediates
the attachment and fusion of the coronavirus to the host cell
membrane. The S protein consists of two non-covalently
related subunits: (1) the S2 subunit anchors the S protein to
the host cell membrane, and (2) the S1 subunit binds to its
specific angiotensin-converting enzyme 2 (ACE2) receptor to
enter the cell and infect patients (Jackson et al., 2022). The
new coronavirus is highly infectious. The number of
confirmed COVID-19 diagnoses has been growing since first
identified in 2019. As of April 2022, the cumulative number
of confirmed COVID-19 diagnoses is close to five billion,
with over six million deaths (Organization, 2022). At the
same time, the novel coronavirus continues to mutate at a
much faster rate than the vaccine development. In addition, it
has undergone significant changes in its characteristics,
making it challenging to sustain efforts to combat the disease.
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Symptoms of COVID-19 vary significantly among
individuals with a continuous cough, fever, taste loss, and,
in severe cases, death, thus making COVID-19 even more
dangerous. In general, the spread of infectious diseases can
be stopped by isolating the source of infection and blocking
the transmission route. However, because of (1) the
mutation of the new coronavirus, (2) the increase in the
number of asymptomatic patients, and (3) the difficulties of
diagnosis, isolating the source of COVID-19 infection
becomes a challenge (Kronbichler et al., 2020).

The most widely used test for COVID-19 is the reverse
transcription polymerase chain reaction (RT-PCR) (van
Kasteren et al., 2020), which has improved considerably in
recent years, allowing results to be obtained within tens of
minutes. However, these tests are often associated with high
false negatives and a high potential for underdiagnosis
(Arevalo-Rodriguez et al., 2020). Moreover, the availability
of RT-PCR reagents is highly challenging due to the high
number of infections and the population's fears of a global
disease. Therefore, exploring more effective ways of
diagnosing COVID-19 for outbreak control is essential.

COVID-19 is an infectious emergency respiratory
disease, and the disease state is usually reflected in the lungs.
X-ray and CT, the most common medical imaging
techniques in modern medicine, can play a vital role in
diagnosing COVID-19 by reflecting changes in the lung
tissue through their chest impact. As a relatively new
technology, computed tomography (CT) imaging allows
multi-layered photography of the target area to form a
three-dimensional image, providing multi-angle image data
with a higher resolution than X-ray images (Berrimi et al.,
2021). Therefore, the diagnosis of COVID-19 by CT
imaging of the chest has significant research and practical
value. However, the diagnosis of chest CT is often
dependent on medical specialists, making it difficult to be
helpful in the face of the shortage of medical resources
associated with a COVID-19-like global epidemic.

As one of the most influential frontier technologies of the
20th century, artificial intelligence (AI) significantly impacts
human work and life (Liang et al., 2021), especially in the
medical field (Han et al., 2022; Miller et al., 2022; Ning
et al., 2020). Artificial intelligence-based computer-aided
diagnosis (CAD) is one of the research areas receiving the
most attention (Chen et al., 2022; Guan et al., 2022; Yu
et al., 2022a; Yu et al., 2022b). In the face of the global
pandemic of COVID-19, many researchers have risen to
fight against it, hoping to contribute to its eradication. As a
result, many studies on COVID-19 are rapidly emerging
(Bobermin et al., 2022; Carretta et al., 2022; Ozturk and
Kara, 2022), especially on COVID-19 CAD systems.

Chen (2021) used the effectiveness of the greyscale co-
occurrence matrix (GLCM) for texture feature extraction to
extract features from chest CT images and a support vector
machine (SVM) to perform binary classification on these
features to achieve the diagnosis of COVID-19. Pi and Lima
(2021) and Pi (2021) also used GLCM as a feature
extraction method. Among them, Pi and Lima (2021) used
the extreme learning machine (ELM) as a classifier to
classify the features extracted from chest CT by GLCM, and
Pi (2021) used the Schmitt Neural Network as the classifier

of the model. These methods achieved promising
performance, which demonstrates the effectiveness of
GLCM for feature extraction from chest CT images. Some
methods extract features using wavelet entropy. The study
by Wang (2021) used Jaya algorithm-based training
algorithm to train the model and achieved an encouraging
performance. A further attempt by Wang et al. (2022) to
use the Self-Adaptive Jaya (SAJ) algorithm to train their
model. Their model (WE-SAJ) has achieved further
performance improvements. On the other hand, Field Wu
(Wu, 2020) used a particular wavelet entropy, Wavelet
Renyi Entropy, as the feature extraction method and a
three-stage biogeographic optimisation algorithm as the
training algorithm, achieving excellent performance. Khan
(2021) proposed a novel deep-learning approach to
construct a diagnostic tool for COVID-19. They used
Pseudo-Zernike moment derived from Zernike moment as
feature values and deep sparse autoencoder as the classifier
for chest CT image classification. Their model obtained an
accuracy higher than 90% and achieved similarly excellent
performance in other performance metrics. Some studies
have also used models based on classical deep-learning
methods to diagnose COVID-19. Hou and Han (2022) used
a six-layer convolutional neural network (CNN) for chest
CT images based COVID-19 diagnosis task. Their model
has achieved about 90% accuracy. Yu et al. (2020) improved
one of the most classical CNNs, GoogleNet, for the
COVID-19 chest CT image-based diagnosis task. They
replaced the last two layers of GoogleNet with a dropout
layer, two fully connected layers, and an output layer. Their
model also achieved close to 90% accuracy. Zhang et al.
(2021) proposed a multi-input deep convolutional attention
network constructed using a convolutional block attention
module. Their model has achieved more than 90% accuracy.
These models are well-designed but require hyperparameter
tuning to achieve fast convergence and high performance,
often requiring expert intervention. At the same time,
manual tuning of hyperparameters often relies on empirical
knowledge, which is subjective and requires a high level of
expertise. These factors have primarily hindered the cross-
domain generalisation of CAD methods. We believe an
optimisation algorithm could be a solution to make the
hyperparameter tuning process automatic.

This paper uses the particle swarm optimisation
algorithm (PSO) to optimise the three hyperparameters and
gradient-based localisation of CNN to generate visual
explanations. The proposed approach uses particle swarm
optimisation algorithms to perform auto hyperparameters
tuning, reducing the dependence of model construction on
machine learning experts. In addition, PSO purposefully
finds the hyperparameters closest to the optimal solution
more consistently. Our method has achieved a promising
performance in COVID-19 diagnosis.

Our contributions to this study are as follows: (i) we
experimentally demonstrated the possibility of using
optimisation algorithms for hyperparameter tuning, (ii) we
proposed a high-performance COVID-19 diagnostic method
with a visual explanation based on CT chest images, and
(iii) we further explored the potential of AI-based
techniques in medical image processing. In the rest of the
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paper, Section 2 introduces the data set used, Section 3
introduces the background of the methods involved in the
experiment, Section 4 describes the experimental workflow
of PSO-guided self-tuning CNN (PSTCNN), and Section 5
presents the experiment results and discusses it in detail.

Dataset

The experiment used a publicly available chest CT image slice
dataset proposed by Zhang et al. (2022). The dataset was a
binary classification dataset with the categories positive
(COVID-19) and negative (Health Control). The dataset
contains a total of 296 slice images. The positive category
contains 148 slice images taken from chest CT images of 66
COVID-19-infected subjects, assessed as positive by nucleic
acid test. The negative category contains 148 slice images
taken from chest CT images of 66 uninfected subjects from
COVID-19. These subjects included 77 males and 55
females. The detailed statistic of the dataset is shown in
Table 1, and two sample images are illustrated in Fig. 1.

Methodology

10-Fold cross validation
The dataset used for the study was small, so we introduced the
10-Fold Cross Validation to train and evaluate the model.
Specifically, we divided the dataset into ten groups and
performed ten runs, with different groups selected as the
test set and all other groups as the training set for each run.
The model was thoroughly trained and evaluated for each
run to obtain performance metric values. The final
performance of the model was obtained by calculating the
sum, the mean and standard deviation (MSD) of all ten sets

of performance metric values. This approach allowed for
efficient use of the samples in the dataset and effectively
avoided overfitting.

Feature learning through convolutional neural network
CNN is one of the trendiest research directions in computer-
aided diagnosis tasks. It comprises different network layers,
e.g., the input layer, convolutional layer, activation layer,
pooling layer, and output layer. By combining these network
layers, CNNs can effectively solve the problems of spatial
information loss when expanding images into vectors,
inefficiency training and network overfitting caused by high
parameter volume when processing large images with fully
connected neural networks (Gu et al., 2018).

Many existing deep learning-based CAD methods are
based on CNNs. Polsinelli et al. (2020) have made a simple
modification to SqueezeNet by adding a batch normalisation
layer between the squeeze convolution layer and the
activation layer and replacing the original rectifier linear
unit (ReLU) function with an exponential linear unit (ELU)
function to build a lightweight CNN model. They tested the
unmodified SqueezeNet and their proposed modified model
separately using a COVID-19 chest CT dataset. Their
proposed modification effectively improved the performance
of the model. Horry et al. (2020) used pre-trained VGG-19
based on transfer learning techniques to classify each of the
three COVID-19 datasets, x-ray, CT, and ultrasound, and
achieved promising results (precision up to 86% on x-ray,
100% on ultrasound and 84% on CT scans). Ismael and
Şengür (2021) tested a variety of CNN models based on the
COVID-19 x-ray dataset, including ResNet18 (accuracy of
88.42%), ResNet50 (accuracy of 92.63%), ResNet101
(accuracy of 87.37%), VGG16 (accuracy of 85.26%), and
VGG19 (accuracy of 89.47%). Their validation of multiple
pre-trained CNN models with the excellent performance of
their custom CNNs further demonstrated the effectiveness
of deep learning techniques for the COVID-19 diagnostic task.

Our method uses a five-layer neural network, including
three convolution layers and two fully connected layers.

Convolutional layers are based on the concept of
convolution. It is the core component of CNNs and
generates most of the computation in the network. A

TABLE 1

Dataset statistic

Class Ratio No. of samples

Positive (COVID-19) 0.5 148

Negative (Health Control) 0.5 148

FIGURE 1. COVID-19 infected
Chest-computed tomography (CT)
slice image sample (a) and uninfected
Chest-CT slice image sample (b).
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convolutional layer contains a number of learnable filters
(kernels), where the kernels are usually squares with smaller
widths and lengths but the same depth as the input image.
The convolution is the process by which the kernel slides
over the image. The sliding direction is from left to right for
the width direction and then repeats sliding following the
width direction from the top rows to the bottom rows of the
image until reaching the bottom edge of the image. For each
step of the sliding process of the convolution, each pixel of
the region mapped by the kernel in the input image is
multiplied by the information at the location corresponding
to the flipped kernel. All the results generated are summed
to aggregate the information. The region mapped by the
kernel in the input image is called the sliding window. The
step size of the sliding, S ¼ ðSl; SwÞ, is a customisable
hyperparameter, in which Sl represents the step size of the
sliding across the length direction and Sw represents the step
size of the sliding across the width direction.

In this process, the filters scan across the input image, so
every neighbourhood of the image is processed by the same
filter. This sharing weight feature reduces the number of
parameters, thus reducing computational costs and
preventing overfitting due to too many parameters. Assume
the size of kernel K is F � F, and the size of a two-
dimension single-channel image I is Nl � Nw, where Nl

represents the length of I, and Nw represents the width of I.
The output o m;nð Þ of the sliding process of the

convolution when the sliding window centred at ðm; nÞ can
be defined as presented in Eq. (1). Let O be the output of
the convolution, o 2 O. Repeating the calculation to slide
throughout the entire image will generate the output O of
the convolution. If there are residuals (the sliding window
cannot reach the edge of the image), the residual image
pixels are abandoned. The output shape, Z ¼ Zl;Zw;Zcð Þ; of
a convolutional layer can be calculated by Eq. (2).

o m;nð Þ¼
XF�1

a¼0

XF�1

b¼0
K a;b½ ��I nþ F

2

� �
�a;mþ F

2

� �
�b

� �
; (1)

where n;mð Þ is the coordinate of the pixel point
corresponding to the position of the centre of the sliding
window in the input image. The range of n 2 N is
F
2 ;Nw � F

2 � 1
� �

, and the range of m 2 N is F
2 ;Nl � F

2 � 1
� �

.

Z ¼ Zl;Zw;Zcð Þ ¼ Nl � F
Sl

� �
þ 1;

Nw � F
Sw

� �
þ 1;Zc

� 	
; (2)

where Zl, Zw, and Zc represent the length, width, and number
of channels of the output O, respectively. Nl and Nw represent
the length and width of the input image, respectively. F � F is
the size of the kernel.

Activation functions play an essential role in CNNs,
bringing a non-linear factor to the neural network,
enhancing its expressive power, and thus improving the
final classification performance. Working with high-
dimensional input data such as images would be
computationally prohibitive for each neuron in a network
layer to fully connect to all the neurons in the previous layer
(Najafabadi et al., 2015). Therefore, neurons in a CNN are
usually related to only one local region of the input data.
The spatial size of this connected region is called the
neuron’s receptive field, which depends on the kernel’s size

and is a hyperparameter. Also, to give the network the
ability to handle non-linear tasks, the convolutional layer
often includes an activation function as a non-linear factor.
The most common activation function is the ReLU function.
In addition, the ReLU activation function can be used to
construct sparse matrices to remove redundancy from the
data and retain the maximum possible features of the data.
The formula for the ReLU function is shown in Eq. (3).

f xð Þ ¼ x; x. 0;
0; otherwise:



(3)

Applying Eq. (3) to every pixel of O generates O0, the
output of the ReLU activation layer, as shown in Eq. (4).

O0 a; bð Þ ¼ f Oða; bÞð Þ; (4)

where a; bð Þ is the coordinate of pixels in O, in which
0 � a,Ow, a 2 N , 0 � b,Ol, b 2 N . Each pixel in O0

corresponds to a pixel in O but with a new value generated
by the ReLU function with an input of the pixel’s value in
O. O0 has the same size and shape as O.

Padding can regulate the size of the output of the
network layer. In the convolution process, pixels at the
edges of input images are never located in the centre of
the kernel. These pixels are used far less than the pixels in
the centre of the image, resulting in a significant loss of
information at the image boundaries. In addition, the
output image from the convolution process often does not
maintain the same size as the input image, and different
kernel sizes result in various degrees of image shrinkage.
Padding is designed to address this issue, which has two
modes, VALID mode and SAME mode.

In the VALID mode, padding does not perform any
operations, and convolution performs a basic convolution
operation, where the output image size is smaller than the
input image. In the SAME mode, additional pixels are
padded around the input image according to the kernel size
(the padding value is usually 0). It allows the kernel to
extend beyond the original image boundaries, thus allowing
the output image to remain the same size as the original
and avoiding losing information from the edges of the input
image. Fig. 2 illustrates convolution samples under VALID
and SAME padding, respectively. Our method uses the
SAME padding to preserve the image edge information,
keeping the same size as the original image.

Training algorithm
Training algorithms can determine the way how neural
networks run. The essence of deep learning is to (1) take the
loss function as the objective function, (2) input a large
amount of data, (3) calculate the value of the objective
function, and then (4) adjust and optimise the learnable
parameters in the model to obtain the model that will give
the closest result to the true value. In this process, the
optimiser algorithm was followed. The choice of optimiser
plays a vital role in deep learning training, as it affects the
speed of convergence of the model and the final
performance achieved.

Adam (Kingma and Ba, 2014) is one of the most popular
deep learning training algorithms that control the updating of
model parameters. For each parameter, Adam uses the
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hyperparameters b1 and b2 to calculate the exponential decay
rates of the past gradient gt and the square of the past gradient
g2t , respectively, dg and dgs, using first-order moment estimates
and second-order moment estimates of the gradient to
dynamically adjust the learning rate of each parameter. The
calculation is shown in Eq. (5). As dg and dgs are initialised
to 0, their values are biased towards 0. A bias correction is
introduced in Adam to bias dg and dgs to obtain bdg and cdgs,
and further offset these initial biases. The bias correction is
calculated as shown in Eq. (6). Ultimately, Adam calculates
the update step through the dg and dgs angles to update the
parameters, as shown in Eq. (7).

dtg ¼ b1d
t�1
g þ 1� b1ð Þgt;

dtgs¼ b2d
t�1
gs þ 1� b2ð Þ gtð Þ2; (5)

bdg¼ dg
1� b1ð Þt ;cdgs ¼ dgs
1� b2ð Þt ;

(6)

htþ1 ¼ ht � affiffiffiffiffiffibdgsq
þ e

bdg : (7)

Adam can adaptively adjust the learning rate of the
model parameter updates, implement the step annealing
process naturally, and makes the model parameter updates
independent of the gradient scaling transformation. In
addition, Adam has the advantages of high computational
efficiency and low memory consumption (Saad Hikmat and
Adnan Mohsin, 2021). In simple words, Adam can achieve
typically high levels of robustness and performance in
various situations (Dogo et al., 2018). Therefore, our
method uses Adam as the training algorithm.

Visual explanation via gradient-based localisation (Grad-CAM)
Grad-CAM is a method for visualising the basis of CNN
decisions. It uses a heat map to mark how much attention
the neural network pays to different regions when
classifying data, thus highlighting the regions on which the
neural network focuses its attention. In detail, Grad-CAM
uses the global average of the gradients to calculate the
weight ack of the feature map k corresponding to the class c
(as shown in Eq. (8)). then, it calculates the weighted sum

of the weight and the last layer of the feature map,
combining it with the ReLU activation function to produce
the heat map LcGradCAM. The procedure for calculating the
heat map is shown in Eq. (9).

ack ¼
1
z

X
i

X
j

@yc

@Ak
ij

; (8)

where z is the number of pixels in the feature map, yc is the
fraction corresponding to class c, and Ak

ij denotes the pixel
values at the coordinate i; jð Þ of the k feature maps.

LcGradCAM ¼ f
X

k
ackA

k
� 

; (9)

where f represents the ReLU function.

Hyperparameter tuning
Almost all deep learning optimisers have customisable
hyperparameters that can significantly influence the performance
of the optimiser, hence the speed of convergence and the
ultimate performance of the model. Many studies try to optimise
hyperparameter tuning for better COVID-19 diagnostics. Ezzat
et al. (2021) optimised the three hyperparameters of
DenseNet121, the batch size, the rate of dropout layer, and the
number of neurons of the first dense layer and trained their
proposed model using two sets of X-ray data from COVID-19.
They could achieve 98.38% accuracy, a significant improvement
over DenseNet121 (94% accuracy) and Inception-v3 (95%
accuracy), which they used as controls. Monshi et al. (2021)
tested the function loss, the number of epochs, and the batch size
hyperparameters with different value combinations. Then, they
selected the combinations of hyperparameters with the highest
performance and used these combinations for the different
models to test performances. In their approach, the accuracy of
VGG19 improved by 11.93% and that of ResNet-50 by 4.97%.
Kiziloluk and Sert (2022) used the gradient-based optimiser
(GBO) and the Quasi-Newton algorithm (Q-N) to optimise the
hyperparameters of several CNN models, including Alexnet,
Darknet-19, Inception-v3, MobileNet, Resnet-18, and ShuffleNet.
Their results show that GBO improves the classification
performance of the original CNN model by 6.22%–13.29%, and
the Q-N algorithm improves the performance of the original
CNN model by 2.92% to 8.40%. These studies demonstrate the

(a) VALID (b) SAME 

Kernel
Input

Output

KernelPadded Input

Output

FIGURE 2. In the VALID mode (a), the output size of the convolution for a 5 × 5 image is 3 × 3. In SAMEmode (b), the input image is padded
to size 6 × 6, and the output size remains the same as the original input, 5 × 5. The dotted blocks are the padded section.
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critical impact of hyperparameter optimisation on the performance
of CNN models in COVID-19 diagnostic tasks.

However, the hyperparameters can have an infinite
number of possible combinations. Therefore, hyperparameter
tuning becomes a challenging, time-consuming and
computationally expensive stage in training deep learning
models. There is no straightforward and efficient way to
accurately and quickly find the optimal hyperparameters. The
most commonly used hyperparameter selection methods are
Random Search and Grid Search.

Grid Search tries all the candidate hyperparameter
combinations by loop traversal. Then it calculates the
performance of the model under all the hyperparameter
combinations and selects the parameter combination with
the highest performance in the solution. However, the
combination of the hyperparameters can be nearly infinite,
so it is difficult to traverse all the possibilities in practical
application and requires enormous time cost and calculation
costs, which is inefficient.

Random Search computes a neural network with a
configuration of candidate parameters by randomly
sampling the parameter space and stops the search when the
maximum number of iterations is completed, selecting the
combination of hyperparameters with the highest
performance. Although random search can be optimised to
prevent repeated calculations of the same hyperparameter
combinations, the search process is too random. Therefore,
the large number of hyperparameter combinations makes it
difficult to ensure that optimal hyperparameters are in the
search range. As a result, the performance of the final model
derived from random search can vary considerably for the
same number of iterations.

Most hyperparameter tuning methods require many
aimless attempts to find the most suitable hyperparameters,
which are inefficient and ineffective, resulting in high
consumption of time and computational resources.
Optimisation algorithms could be a solution to this issue.
This paper aims to discover the possibility of PSO in
hyperparameter tuning. Table 2 discusses the advantages
and disadvantages of PSO and traditional hyperparameter
tuning methods from a theoretical perspective. Then,

Section Table 2 introduces the experiment design of PSO-
guided hyperparameter tuning.

Particle Swarm Optimisation-Guided Self-Tuning CNN

The original particle swarm optimisation
To discover more possibilities of optimisation algorithm-based
hyperparameter tuning. Our experiments employed the PSO
algorithm to adjust the three hyperparameters in the Adam
optimiser. PSO (Kennedy and Eberhart, 1995) is an easy-to-
understand and easy-to-implement optimisation algorithm
with global solid search capability. Because of these advantages,
it is one of the most typical optimisation algorithms. The core
idea of PSO is to keep all particles moving and update their
position to find the optimal solution through collaboration and
information sharing among particles in the population.
Hyperparameter tuning involves purposefully trying out
different hyperparameter configurations and calculating the
corresponding performance to find the optimal combination of
hyperparameters.

Encoding scheme of particle properties
In PSO, a swarm represents the collection of all particles. Each
particle pi in the swarm has two properties, a vector of velocity
V i ¼ vi1; vi2; � � � ; vinð Þ represents how fast a particle is
moving, and a vector of position Xi ¼ xi1; xi2; � � � ; xinð Þ
represents the direction in which a particle is moving. The
algorithm finds the best position of a particle, xpbest, and the
best position of the swarm, xgbest. In each iteration, the
particles update their velocities in a direction for moving to
new positions closer to xpbest and xgbest.

The three essential variables of the Adam training
algorithm to tune to obtain the highest performance of the
model (as shown in Eqs. (5)–(7)) are the learning rate a,
coefficient b1, which controls the exponential decay rates of
the past gradient gt , and coefficient b2, which controls the
exponential decay rates of the square of the past gradient g2t .
The first step of our experiment is to encode these three
variables into the PSO algorithm to perform tuning. Assume
an n dimension search space, each particle pi has n
positions xi1; xi2; � � � ; xinð Þ and n velocities vi1; vi2; � � � ; vinð Þ.

TABLE 2

Advantages and disadvantages of search methods

Search method Advantage Disadvantage

Grid Search The grid search process iterates through all possible
combinations of hyperparameters without missing
possible combinations as far as time and computational
resources allow.

Grid search is difficult to traverse a nearly infinite
number of all hyperparameter combinations, requiring
huge time and computational costs, and is inefficient.

Random Search The random search process is stochastic and can cover a
much larger range of hyperparameter combinations.

The search process is so random that, even though it can
be optimized to prevent repeated computation of the
same hyperparameter combinations, the large number
of hyperparameter combinations makes it difficult to
guarantee that the optimal hyperparameter is found.

Particle swarm
optimisation (PSO;
Ours)

PSO uses many particles to purposefully find the optimal
combination of hyperparameters, making the search
process more efficient.

Updating particle positions requires training neural
networks based on different combinations of
hyperparameters, which requires high computational
resources and time costs.
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For every position xin stores a set of hyperparameter
combinations and is encoded as a vector ain; b1in; b2inð Þ. For
every velocity, vin is encoded as a vector ðv1in; v2in; v3inÞ, in
which, v1in, v2in, and v3in are for movements of ain, b1in, and
b2in, respectively. Fig. 3 illustrates the encoding scheme.

Calculations of velocities and positions
At the beginning of PSO, all particles are initialised with random
positions (hyperparameter configurations) and random velocity
vectors. The CNN runs iteratively in each iteration with
different hyperparameter configurations. It calculates the mean
squared errors (MSE) for every hyperparameter configuration
as its fitness value (F), according to which it finds the personal
best hyperparameter configuration, xpbest, for each particle, and
the global best hyperparameter configuration, xgbest, of the
entire particle population, which is the current best
hyperparameter configuration. The formulates of finding xpbest
and xgbest are shown in Eqs. (10) and (11), respectively, where
xcur represents the current hyperparameter configuration.

xkþ1
pbest ¼

xcur; if FðxcurÞ, FðxkpbestÞ;
xkpbest; otherwise:

(
(10)

xkþ1
gbest ¼

xkþ1
pbest; if Fðxkþ1

pbestÞ, FðxkgbestÞ;
xkgbest; otherwise;

(
(11)

where k represents iteration count. At the end of each
iteration, the velocities of all particles are iteratively updated
to directions that are closer to xpbest and xgbest, following
Eq. (12). Also, the hyperparameter configurations of each
particle are updated to newer values according to the new
velocities, following Eq. (13).

vkþ1
ij ¼ vkij þ cprp xkipbest � xkij

� 
þ cgrg xkgbest � xkij

� 
; (12)

where k represents iteration count, cp refers to the cognitive
acceleration coefficient, cg refers to the social acceleration
coefficient, rp and rg are random numbers.

xkþ1
ij ¼ xkij þ vkþ1

ij : (13)

Repeating the above steps, all particles keep moving to
hyperparameter configurations that can obtain better
performance until the algorithm reaches the maximum
number of iterations.

Structure of particle swarm optimisation-guided self-tuning CNN
In our research, a number of experiments were performed in
incremental steps to find out the neural network structure

with the best performance. The final neural network is a
five-layer CNN consisting of three convolution layers and
two fully connected layers. A softmax function is introduced
to classify the extracted features. All trainable parameters
are updated following the Adam optimiser during the
training process. In the tuning process, the neural networks
are trained with a number of hyperparameter combinations
generated or updated by PSO to obtain the performance of
different combinations. Finally, the output of PSO is the
hyperparameter combination of the final model with the
best performance. Fig. 4 illustrates the overall structure of
PSO-guided Self-Tuning CNN (PSTCNN). Theoretically, the
framework can be generalised to other CNNs for image
classification tasks in different domains.

Results and Discussion

The following values were used for various performance
indicators to evaluate the model’s performance
comprehensively. (1) True Positive (TP) represents the
number of positive samples that the model correctly predicts
as the positive class, (2) True Negative (TN) represents the
number of negative samples that the model correctly
predicts as the negative class, (3) False Positive (FP)
represents the number of negative samples that the model
incorrectly predicted as the positive class, and (4) False
Negative (FN) represents the number of positive samples
that the model incorrectly predicts as the negative class.

The seven performance metrics used to assess the
model’s performance are accuracy, precision, sensitivity,
specificity, F1-score, Matthews correlation coefficient, and
the Fowlkes-Mallows index, which provide a comprehensive
evaluation of the model from a variety of perspectives to
ensure a comprehensive performance evaluation.

Accuracy is one of the most common metrics used to
evaluate the performance of a model. The core idea is to
calculate the number of correct predictions as a percentage of
the total number of samples, covering both positive and
negative samples. The formula for accuracy is shown in Eq. (14).

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

: (14)

Although accuracy can assess the overall performance of
a model with a dataset containing both positive and negative
samples, it is not rigorous for an unbalanced dataset. For
example, suppose there is a dataset with 90% positive
samples and only 10% negative samples. A model that
predicts all samples as positive can achieve 90% accuracy,

FIGURE 3. Illustration of Encoding
Scheme. A particle swarm contains i
particles, each with n positions and n
velocities. Each position is a vector of
a, b1, and b2, and each velocity
contains three values corresponding
to a, b1, and b2 of the position.
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but this is not an accurate representation of the model’s
performance. In short, accuracy is not an effective way to
evaluate the predictive performance of a model for the positive
and negative samples separately, so three performance metrics,
precision, sensitivity, and specificity, were introduced to
provide a more comprehensive evaluation of the model.

Precision evaluates model performance primarily based
on prediction results by calculating the number of samples
correctly predicted as positive as a proportion of all samples
predicted as positive to assess the probability that the model
is correctly predicted in the samples where the model is
predicted as positive. The precision of a model increases as
the FP decreases, which can be a guide for finding the
lowest FP. The formula of precision is shown in Eq. (15).

Precision ¼ TP
TPþ FP

: (15)

Specificity is another metric that can be used to measure
the performance of a model for positive samples. The
difference is that specificity is calculated based on the true
labels of the data rather than the model predictions, and the
’performance of the model is assessed by calculating the
number of samples predicted to be negative as a proportion
of the total number of negative samples in the dataset. The
specificity of a model also increases as the FP decreases and
is calculated as shown in Eq. (16).

Specificity ¼ TN
TNþ FP

: (16)

Sensitivity is also calculated based on the true label of the
data, except that it evaluates the model’s performance by
calculating the proportion of samples predicted to be
positive to the total number of positive samples in the data
set. The phenomenon that sensitivity reflects is somewhat
the opposite of precision. It increases as FN decreases,

which can guide finding the lowest FN. Its formula is shown
in Eq. (17).

Sensitivity ¼ TP
TPþ FN

: (17)

F1-score is the performance metric that considers both
precision and sensitivity, tries to find the balance between
these two metrics, and simultaneously makes them the
highest possible values. The calculation of the F1-score is as
shown in Eq. (18).

F1� score ¼ 2� Precision � Sensitivity
Precision þ Sensitivity

: (18)

Matthews Correlation Coefficient (MCC) compensates
that the four elements TP, TN, FP, and FN are not fully
considered in the abovementioned metrics. It considers the
true and predicted values as two variables and calculates the
correlation coefficient. The higher the correlation between
the true and predicted values, the better the model
performance. An MCC value of 1 indicates a perfect positive
correlation between the predicted and true results
FP ¼ FN ¼ 0ð Þ, meaning that the model performs perfectly.
An MCC value of −1 indicates a negative correlation
between the predicted and true results TP ¼ TN ¼ 0ð Þ,
meaning that the model predicts the exact opposite of the
true results. An MCC of 0 means that the classifier cannot
provide meaningful results. The calculation of MCC is
shown in Eq. (19).

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp : (19)

The Fowlkes-Mallows Index (FMI) is a performance
metric that considers both precision and sensitivity. Its
calculation is as shown in Eq. (20). When FMI is 0, the
value of TP is 0, which means that the model will

FIGURE 4. Overall Structure of PSO-guided Self-Tuning CNN (PSTCNN). The framework can be divided into two main parts, PSO-guided
Tuning (blue dashed box) and a Five-layer CNN (green dashed box). The PSO-guided Tuning part does the initialisation and updating of the
parameter values. The Five-layer CNN is trained with the three hyperparameters from the PSO-guided Tuning and some pre-set constant
hyperparameters (batch size is 128, kernel size is 3 × 3, and the number of epochs of 100). The MSE calculated from the output of the
trained CNN is the fitness value of the PSO. The starting iteration index k = 0, and when the value of k reaches the pre-set maximum
number of iterations, The training of the model is completed.
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mispredict all positive samples, and the model is not
considered a valid classifier. On the other hand, if FMI is 1,
the model is deemed to have perfect classification ability.

FMI¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
precision� sensitivity

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TPþFP

� TP
TPþFN

r
: (20)

Area Under Curve (AUC) is an important performance
metric for evaluating binary classification models and is
derived by calculating the area under the receiver operating
characteristic (ROC) curve. The vertical and horizontal axes
are true positive rate (TPR) = sensitivity and false positive
rate (FPR) = specificity. The ROC curves were obtained by
traversing m thresholds used to differentiate the
classification results to obtain different TPR and FPR values.
The more significant the decrease in FPR with increasing
TPR in the curve (i.e., the steeper the ROC curve), the
better the model performance. As the AUC is calculated
from the area under the ROC curve, the higher the AUC,
the better the model performance. As both TPR and FPR
are considered, the ROC curve has the excellent quality of
not changing with sample proportion, and the AUC inherits
this same advantage. The AUC is calculated as shown in

Eq. (21), where TPR and FPR represent a set of TPRs and a
set of FPRs, respectively.

AUC ¼ 1
2

Xm�1

i¼1
TPRi þ TPRi�1ð Þ � FPRi � FPRi�1ð Þ: (21)

Statistical analysis
To minimise the bias in the model performance evaluation
results, we used the 10-fold cross-validation to test the
model’s performance under the optimal hyperparameter
configuration obtained by the optimisation algorithm. As a
result, we obtained a sensitivity (Sen) of 93.65% ± 1.86%, a
specificity (Spc) of 94.32% ± 2.07%, a precision (Prc) of
94.30% ± 2.04%, an accuracy (Acc) of 93.99% ± 1.78%, an
F1-score (F1) of 93.97% ± 1.78%, Matthews correlation
coefficient (MCC) of 87.99% ± 3.56%, and Fowlkes-Mallows
index (FMI) of 93.97% ± 1.78%. The 10-runs 10-fold cross-
validation results are shown in Table 3.

Visual explanation
Fig. 5 illustrates three sample heatmaps generated from ten
runs using Grad-CAM. The annotated parts are the basis of

TABLE 3

Ten runs results among seven performance metrics (in %)

Sen Spc Prc Acc F1 MCC FMI

R1 89.86 91.89 91.72 90.88 90.78 81.77 90.79

R2 91.89 95.27 95.10 93.58 93.47 87.21 93.48

R3 94.59 93.92 93.96 94.26 94.28 88.52 94.28

R4 93.92 93.92 93.92 93.92 93.92 87.84 93.92

R5 92.57 91.89 81.95 92.23 92.26 84.46 92.26

R6 93.92 96.62 96.53 95.27 95.21 90.57 95.21

R7 93.92 91.89 92.05 92.91 92.98 85.83 92.98

R8 96.62 97.30 97.28 96.96 96.95 93.92 96.95

R9 93.92 93.92 93.92 93.92 93.92 87.84 93.92

R10 95.27 96.62 96.58 95.95 95.92 97.90 95.92

MSD 93.65 ± 1.86 94.32 ± 2.07 94.30 ± 2.04 93.99 ± 1.78 93.97 ± 1.78 87.99 ± 3.56 93.97 ± 1.78
Note: R1, R2,…, R10: Run 1, Run 2,…, Run 10; MSD: Mean ± Standard Deviation; Sen: Sensitivity; Spc: Specificity; Prc: Precision; Acc: Accuracy; F1: F1-score;
Mcc: Matthews correlation coefficient; FMI: Fowlkes-Mallows index.

FIGURE 5. Heatmap examples generated by Grad-CAM.
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CNN decisions (the warmer colour and higher attention
level), which correspond to COVID-19 lung infection areas.
These reflect, to some extent, the soundness of the decision
basis of the model.

Receiver operating characteristic curve & area under curve
Fig. 6 illustrates the ROC curve and AUC of PSTCNN. Each of
the points in the figure corresponds to a threshold value. The
value of the AUC can be obtained by calculating the area
under the curve formed by connecting these points. The
figure shows that the PSTCNN can achieve a high TPR with
a low FPR and an AUC close to 0.96. These results indicate
a very promising performance of the model.

Comparison to the state-of-the-art (SOTA)
Fig. 7 illustrates the performance comparison between our
method (PSTCNN) and the deep learning-based SOTA
COVID-19 diagnostic methods, where the height of the bars
represents the model performance; the higher bar, the better
performance. PSTCNN shows superior performance in all
metrics compared to deep learning-based SOTA COVID-19
diagnostic methods. The detailed comparison is shown in

Table 4. This demonstrates the feasibility of the
optimisation algorithm for hyperparameter tuning.
Compared to other methods, the proposed method’s
comprehensive hyperparameter tuning can cover more
possible combinations of hyperparameters. Furthermore, its
purposeful search ensures that the global-optimal solution is
approached step by step. Therefore, it can achieve better
performance than manual hyperparameter tuning while
automating hyperparameter tuning.

Conclusion

Since 2019, the global economy and human health have
continuously received threats from COVID-19. In addition,
the COVID-19 pandemic has highlighted the global
shortage of healthcare resources. AI technologies to aid
diagnosis are one of the vital viable options to alleviate this
problem. This paper explores the possibility of further
automation based on traditional AI techniques. It confirms
this possibility by automating hyperparameter tuning using
an optimisation algorithm and the excellent performance
achieved by this method.

FIGURE 6. Receiver operating characteristic curve of particle swarm
optimisation-guided self-tuning CNN.

FIGURE 7. Comparison with state-of-the-art methods.

TABLE 4

Comparison with state-of-the-arts methods (in %)

Model Sen Spc Prc Acc F1 MCC FMI

WRE+ 3SBBO (Wu, 2020) 86.40 ± 3.00 85.81 ± 3.14 86.14 ± 3.03 86.12 ± 2.75 86.16 ± 2.77 72.42 ± 5.55 86.15 ± 2.76

GoogLeNet-COD-A (Yu et al., 2020) 90.54 ± 2.16 82.77 ± 2.65 84.07 ± 1.93 86.66 ± 1.14 87.15 ± 1.06 73.59 ± 2.25 87.23 ± 1.07

GLCM-SVM (Chen, 2021) 72.03 ± 2.94 78.04 ± 1.72 76.66 ± 1.07 75.03 ± 1.12 74.24 ± 1.57 50.20 ± 2.17 74.29 ± 1.53

6L-CNN (Hou and Han, 2022) 89.47 ± 1.50 87.47 ± 2.11 87.75 ± 1.76 88.47 ± 1.05 88.59 ± 0.99 76.98 ± 2.09 88.60 ± 0.99

SIDCAN (Zhang et al., 2021) 92.86 ± 1.59 93.64 ± 2.09 93.36 ± 2.02 93.26 ± 0.74 93.08 ± 0.71 86.55 ± 1.49 93.10 ± 0.72

PZM-DSSAE (Khan, 2021) 92.06 ± 1.54 92.56 ± 1.06 92.53 ± 1.03 92.31 ± 1.08 92.29 ± 1.10 84.64 ± 2.15 92.29 ± 1.10

GLCM-ELM (Pi and Lima, 2021) 74.19 ± 2.74 77.81 ± 2.03 77.01 ± 1.29 76.00 ± 0.98 75.54 ± 1.31 52.08 ± 1.95 75.57 ± 1.28

WE-Jaya (Wang, 2021) 73.31 ± 2.26 78.11 ± 1.92 77.03 ± 1.35 75.71 ± 1.04 75.10 ± 1.23 51.51 ± 2.07 75.14 ± 1.22

GLCM+SNN (Pi, 2021) 74.66 ± 1.87 78.00 ± 1.29 77.24 ± 1.15 76.33 ± 1.18 75.92 ± 1.31 52.70 ± 2.34 75.93 ± 1.30

WE-SAJ (Wang et al., 2022) 85.47 ± 1.84 87.23 ± 1.67 87.03 ± 1.34 86.35 ± 0.70 86.23 ± 0.77 72.75 ± 1.38 86.24 ± 0.76

PSTCNN (Ours) 93.65 ± 1.86 94.32 ± 2.07 94.30 ± 2.04 93.99 ± 1.78 93.97 ± 1.78 87.99 ± 3.56 93.97 ± 1.78
Note: Sen: Sensitivity; Spc: Specificity; Prc: Precision; Acc: Accuracy; F1: F1-score; Mcc: Matthews correlation coefficient; FMI: Fowlkes-Mallows index.
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However, our method was only experimentally tested for
three hyperparameters of the neural network training process,
i.e., the learning rate, the coefficient that controls the
exponential decay rates of the past gradient, and the
coefficient that controls the exponential decay rates of the
square of the past gradient. A few more hyperparameters
can be tuned that we did not cover in this report, e.g., the
number of network layers and the type of network layers. It
means that the proposed method is insufficient as a final
solution for self-tuning neural networks. In addition, the
proposed method takes advantage of the purposeful
movement of particles in the particle swarm optimisation
algorithm for the hyperparameters to approach the optimal
solution in each iteration. However, the movement of
particles in each iteration is updated according to the
direction of the best solution in the previous iteration,
which may deviate from the global optimal solution and fall
into the local optimal solution if the best solution is not in
the path between the particles and the global optimal solution.

In future research, we will further explore the
applicability of other optimisation algorithms to this task
and attempt to avoid locally optimal solutions when
obtaining combinations of hyperparameters while covering
more hyperparameters in the experiment. We believe that
reducing the dependence of model training on machine
learning experts can effectively accelerate the generalisation
of AI technologies across different domains. AI techniques
will therefore become an essential tool in human life and
industries in the near future.
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