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Abstract: Coronavirus 19 (COVID-19) can cause severe pneumonia that may
be fatal. Correct diagnosis is essential. Computed tomography (CT) usefully
detects symptoms of COVID-19 infection. In this retrospective study, we
present an improved framework for detection of COVID-19 infection on
CT images; the steps include pre-processing, segmentation, feature extrac-
tion/fusion/selection, and classification. In the pre-processing phase, a Gabor
wavelet filter is applied to enhance image intensities. A marker-based, water-
shed controlled approach with thresholding is used to isolate the lung region.
In the segmentationphase, COVID-19 lesions are segmented using an encoder-
/decoder-based deep learning model in which deepLabv3 serves as the bot-
tleneck and mobilenetv2 as the classification head. DeepLabv3 is an effective
decoder that helps to refine segmentation of lesion boundaries. The model
was trained using fine-tuned hyperparameters selected after extensive exper-
imentation. Subsequently, the Gray Level Co-occurrence Matrix (GLCM)
features and statistical features including circularity, area, and perimeters were
computed for each segmented image. The computed features were serially
fused and the best features (those that were optimally discriminatory) selected
using a Genetic Algorithm (GA) for classification. The performance of the
method was evaluated using two benchmark datasets: The COVID-19 Seg-
mentation and the POF Hospital datasets. The results were better than those
of existing methods.
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1 Introduction

SARS-CoV-2 (also known as COVID-19) is a novel coronavirus. The disease caused by the
virus has been declared a pandemic by the World Health Organization (WHO) and has spread
to more than 170 countries worldwide. Globally, more than 10 million people have been infected.
Recently, the WHO has stated that 33,842,281 COVID-19 cases have been confirmed worldwide,
as have 1,010,634 deaths. In Pakistan, COVID-19 is spreading rapidly; a recent report described
312,263 confirmed cases, 6,479 deaths, and 296,881 recoveries.

The treatment of such patients in special care units requires early detection of COVID-19
to increase the survival rate. Separation of healthy people from affected patients is the prime
objective; this is possible only if diagnosis is early. The diagnostic technique using throat swabs
is 30% to 60% accurate, which means that undiagnosed patients may commonly infect healthy
people [1–6]. COVID-19 infection can be diagnosed with high sensitivity using a chest X-ray;
the disease correlates with certain visual indices [7,8]. The ground glass pattern is present in the
early stage but is located at the edges of pulmonary vessels that may be difficult to observe [9].
COVID-19 infection has been reported to be associated with diffuse airspace opacities or patchy
asymmetry [10]. Only expert radiologists can interpret such indirect abnormalities. Given the
shortage of trained radiologists and the huge numbers of affected patients, automatic abnormality
identification would assist early diagnosis. Automation is possible using Artificial Intelligence (AI)
and other potentially powerful Machine Learning (ML) methods [11–13]. Here, we take a unique
approach toward early COVID19 infection detection. The principal steps of our approach are:

Pre-processing is performed using a Gabor filter to enhance image intensities, and a marker
controller watershed with thresholding is used to segment the actual lung region.

(1) The lesion is segmented using a three-dimensional (3D) semantic segmentation model. In
this model, the deeplabv3 network serves as the bottleneck of the moblenetv2 module.
The combination of these convolutional neural networks accurately segments the infected
lung region.

(2) The GLCM and statistical features are computed from the segmented regions, and then
fused and optimized by the Genetic Algorithm (GA) used for classification.

The structure of the manuscript is as follows: in Section 2, related work is described; in
Section 3, our work is explained; in Section 4, the findings and discussion appear; and, in
Section 5, conclusions are finally drawn.

2 Related Work

Computerized imaging techniques are important when seeking to diagnose COVID-19 infec-
tion early. Computed tomography (CT) of the chest is preferred to X-ray [14–20]. Given the
increasing numbers of COVID-19 patients, hospitals are overloaded. Manual scan evaluation by
radiologists is time-consuming and tedious; the risk of error may increase if the radiologist is
under pressure [21]. Therefore, automated methods of efficient and accurate diagnosis would aid
decision-making [22].

Artificial intelligence methods play important roles when learning the patterns of many CT
images and then making predictions based on those patterns [23–26]. Pre-trained deep learning
models [27] (Dense Net, GoogleNet, and AlexNet, etc.) have received considerable attention over
the past decades because these models are already trained using big data. A 3D deep learning
model is used for classification [28]. Accurate segmentation poses a great challenge because lesions



CMC, 2021, vol.68, no.2 2453

develop at borders and redundant features degrade model accuracy. Thus, in this work, we
employed a U-Net model for segmentation, feature extraction, and selection of the framework for
COVID-19 CT image classification. Tab. 1 summarizes the existing literature.

Table 1: Existing machine/deep learning methodologies

Refs. Year Machine/deep learning methodologies Dataset Results

[29] 2020 AI tools for the analysis of CT
images

157 patients data 0.996 AUC, 98.2
sensitivity, 92.2 specificity

[30] 2020 ResNet18, ResNet50,
SqueezeNet, and DenseNet-121

5,000 Chest X-rays 98% sensitivity, 90%
specificity

[31] 2018 Pre-trained models 34,006 CT images 0.830 precision, 0.967
sensitivity, 0.004 specificity

[32] 2018 Bayesian convolutional neural
networks (BCNN)

5941 Chest X-rays 80% accuracy

[33] 2020 Confidence aware anomaly
detection (CAAD) model

5,977 Chest X-rays AUC of 83.61%

3 Proposed Methodology

The proposed model features three major phases:

In Phase 1, a Gabor filter with fine-tuned parameters is used in the pre-processing phase to
improve image quality.

In Phase 2, the lung region is segmented using a marker-controlled watershed method.
Deeplav3 serves as the bottleneck of the mobilenetv2 module used to segment the actual lesions
of COVID-19.

In Phase 3, geometrical and statistical features are computed from each segmented image.
The extracted characteristics are serially fused and, on addition of a GA, redundant features are
eliminated. Each vector of optimized functionality is forwarded to the COVID-19 classifiers.

Fig. 1 shows these steps.

3.1 Preprocessing Using Gabor Wavelet Filter
We applied the Gabor filter (a linear filter devised by Dennis Gabor) to CT images when ana-

lyzing textural patterns that contain rich information related to pathology. The filter analyzes the
specific frequency contents in certain image directions. In the spatial field, a 2D Gabor filter with
a Gaussian kernel is modulated via a plane sinusoidal wave. Given the convolution multiplication
property, the Fourier transform of the impulse response (the Gabor filter) is convolved with the
Fourier transform of the harmonic (sinusoidal) function and a Gaussian function. A Gabor filter
is mathematically expressed as:

Gaborc [i, j]=Be− (i2+ j2)
2σ 2 Cos2π f (icosθ + jsinθ) (1)

Gabors [i, j]=Ce− (i2+ j2)
2σ 2 Sinπ f (icosθ + jsinθ) (2)
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where B and C denote normalizing factors and f represents frequency. The Gabor-filtered
images and the original CT images are illustrated in Fig. 2.

Input Image
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Phase II: Lesion Segmentation

Phase III: Features Extraction and Classification
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Figure 1: Proposed architecture of COVID-19 detection

A marker-controlled watershed approach with thresholding was then applied to the Gabor-
filtered images to segment the actual lung surface, as shown in Fig. 3. In this method, morpho-
logical operations such as opening and closing (using five disc-shaped structuring elements) are
applied to remove extraneous regions. The lung region is extracted using a thresholding method
in which the background is marked and the background pixels eliminated. The morphological
operations are defined as:

Q◦R= (Q�R)⊕R (3)

Q ·R= (Q⊕R)�R (4)

where ◦ denotes an opening, · represents a closing, and � and ⊕ erosion and dilation
respectively.
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(a) (b)

Figure 2: Gabor filtered image (a) CT image (b) filtered outcome

3.2 COVID-19 Segmentation Using Deep Convolutional Neural Network
We propose a new semantic segmentation model in which deeplabv3 serves as the bottleneck

of mobilenetv2. There are 186 layers, thus 1 input layer; 70 convolutional layers; two 2D cropping
layers; 59 batch norm layers; 43 ReLU layers; eight addition layers; and single depth concatena-
tion, softmax, and pixel classification layers. The primary goal of the model is to assign semantic
class labels pixel-by-pixel in the input image. The model is fine-tuned using the learning parameters
shown in Tab. 2 to aid precise segmentation. The proposed model layers with the activation units
are shown in Fig. 4.

The proposed segmentation outcomes are illustrated in Fig. 5.

3.3 Proposed Fused Features Vectors
The GLCM features extracted from the segmented region (fφ) include energy, variance,

entropy, homogeneity, dissimilarity, cluster shade, and cluster shape. The statistical features are
area, perimeter, and circularity. Both the GLCM and statistical features are serially fused as
illustrated in Fig. 6.

3.3.1 GLCM Features Extraction
The GLCM of an image fφ of size M×N is a matrix G, where gk,l denotes each element of

G and gk,l is the number of times a pixel pair with intensities k and l occur in the image.

gk,l =
M−1∑
x=0

N−1∑
y=0

{
1 if dφ (x, y)= k and dφ (x+λx, y+λy)= l
0 else

pk,l =
gk,l
n

(5)

Here, n is the sum of elements in G, and pk,l is an estimate of the probability that a pair
of points (k,l) exists. (λx,λy) denotes the offsets and d represents the distance. GLCM features
are computed in four directions: 0

◦
, 45

◦
, 90

◦
, and 135

◦
. Then, the mean (μ), range, and variance
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(σ) are computed across each feature. The length of a GLCM feature is 1 × 18. The detailed
description is:

(a) (b) (c)

Figure 3: Lung region of segmentation (a) original CT image (b) lung region (c) segmented
lung region

Table 2: Optimization parameters for proposed segmentation model

Implementation
software

Segmentation
model

Size of input Optimization Size of
mini-batch

Learning
rate

Number
of epochs

Matlab 2020Ra Deeplabv3 and 512× 512× 3 Sgdm 64 0.001 30
Mobilenetv2

Energy is used to measure local textural homogeneity within an image.

Energy
(
fE

)
=

∑
k

∑
l

pk,l
2 (6)
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Entropy is used to measures the randomness.

Entropy(fHeφ )=−
r−1∑
k=0

r−1∑
l=0

pk,l log
(
pk,l

)
(7)

where r denotes the number of intensity levels

Conv Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Block 8Block 9Block 10Block 11Block 12Block 13Block 14Block 15

Block 16 Transpose
Conv1

Transpose
Conv2

Crop 2D Classification

Figure 4: Activations of proposed semantic segmentation model (where 16 blocks consist of con-
volutional, batch-normalization and ReLU layers, two transpose convolutional layers, 01 crop 2D
layer and 01 pixel classification layer)

Variance is utilized to evaluate the distribution of intensity values.

Variance (fσ
2
)=

r−1∑
k=0

r−1∑
l=0

(k− fu)2pk,l (8)

Homogeneity (fα1) measures non-zero entries in GLCM.

Homogeneity(fα1)=
r−1∑
k=0

r−1∑
l=0

pk,l
1+ |k− l| (9)

Cluster prominence (fcp) is used to compute the skewness.

Cluster prominence
(
fcp

)= r−1∑
k=0

r−1∑
l=0

{k+ l− fμx−fμy}4.pk,l (10)
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(a) (b) (c)

Figure 5: COVID-19 segmentation (a) Input image (b) COVID-19 segmentation (c) Ground truth
annotation

Cluster shade (fcs ) is used to reduce the total number of operations.

Cluster shade
(
fcs

) = r−1∑
k=0

r−1∑
l=0

{k+ l− fμx−fμy}3pk,l (11)

Dissimilarity (fD) is used to compute the variations among gray levels.

Dissimilarity
(
fD

)
=

∑
k

∑
l

pk,l |k− l| (12)

3.3.2 Statistical Features Extraction
The three statistical features of length 1× 3 are extracted from the segmented images. Area

is computed from the segmented region. The perimeter serves as a strong feature identifying the

lengths of lesional boundaries. Circularity (fC)= (4∗fA∗π)

(fP2)
is also utilized to compute lesional pixels

in the circular region.
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Figure 6: Features extraction/selection for COVID19 classification

3.4 Features Selection Using GA
In this study, GLCM features were computed in terms of mean, range, and variance and later

fused with statistical features such as area, perimeter, and circularity. The length of each fused
feature vector is 1×21. The heuristic feature selection approach afforded by GA is used to remove
redundant features and select more discriminatory features by optimizing the cost function. The
GA learning parameters are chosen to solve the problem of optimization, as shown in Tab. 3.

Table 3: GA parameters

Iterations 30

Size of population 10
Crossover % 0.5

Parents 2× round
(
crossover%size of the population

2

)
Mutation % 0.3
Total number of the mutation round (Mutation%× size of the population)

Selected pressure (β) 8

3.5 Classification
The vector of the resulting features was transferred to an SVM [34], an Ensemble Tree, and

an ELM [35] classifier. The Ensemble Tree classifier featured a LogitBoost kernel, a learning rate
of 0.44478, and 349 tree split parameters for training. The ELM [36] employed 200 hidden units
for training, and the multiclass SVM model was trained on a maximum of 30 epochs.
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4 Experimentation

In this work, two types of experiments were performed. The first evaluated segmentation
method performance using the ground truth annotations and the second explored the classification
of CT images.

We used two datasets to validate our proposed approach: The POF Hospital dataset and the
COVID-19 segmentation dataset. The POF hospital CT dataset contains data on 100 confirmed
COVID-19 patients (2,879 positive CT images of 4,089 CT images). The COVID-19 segmentation
dataset consists of the CT imaging data on 40 patients (each of 100 axial slices) and ground truth
images. The classification data contain 373 positive and 456 negative slices [37].

4.1 Experiment #1 (Evaluation of Segmentation Method)
In this experiment, semantic segmentation was performed using a group of similar pixels as

revealed by their class labels. The prediction was performed at the pixel level; each image pixel
was classified based on the corresponding class label. The results of the proposed segmentation
method are compared pixel-by-pixel with the ground truth images in Fig. 7.

(a) (b) (c)

Figure 7: Segmentation with annotated images (a) input (b) proposed segmentation
(c) ground truth
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The segmentation technique performance was validated in terms of various measures such as
accuracy (mean and global), Intersection Over Union (IoU) (mean and weighted), and Boundary
Contour Matching (BF) scores mathematically expressed as follows:

Accuracy= True positive
True positive+False negative

(13)

The IoU is also termed the Jaccard index, and computes the proportions of correctly classified
pixels among the predicted and ground truth pixels.

IoU= True positive
True positive+False positive+False negative

(14)

The IoU is computed in terms of mean and weighted values. The mean IoU measures the
average IoU of all classes in a particular image. The average IoU of a certain class is weighted
by the number of pixels in that class. Th boundary F1 scores compute the proportions of class
boundaries that align with the actual boundaries.

The results of the proposed segmentation method are listed in Tab. 4, and show that the
proposed method performed well.

Table 4: Segmentation results with ground truth annotation on COVID-19 segmentation dataset

Accuracy (Mean) Accuracy (Global) IoU (Mean) IoU (Weighted) BFscore (Mean)

0.97 0.89 0.90 0.96 0.98

4.2 Experiment #2 (Evaluation of Classification Approach)
The extracted GLCM and statistical features were serially fused. The GA chose the informa-

tive features. The resultant optimal feature vectors were fed to the support vector machine (SVM),
extreme learning machine (ELM), and the ensemble (optimized). The training and testing images
were validated using holdouts of 0.7 and 0.5. A summary appears in Tab. 5.

Table 5: Summary of training and testing images for classification

Datasets Cross-validation approach Training and testing images

COVID-19 segmentation dataset 0.5 hold out 2044 training, 2044 testing
0.7 hold out 2862 training, 1226 testing

POF dataset 0.5 hold out 414 training, 414 testing
0.7 hold out 580 training, 248 testing

We used the MATLAB 2020Ra Toolbox with the Nvidia Graphic 740k card to run all tests.
The results of classification are presented by the two different separation criteria (0.5 and 0.7
holdout validations) in Fig. 8.

The results of the classification are listed in Tabs. 6–17.

The classification results show that the 0.5 holdout cross-validation method was associated
with accuracies of 98.37% on the ELM, 93.27% on the SVM, and 97.54% on the optimized
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ensemble. The experimental evaluation thus showed that the ELM outperformed the other
benchmark classifiers.

(a) (b)

(c) (d)

Figure 8: Confusion matrix (a) 0.5 cross-validation on POF hospital (b) 0.7 cross-validation on
POF hospital (c) 0.5 cross-validation on COVID-19 segmentation (Italian) dataset (d) 0.7 cross-
validation on COVID-19 segmentation (Italian) dataset

Table 6: Classification using ELM on POF hospital dataset (0.5 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.96 0.98 98.37
COVID-19 0.99 0.98 98.37

Table 7: Classification using SVM on POF hospital dataset (0.5 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.83 0.82 93.27
COVID-19 0.96 0.96 93.27
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Table 8: Classification using optimized ensemble on POF hospital dataset (0.5 hold cross-
validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.89 0.97 97.54
COVID-19 0.99 0.98 97.54

Table 9: Classification using ELM on POF hospital dataset (0.7 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.79 0.88 90.39
COVID-19 0.95 0.91 90.39

Table 10: Classification using SVM on POF hospital dataset (0.7 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.98 0.94 98.49
COVID-19 0.99 1.0 98.49

Table 11: Classification using optimized ensemble on POF hospital dataset (0.7 hold cross-
validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.99 0.98 99.58
COVID-19 1.0 1.0 99.58

Similarly, the experimental evaluation using 0.7 holdout cross-validation yielded accuracies of
90.39% on the ELM, 98.49% on the SVM, and 99.58% on the optimized ensemble. Hence, the
SVM exhibited the best accuracy.

Table 12: Classification using ELM on COVID-19 segmentation dataset (0.5 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.97 0.94 98.62
COVID-19 0.99 0.99 98.62
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Table 13: Classification using SVM on COVID-19 segmentation dataset (0.5 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.94 0.97 98.59
COVID-19 0.99 0.99 98.59

Table 14: Classification using optimized ensemble on COVID-19 segmentation dataset (0.5 hold
cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.89 0.91 96.74
COVID-19 0.98 0.98 96.74

The classification accuracies (50:50) of the COVID-19 segmentation dataset were 98.62% on
the ELM, 98.59% on the SVM, and 96.74% on the optimized ensemble; the ELM was best.

Table 15: Classification using ELM on COVID-19 segmentation dataset (0.7 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.83 0.97 96.33
COVID-19 0.99 0.96 96.33

Table 16: Classification using SVM on COVID-19 segmentation dataset (0.7 hold cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 0.91 0.88 96.71
COVID-19 0.98 0.98 96.71

Table 17: Classification using Optimized Ensemble on COVID-19 segmentation dataset (0.7 hold
cross-validation)

Classes Sensitivity Precision Accuracy (%)

Non-COVID-19 1.0 0.97 99.53
COVID-19 0.99 1.0 99.53

The classification accuracies of positive/negative images (70/30) were 96.33% on the ELM,
96.71% on the SVM, and 99.53% on the optimized ensemble; the latter was thus best.
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The classification results of the COVID-19 segmentation dataset were compared with a recent
work in terms of accuracy; the existing method achieved 89% accuracy [37] and our proposed
method 99.53% accuracy, as shown in Tab. 18.

Table 18: Classification results comparison

Ref. Year Accuracy (%)

[37] 2020 89
Proposed method 99.53

5 Conclusion

We used a modified deep learning model to diagnose COVID-19 infection. CT images are
noisy and such infections are hard to detect; denoising of CT images is a challenging task.
We used a Gabor wavelet filter to remove noise and a marker-controlled watershed method to
eliminate non-lung regions including background pixels.

Segmentation is an intricate task because lesions may be irregular in terms of both shape and
size. Therefore, we used deeplabv3 as the bottleneck and mobilenetv2 as the classification head for
segmentation. As accurate classification depends on the feature vectors used; we extracted GLCM
features including the mean, range, and variance, and statistical features, and fused them serially.

We validated the proposed approach using two different training and testing criteria (holdouts
of 0.5 and 0.7). The proposed approach yielded consistent results, confirming that it is novel.
The approach accurately segmented/classified COVID-19 features and will help radiologists in
the present pandemic situation. In future, our approach will be deployed in hospitals to analyze
images automatically and predict either a normal or COVID-19-infected lung.
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