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Abstract: The analysis of large time-series datasets has profoundly enhanced
our ability to make accurate predictions in many fields. However, unpredictable
phenomena, such as extreme weather events or the novel coronavirus 2019
(COVID-19) outbreak, can greatly limit the ability of time-series analyses to
establish reliable patterns. The present work addresses this issue by applying
uncertainty analysis using a probability distribution function, and applies
the proposed scheme within a preliminary study involving the prediction of
power consumption for a single hotel in Seoul, South Korea based on an
analysis of 53,567 data items collected by the Korea Electric Power Corpo-
ration using robotic process automation. We first apply Facebook Prophet
for conducting time-series analysis. The results demonstrate that the COVID-
19 outbreak seriously compromised the reliability of the time-series analysis.
Then, machine learning models are developed in the TensorFlow framework
for conducting uncertainty analysis based on modeled relationships between
electric power consumption and outdoor temperature. The benefits of the
proposed uncertainty analysis for predicting the electricity consumption of
the hotel building are demonstrated by comparing the results obtained when
considering no uncertainty, aleatory uncertainty, epistemic uncertainty, and
mixed aleatory and epistemic uncertainty. The minimum and maximum ranges
of predicted electricity consumption are obtained when using mixed uncer-
tainty. Accordingly, the application of uncertainty analysis using a probability
distribution function greatly improved the predictive power of the analysis
compared to time-series analysis.

Keywords: Machine learning; predictive modeling; time-series analysis;
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1 Introduction

Prediction is a statement regarding what can be expected to occur in the future. Therefore, it
suffers from uncertainty, and probabilistic and statistical tools involving big data, data science, and
machine learning are necessary components of any scientific approach seeking to formalize the
prediction process [1-7]. Despite the complexity of the process, accurate predictions are essential
for supporting a wide range of human activities. For example, predictive modeling applied to the
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coronavirus 2019 (COVID-19) outbreak can facilitate better patient care, such as by predicting
intensive care unit requirements, evaluating patient survival potentials, and analyzing patient
trajectories during treatment [&].

Time-series analysis is an essential aspect of the prediction process because many prediction
problems have a time component. This process based on time-series analysis typically seeks to
predict the future values of observed time-series data using a multivariate regression model with
estimated and expected regression parameters [9]. A variety of models exist. The best-known
class of models is autoregressive moving average (ARMA) and autoregressive integrated moving
average (ARIMA) models for single time-series data. Multivariate ARIMA models and vector
auto-regression models are also popular. However, a comparative study demonstrated that the
Facebook Prophet algorithm has better prediction results than ARIMA [10]. Facebook Prophet
is an open-source library that fits non-linear trends for time-series data having yearly, weekly, and
daily seasonality, and also includes the impacts of non-seasonal events such as holidays.

Unfortunately, unpredictable phenomena, such as extreme weather events or the COVID-19
outbreak, can greatly limit the ability of time-series analyses to establish reliable patterns. This is
because the same information can produce different outputs from the same model owing to the
presence of uncertainty. However, introducing uncertainty into deterministic models is difficult.

Machine learning techniques and deep learning algorithms can make predictions by learning
the inherent patterns within data, and therefore present new approaches to prediction by modeling
relationships between variables in a deep and layered hierarchy. For example, long short-term
memory has generated considerable attention, with applications in many disciplines [11-19]. These
characteristics make machine learning an ideal solution to prediction problems that involve big
datasets, large numbers of predictors, and different types and sources of data, including free-text
notes [20-28]. Predictive modeling is classified mainly into theoretical modeling based on causal-
ity and the reduced-form approach based on correlation. However, the lack of any discernible
causality in many prediction processes, and the increasing abundance of data and computational
capability have facilitated the wide use of the reduced-form approach in predictive modeling
research. In any case, predictive modeling requires a good understanding of the data and objective
of the proposed application for data preprocessing, model generation, and evaluation [29].

Predictive modeling efforts must address two kinds of uncertainty, including aleatory and
epistemic uncertainty, where aleatory uncertainty represents the inherent uncertainty in a com-
pletely random process, and epistemic uncertainty derives from ignorance or a lack complete
information regarding the behavior of a process [30]. Many deep learning methods, including
Bayesian and non-Bayesian methods, have been proposed to quantify predictive uncertainty. Here,
Bayesian inference makes predictions using prior knowledge, and a probabilistic programming
language based on this can express a model’s randomness. Python, which supports a probabilistic
programming language (PPL), is open-source, and it can generate scalable and efficient Bayesian
machine learning models. This makes PPL ideal for modeling uncertainty. However, while a large-
scale benchmark study of existing state-of-the-art deep learning strategies applied to classification
problems and an investigation of the effect of dataset shift on accuracy and calibration has been
conducted [31], no rigorous large-scale empirical comparison has yet been applied to these meth-
ods. Self-supervised learning represents another method by which model robustness to uncertainty
can be improved. The predictive performance of this method exceeds the performance of fully
supervised methods because it enhances out-of-distribution detection on difficult, near-distribution
outliers [32].
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The above discussion indicates that a probabilistic approach can transcend the limitations
of time-series analysis, while contributing to the robustness of predictive models to uncertainty.
The present work addresses this issue by applying uncertainty analysis using a probability dis-
tribution function, and applies the proposed scheme within a preliminary study involving the
prediction of power consumption for a single hotel in Seoul, South Korea. This application of
uncertainty analysis is quite topical because both increasing population and economic growth
worldwide have greatly increased the share of the total energy consumption taken by commercial
space, such that its prediction is increasingly important for the purpose of reducing energy
consumption [33-36]. Moreover, data-driven approaches are the most advanced methods employed
for electric energy consumption prediction (EECP) applications, which have been applied as a
deep learning approach to intelligent power management systems, and plays an important role in
national energy development policy [37-39].

First, time-series analysis is conducted based on 53,567 data items recorded from March 1,
2019 to September 8, 2020 for the hotel building over 558 days on the Korea Electric Power
Corporation (KEPCO) website, which records electricity usage every 15 min using robotic process
automation (RPA). We apply Facebook Prophet for the time-series analysis, and the results clearly
demonstrate that that the COVID-19 outbreak seriously compromised the reliability of the time-
series analysis.

We then develop machine learning models in the TensorFlow framework for conducting
uncertainty analyses based on modeled relationships between electric power consumption and
outdoor temperature. We begin with a simple linear regression model, as the most basic machine
learning algorithm, for predicting the electric power consumption of the hotel building with
respect to outdoor temperature. In such a model, the value of one variable varies in proportion
to that of another. Obtaining improved prediction requires a representation of the variation
inherent to the underlying process, which is aleatory uncertainty. The remaining uncertainty in
the prediction process involves known unknowns, which represents epistemic uncertainty due to a
lack of knowledge [40]. A final method of uncertainty analysis involves the case of both known
and unknown unknowns, which is mixed aleatory and epistemic uncertainty. The benefits of
the proposed uncertainty analysis for predicting electric power consumption are demonstrated by
comparing the results obtained when considering no uncertainty (i.e., the linear regression model),
aleatory uncertainty, epistemic uncertainty, and mixed aleatory and epistemic uncertainty. The
results indicate that the electricity consumption of the hotel cannot be precisely predicted using
the linear regression model because the model ignores uncertainty. In contrast, the minimum and
maximum ranges of the predicted power consumption are obtained when using mixed uncertainty.

2 Time-series Analysis

The electric power consumption data of the hotel building collected over the 558 days from
March 1, 2019 to September 8, 2020 is presented as black dots in Fig. 1.

The prediction results of the electric power consumption obtained by Prophet from March 1,
2020 September 1, 2020 are given by the blue line, while the sky blue area corresponds to the
upper and lower limits of the predictions. The data points circled in red and dark blue respectively
represent the days with the highest and lowest electricity consumption in 2019 and 2020. The
differences between the two highest points and the two lowest points are marked by red and
dark blue dotted lines, respectively. Power consumption is seen to have decreased significantly after
March 1, 2020 with the advent of the COVID-19 outbreak. This represents a change that could
not be predicted. Accordingly, time-series analysis can no longer support predictive modeling.
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Figure 1: Predictive modeling of hotel electric power consumption for the year 2020

The Facebook Prophet time-series analysis decomposition results are presented in Fig. 2,
which include the overall trend, and weekly, yearly, and daily variations. Here, the trend results
represent the declining electric power demand observed in Fig. |, which provided predictions that
differed from the actual electric power usage. Accordingly, a general time-series analysis is not
suitable under these conditions. Nevertheless, the weekly, yearly, and daily variations represent
meaningful results. According to the weekly prediction in Fig. 2, electricity consumption on
Tuesday and Friday is high, and it is relatively low on Thursday. The yearly analysis in Fig. 2
correctly predicts heat-related power consumption in August.

3 Methodology

3.1 Dataset

Daily recorded outdoor temperature data were used in conjunction with the electric power
consumption data presented in Fig. 2. The quantile statistics of daily electricity consumption are
listed in Tab. 1. We note that the maximum value is nearly twice the minimum.

3.2 Normalization

The electricity consumption data cannot be applied directly to a probability distribution
function generated with respect to temperature without normalization. Therefore, we normalize
the power consumption data as follows:

Normalized dataset = (value — min(dataset)) /(max(dataset) — min(dataset)). (1)

The normalized electricity consumption dataset employed for model training is plotted as the
variable y on a scale of 0 to 1 with respect to the temperature 7 (°C) in Fig. 3.
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Figure 2: Facebook Prophet time-series analysis decomposition
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Table 1: Quantile statistics of daily electricity consumption (unit: kW)

Minimum 14019.12
Sth percentile 15224.736
25th percentile 16023.36
Median 19301.28
75th percentile 22804.32
95th percentile 26976.768
Maximum 29781.12
Observed Data
o8 «f
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Figure 3: Normalized observed electricity consumption data with respect to temperature T

3.3 Prediction Methods

The four prediction methods are illustrated in Fig. 4. The mixed model was obtained by
integrating the respective models accounting for aleatory and epistemic uncertainties, and the data
distribution is modeled by adding a variation analysis layer to the previous model.

Prediction Methods

® Simple Linear Regression

Input Data Collection ® Supervised Learning for Variability

via RPA

‘ Predictions

® Unsupervised Learning for Reducibility

® Mixed Supervised & Unsupervised Learning

Figure 4: Prediction methods
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The machine learning models were developed using TensorFlow probability (TFP) layers to
manage the uncertainty inherent in regression predictions, and probabilistic layers in TFP with
the Keras application programming interface (API), which is a high-level API for TensorFlow, to
build the other models on that simple foundation.

The output of the linear regression model is a normal distribution with constant variance.
The output of the second prediction model is a normal distribution whose mean and variance
depend on the input. For the third prediction method, the posterior and prior were trained using
the Keras layer, and the model was built by inference. For the last prediction method, the model
was created and inferred. Then, several ensemble means and ensemble standard derivations were
applied to obtain plots for various prediction lines indicative of the prediction results.

4 Results

4.1 No Uncertainty

The single line in Fig. 5 represents the overall trend of the predicted mean, and therefore
does not account for uncertainty.

No Uncertainty

10 - mean
& training data

03

0.6 -

02

0.0 -

Figure 5: Overall trend of the predicted mean of the distribution

4.2 Aleatory Uncertainty

The results obtained by the supervised learning method accounting for aleatory uncertainty
are presented in Fig. 6. Here, the overall trend in the predicted mean is plotted along with the
standard deviation of the distribution. After training, the model provides meaningful predictions
regarding the variability of y as a function of T, making it possible to produce a range of
predictions indicative of aleatory uncertainty, rather than a simple line indicative of only the
predicted mean value.

4.3 Epistemic Uncertainty

The results of the unsupervised learning method accounting for epistemic uncertainty are
presented in Fig. 7. Here, the 20 red lines in the figure represent 20 guesses by the unsupervised
model regarding the linear relationship between y and 7', which are different each time because
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the generated model resamples the data according to weighting imposed by the posterior distribu-
tion. Hence, we have presented 20 predictions to understand how the weighting imposed by the
nobreakposterior distribution affects the final prediction. The epistemic uncertainty is reflected in
the different slopes of the lines, which represent an increasing uncertainty in y with increasing 7.
Accordingly, accurate predictions are quite difficult to obtain without introducing prior knowledge.
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Figure 6: Variation inherent to the underlying prediction process
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Figure 7: Ensemble means with overall mean for representing epistemic uncertainty

4.4 Mixed Aleatory and Epistemic Uncertainty

The results of the mixed supervised and unsupervised learning method that accounts for both
aleatory and epistemic uncertainties are presented in Figs. 8 and 9, which represent the results
obtained with three sample means and four sample means, respectively. The plots of the figures
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on the left sides present predictions based on the slopes of the observed data over different x-axis
data ranges, and the plots of the figures on the right sides reflect the application of the minimum
and maximum values of the observed data.
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Figure 8: Ensemble models applying the variability of y as a function of x with three sam-
ple means
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Figure 9: Ensemble models applying the variability of y as a function of x with four sample means

These results confirm the limitations of the simple linear regression analysis. Moreover, it can
be seen that the results in Figs. 8§ and 9 represent less uncertainty over that presented in Fig. 6
for the model considering only aleatory uncertainty and that presented in Fig. 8 for the model
considering only epistemic uncertainty because they cover the wider area.

5 Conclusion

The present study demonstrated that a probabilistic approach can transcend the limitations
of time-series analysis by applying uncertainty analysis using a probability distribution function
to the prediction of power consumption for a single hotel in Seoul, South Korea. The results
confirmed that the time-series analysis was insufficiently reliable due to uncertainty, such as
the COVID-19 outbreak that could not be predicted. The application of models accounting
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for aleatory uncertainty, epistemic uncertainty, and both aleatory and epistemic uncertainties
demonstrated that electricity consumption can be predicted within a specific range according
to the outdoor temperature. The results further demonstrated that probabilistic programming
languages such as TensorFlow probability can provide a framework for accounting for aleatory
and epistemic uncertainties, and can hasten the solution of complex probabilistic models. The
output of algorithms trained on historical data can be applied to new data to make further
predictions. This technology facilitates the analysis of big data, enabling the application of related
research to real life and not just theoretical data.
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