
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014709

Article

A Genetic Based Leader Election Algorithm for IoT Cloud
Data Processing

Samira Kanwal1, Zeshan Iqbal1, Aun Irtaza1, Rashid Ali2 and Kamran Siddique3,*

1Department of Computer Science, University of Engineering and Technology, Taxila, 47050, Pakistan
2School of Intelligent Mechatronics Engineering, Sejong University, Seoul, Korea

3School of Electrical and Computer Engineering, Department of Information and Communication Technology,
Xiamen University Malaysia, Sepang, 43900, Malaysia

*Corresponding Author: Kamran Siddique. Email: kamran.siddique@xmu.edu.my
Received: 11 October 2020; Accepted: 14 November 2020

Abstract: In IoT networks, nodes communicate with each other for compu-
tational services, data processing, and resource sharing. Most of the time
huge data is generated at the network edge due to extensive communication
between IoT devices. So, this tidal data is transferred to the cloud data center
(CDC) for efficient processing and effective data storage. In CDC, leader
nodes are responsible for higher performance, reliability, deadlock handling,
reduced latency, and to provide cost-effective computational services to the
users.However, the optimal leader selection is a computationally hard problem
as several factors like memory, CPU MIPS, and bandwidth, etc., are needed
to be considered while selecting a leader amongst the set of available nodes.
The existing approaches for leader selection are monolithic, as they identify
the leader nodes without taking the optimal approach for leader resources.
Therefore, for optimal leader node selection, a genetic algorithm (GA) based
leader election (GLEA) approach is presented in this paper. The proposed
GLEA uses the available resources to evaluate the candidate nodes during
the leader election process. In the first phase of the algorithm, the cost of
individual nodes, and overall cluster cost is computed on the bases of available
resources. In the second phase, the best computational nodes are selected as
the leader nodes by applying the genetic operations against a cost function by
considering the available resources. The GLEA procedure is then compared
against the Bees Life Algorithm (BLA). The experimental results show that
the proposed scheme outperforms BLA in terms of execution time, SLA
Violation, and their utilization with state-of-the-art schemes.

Keywords: IoT; cloud computing; datacenter; leader election algorithm;
machine learning; genetic algorithm

1 Introduction

The Internet of Things (IoT) is defined as the immense number of devices connected. Recent
research [1] predicts that by 2020, more than 50 billion of the devices will communicate online

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014709

2470 CMC, 2021, vol.68, no.2

which shows that number of persons on the globe is far less than that. However, a huge amount
of data will be generated by these traditional computing devices like PCs, cellphones, and smart
sensing devices, etc. According to another study [2,3] IoT devices will produce 1.6 Zettabytes of
IoT data by 2020. Therefore, in this digital era, data is declared as the “new oil” [4,5] which
needs to be processed to extract meaningful information. The efficient processing of data requires
a lot of resources, however, with the advancement of internet technologies and cloud computing
(CC), information processing resources have become less expensive. Cloud computing provides
different resources e.g., memory, storage, processing cores, etc., to the hosted applications as per
their data processing requirements. Cloud computing provides benefits like lower data storage [6]
and processing cost, pay-per-use, fast deployment of applications, flexibility, and scalability of
the hardware architecture. In cloud computing, the data center is the combination of multiple
network servers and nodes, and they collaborate with each other in form of a cluster to share
the resources. Cluster leaders are responsible to manage the communication and synchronization
of the nodes for resource sharing. Therefore, selection of an optimal node as a leader is a
fundamental requirement to prevent the network to go in an unpredictable state.

In the data center, the leader election to select the best node is a challenging problem, as
leaders are responsible to manage the segregated data, share the resources amongst nodes, and to
overcome the latency. The leaders are responsible for parallel and distributed processing, which is
a primary activity performed in a data center; hence, communication amongst the nodes cannot
occur effectively without the leader/master nodes, therefore, the leader selection cannot be compro-
mised. As nodes are directly associated with the leader, therefore, the leader ensures that deadlock
may never occur amongst the network nodes, and tasks can be processed efficiently. [7–10] and
algorithms [11–16] have been proposed in the distributed IoT networks and cloud computing
research for effective leader election. In [17–21] bully algorithm was proposed for leader election.
In the bully algorithm, leader nodes were dynamically generated based on the node ID criteria.
In [22,23], the ring algorithm was proposed. In the ring algorithm, every node shares its ID
with all other nodes and maintains a list of IDs. From this list, the algorithm picks one node
as a leader on the bases of priority. In [24–28] node IDs have been randomly generated and a
priority number was assigned to each node. The node with the highest priority number was then
selected as the leader node. In [29–32] message-passing approach has been considered for leader
election. The message passing approach introduces latency due to higher message passing rate and
slower node response. The main drawback of all these approaches is that the resource profile of
the nodes is 56 always overlooked. Due to which, the selection of the weaker nodes becomes
equally probable. The weak leader crash in high load scenarios, thus, leader elections are needed
to be reoccurred that slows 58 down the overall processing and delays the task execution over the
network nodes. Therefore, during the leader election phase, node resources must be considered to
ensure the task processing occurs efficiently, and to bring stability in the network.

In this paper, a genetic algorithm (GA) based Leader Election (GLEA) approach is presented
for IoT data processing on cloud computing. Our algorithm [16] selects the node with the
most available resources as a leader and ensures the communication amongst the nodes occurs
effectively. Moreover, we also ensure that the resources are efficiently shared amongst the nodes
and minimum delay occurs during the task execution. Our algorithm utilizes the meta-information
i.e., tasks, VMs, and servers available in the data centers and compute the resource score for
different servers based on the available server resources i.e., MIPS, memory, bandwidth, and
throughput, etc. This information is utilized to generate the initial chromosome population for
the GA. Chromosome comprises of multiple tasks on different servers as genes. The length of

CMC, 2021, vol.68, no.2 2471

the chromosome depends on the number of tasks in a cluster. To elect the leader node from
each cluster, we find the server that has the maximum value against the fitness function. The
fitness value is calculated after performing the crossover and mutation. Crossover in our case
is the swapping of multiple tasks amongst different servers in each cluster, whereas a mutation
is the swapping of individual tasks on different servers. Fitness value depends on following
four factors i.e., CPU-MIPS, memory, throughput, and bandwidth. This leader node selection
approach is important to use in a centralized manner to select the leader in an efficient manner.
The successful an election in a cluster to select the best node as a leader reliably reduces the
communication delay between the nodes. In contrast to the message passing approaches that suffer
from communication delays, our approach efficiently performs the leader election without suffering
from this vulnerability. To justify the significance of our approach, we compare the proposed
GLEA with modified Bees Life Algorithm (BLA) for leader election. The reason to compare
GLEA with BLA is that both approaches are based on GA, hence, fare comparison is possible.
Therefore, encapsulated the whole contribution of this work is as follows:

• A novel technique is presented by employing a genetic algorithm (GA) based Leader
Election (GLEA) approach for IoT data processing on cloud computing.

• The presented framework provides efficient data processing and effective data storage due
to optimal leader selection through the GLEA.

• Our work is robust to task execution time; SLA violation and memory utilization as
compared to latest approaches.

The rest of the paper is organized as follows: In Section 2, the state-of-the-art in leader
election is presented. In Section 3, the proposed GA-based leader election approach is described.
In Section 4, experiments and the results are presented, and finally, we conclude our work in
Section 5.

2 Literature Review

In the literature, there are frequent leader election protocols and algorithms that are discussed
in the literature. Ktari et al. [33] have proposed an agent-based election algorithm for a dynamic
tree. The important focus of the author is to sustain a forest of trees or the root node is taken as
the leader node in the tree. The selection of the leader node is based on the highest ID value that
is generated randomly and without considering any resources during the election process of the
leader. Authors present an algorithm of leader election for a probabilistic investigation of traffic
lights in [14]. In [16] proposed a new leader election algorithm for IoT network which is based
on the tree routing protocol. During the process of leader election, each node forwards the value
and the best value node is elected as a leader.

In [34], the Old algorithm of the ring considers a unidirectional interface that links the entire
hubs or nodes. This algorithm has been presumed that a procedure is successfully running on
every hub or node. In this system, each node is generated a unique priority number randomly.
Now, that node is considered as a leader who has a maximum priority number. If the leader
hub fails, then initiating the whole election process for the selection of a new leader. The method
of leader hub election requires a total of 2(n− 1) messages, transmitted all through the network
where, to begin with (n − 1) messages for the leader election process, and then another (n − 1)
messages are sent to choose the novel leader. The EffatParvar et al. [35], have to revise the out-
dated ring algorithm that is already mentioned, in the relation of requirement and authentication
of more than a few distributed protocols or algorithms for a leader, they are using the Temporal
Ordering Specification Language (TOSL) and toolbox is Analysis of Distributed Processes (ADP).

2472 CMC, 2021, vol.68, no.2

A game theory approach [36], proposed in a completed connected network for analyzing the leader
node. In this approach, each node has an equivalent chance of being elected a leader. This is
possible through the Nash Equilibrium, but this approach is not a fair solution to the leader
problem. In [30], proposed (FRLLE) Failure Rate and Load-based Leader Election algorithm for
bidirectional ring networks to address the leader election problem. The FRLLE algorithm elects
a leader with a minimum rate of load and failure. This algorithm reduces the time complexity
due to fewer messages passing to elect the node as a leader. The extensive variations are required
in the existing algorithm of a leader such as the bully algorithm [27], and ring [34,35] algorithms
that are grounded on a tree structure and compare with the complexity of the message.

Bounceur et al. [37] proposed an algorithm for a leader is WBS (Wait-Before-Starting) for IoT
networks. The node which will wait for the least before starting the execution of the process is
called the leader node in the network. The leader node is the first node that starts the execution by
sending the message to the other nodes in the network. After electing the leader node, other nodes
will start the processing of their programs. In [29,38] modify the recent bully election algorithm
procedure for cloud computing systems, where the election of a leader is on the bases of a Super
Node (SN). This algorithm increases the election speed and the complexity of the message is
reduce in O(n2/k) to O(n2), where n is the number of hubs or nodes, and k is the district. Another
algorithm for the elect a leader was proposed for ring topology which was bidirectional with
the O (n logn) complexity of the message [28]. The algorithm of the leader election is proposed
for Active Network in [39]. The main objective of this algorithm is to select one leader. If the
selected leader is failed in the network, then initiate reelection with O (logn) rounds for elected a
new leader. Another process-terminating algorithm for a leader was proposed for ring topology
that unidirectional, which has homonym processes [28]. The message complexity of this leader
election algorithm is O (k2n2) O(k2n2), where n is the number of nodes and k is an upper
bound value on the multiplicity of the labels. The process of leader election is very important to
improving the efficiency of node communication and optimize the load of nodes for processing
the tasks. “3-Phase Leader Election Algorithm” proposed [40], for leader election this algorithm
use 3 phases. Firstly, filter the nodes then validate the prime node and finally elect the prime
nodes as a leader node but in this scheme complexity of message passing is involved.

Shindo et al. [41], Biswas et al. [11] proposed a multi-leader algorithm to decrease commu-
nication delay and reduce the latency among the leaders. Three experiential tactics are used in a
unified way for computing the appropriate status of leaders in a polynomial period. A probabilistic
grounded model for elected a leader is proposed in MANETs [26]. The authors have exposed
enhancements on the consumption of energy and the consistency problem of channel commu-
nication. There are other more than a few algorithms such as; leader election in a peer-to-peer
network [42], elect a leader in a distributed network via software mediators to rise the election
process speed, saving energy [42,43], and negotiate some more protocol for fault-tolerant election
in asynchronous distributed systems [44]. The authors introduce two new mobility conscious
algorithms for leader election in ad-hoc network systems [23,45]. These algorithms confirm that
every connected node in the topology has just a single leader. These two new algorithms depend
on a temporarily ordered routing algorithm called TORA. Most of the current election algorithms
are based on the unique Id or priority numbers that are randomly generated by the system. They
have not carefully considered the topology of the network and do not properly take care of
real-time resources in the process of leader election [28,46–48].

In the Internet of Mobile Things (IOMT) devices are considered as a smart mobility device.
Mobile-Hub (M-Hub) is known as a middleware in IoT that collects information from the

CMC, 2021, vol.68, no.2 2473

edge of network devices. M-Hub is run on devices and monitors these devices independently
without considering the neighbor M-Hubs. According to this situation, Silva et al. [49] introduced
Neighborhood-aware M-Hub (NAM-Hub) to elect a leader to integrate with the neighbor M-Hub
for efficient computation without any delay or interaction. Lei et al. [50] proposed a Groupchain
method for block-chain structure, appropriate for computing services in IoT. Groupchain method
applied to the leader group to cooperatively execute blocks for better transaction productivity and
introduced the efficient method to supervise the performance of participants in the leader group.

After a literature review, we analyze that present algorithms for leader election based on the
unique number of id that system generates randomly. Most of the algorithms only consider a
random id’s for leader election do not consider the topological changes. The problem of Leader
election is more challenging with the complexity increase in cloud computing. To overcome
this problem, many leader election algorithms are designed, but still, these algorithms do not
consider maximum resources due to increased complexity. We are proposing a novel technique
for the leader election algorithm by using Genetic algorithms as they are used to solving NP-
hard problems, which consider maximum resources and cover more aspects like synchronization,
communication, and resource sharing for leader election.

3 Proposed Model

Consider a data center Dc with S = {S1, S2, . . . , Si, . . . , Sn} servers grouped in form of C =
{C1, C2, . . . , Cir, . . . , Cm} and each server Si has R= {

Ri.1, Ri.2, Ri.3, . . . , Rip
}
resources, e.g., CPU,

ram, bandwidth, and throughput, etc. Each cluster Cr receives T = {t0, t1, t2, . . . , tk1, tk} tasks.
The tasks are processed by different servers Si that can be represented in form of chromosomes
Qjk =

{
S1t1, S2t3, S3t2t4, . . . , Sjtk

}
where Sitk represents genes in a chromosome Q. Based on the

chromosomes in each cluster Cr, we apply the genetic operations i.e., crossover, and mutation to
generate chromosome population P. Afterward, each chromosome is evaluated against a fitness
function and correspondingly the leader node Li is selected. The selected leader nodes are then
responsible to distribute the tasks in the cluster to effectively perform the load balancing and
improve the network efficiency. The architecture of the proposed method is provided in Fig. 1.

3.1 Genetic Leader Election Algorithm (GLEA)
3.1.1 Operation of GA

GA (Genetic Algorithm) is a bio-inspired algorithm and based on the Theory of Evolution
and Genetics. The genetic algorithm belongs to the Evolutionary Algorithm. Theory of Evolution
demonstrates the process of evolution, individuals who have a higher survival probability and
environment adaptable. In Genetic Algorithm indicates the gene, that genes make chromosome,
for the new individual perform crossover on chromosome and mutation on a gene. The primary
operators of GA involve selection, crossover, mutation. The purpose of the selection of GA in
our methodology is to select the best node (individual) with a higher probability for the leader.
GA operator plays a very important role in achieving the best and optimal solution.

3.1.2 Population
In our proposed algorithm GLEA, we take a server Si that contains three tasks

(S1t1, S1t2, S1t3) for the population. There are many ways to schedule the tasks between inter-
mediate nodes. In GLEA, population formation is scheduled as follows: t5 in S5, t7 S7, and
t2 in S1, as shown in Fig. 2. There are multiple numbers ‘n’ of chromosomes for each Pz,
where the population represents as Pz = {Q1, Q2, Q3, . . . , Qz}. In each set of population contain

2474 CMC, 2021, vol.68, no.2

multiple chromosomes, that represent by Qz. The chromosomes contain genes and the genes
represent different tasks on different servers. For example, the chromosome Q1 represents as
Q1 = {S1t1, S1t3, S2t4, S3t2, S3t5, . . . , Sitk}.

Figure 1: Proposed model of the genetic based leader election algorithm

Figure 2: Chromosome set of GLEA

3.1.3 Crossover
The procedure of crossover is applied to two population individuals called chromosomes

which are the Server Si, and a Task tk. There are some crossover strategies, we use a two-point
crossover strategy as shown in Fig. 3. Where, Q1 and Q2 two selected chromosome which have
the highest fitness values, randomly selected θ1 and θ2 two cut point position using Eq. (1).

[θ1, θ2]= rand (2) ∗ (k− 1)+ 1 (1)

Whereas, rand (2)∗ (k− 1)+1 generate a random number between 1 to k to randomly selected
cut-point position from 1st and 2nd population. These chromosomes are mutual to form two new
individuals of the population called offspring. The server ‘S’ and the ‘t’ task are selected between
the best individuals in the population with a preference toward the cost function. In this way, well

CMC, 2021, vol.68, no.2 2475

solution and better offspring are generated in the next population or generation, and this process
is repeated till then the better solution is achieved.

Figure 3: Crossover

3.1.4 Mutation
The operation of Mutation is a urinary which introduces the changes into the features of

the offspring, which is coming about from the process of crossover. These deviations are minor
according to the probability of mutation. Generally selected a very slight value. So, the innovative
server or offspring will not be reformed from the previous and unique or original one. In our
scheme, we use the substitution process of mutation. In this, we select a position from the
population and substitute the values, shown in Fig. 4.

Figure 4: Mutation

3.1.5 Fitness Function
We evaluate the quality of our solution by using the fitness function. We will evaluate all

solutions by this function. A solution with the greatest fitness value will be the most optimal
solution. Following the system, parameters are used in the fitness function, and the weight of

2476 CMC, 2021, vol.68, no.2

these parameters changes according to user SLA (Service Level Agreement) using the knapsack
algorithm. For example, if the user wants to give 10% weightage to CPU MIPS, 30% to RAM,
20% to Bandwidth, and 40% to throughput, then weights of system parameters are shown in
Tab. 1 [51]. We have assigned weights to these parameters. The parameter with greater weight will
have a greater impact on fitness value. So, our fitness value Fv from Eq. (2).

Fv =max

[
n∑
i=0

Fs

]
(2)

where Fs is the fitness of the server and calculate using Eq. (3).

Fs=w1CA+w2RA+w3BA+w4TA (3)

As we aim to find a solution with the maximum available resources, we will select the leader
with the maximum value of the server.

Table 1: Parameters

Name Abbreviation Weight

Available CPU MIPS CA 0.1
Available RAM RA 0.3
Available bandwidth BA 0.2
System throughput TS 0.4

3.1.6 Selection
There are a few selection approaches such as tournament, sorting, and roulette selection.

Tournament selection is the method of choosing an individual from a randomly generated popula-
tion and the individual which has the highest fitness value will be selected. In the sorting selection
method, firstly calculate the fitness value of every individual. After sorting the individual accord-
ing, the fitness value and assigned a probability to a solution will be a selected solution. The third
method is the roulette method, used in this technique. Roulette selection is also called a Fitness
proportionate selection, selects the useful individuals for recombination. In roulette selection, the
fitness function assigns a fitness value to a possible chromosome. Calculate the probability of each
chromosome. if fa is the fitness of everyone ‘a’ in the population, its probability is being calculated
through Eq. (4). Where b is the number of individuals in the population.

Pa= fa∑b
e=1 Fe

(4)

3.2 Phases of GLEA
In this algorithm, we have two phases first is the task allocation phase and the second is the

Selection phase.

CMC, 2021, vol.68, no.2 2477

3.2.1 Task Allocation Phase
In this phase, we aim to allocate tasks to different servers. When a new task is submitted, the

first step will choose the best leader LB from the set of nodes. A leader LB can be chosen from
the subsequent Eq. (5).

LB =max [RL] (5)

where RL is the resources of the leader. The following Eq. (6) can find RL.

Rl =
n∑
i=0

Ri (6)

In the second step selected leader will assign the task to a server ‘Sselec’ in its cluster with
maximum available MIPS. 0S0selec can be found from the following Eq. (7).

Sselec =max [MIPSAvailable] (7)

3.2.2 Leader Selection Phase
In this phase, choose leaders L from the set of clusters C in a datacenter DC. We will use

the genetic algorithm to choose the leader in each cluster. The genetic algorithm will return us an
optimal server from each cluster, and we will choose it as a leader. After each time interval, our
system will run this phase to optimize a leader.

Algorithm: GLEA
Input: Jobs List, Servers List
Output: Elected Leader
1: total population= generate a random number.
2: for i= 1 to total population
3: population list=map each task to a server randomly
4: end for
5: calculate the cost ();
6: if (time== scheduling interval)
7: while (Stopping criteria)
8: crossover ();
9: mutation ();
10: calculate cost ();
11: end while
12: leader= server with the highest value from Eq. (1) in the first index of the population list
13: end if

4 Experiments and Results

Several experiments are conducted to evaluate the performance of the proposed method by
comparing it against the state-of-art BLA algorithm. Detail experiment analyses are described in
the subsections.

2478 CMC, 2021, vol.68, no.2

4.1 Experimental Setup
To elaborate on the performance of the proposed method, a set of extensive experiments

are performed using Cloudsim Plus [20] simulator that is based on Cloudsim [21]. Cloudsim is
a framework for modeling and simulating cloud data centers. The Cloudsim Plus is an exten-
sion of Cloudsim to simulate the more realistic scenarios. For simulation used multiple set of
heterogeneous servers (MIPS range 1000–4,000), for processing used AMD-Ryzen 5 2500, and
Python library to generate the graph. The proposed method performance is evaluated, based on
performance parameters like execution time, SLA Violation, and Utilization of memory. Execution
time is the time in which the servers finished the tasks. Utilization is defined as the ratio of the
allocated MIPS from the total MIPS of the server during the time interval. An SLA violation is a
violation when the task or job is not completely executed in the given time frame. To evaluate the
performance randomly generates the graphs of the experiment using the input parameter shown
in Tab. 2.

Table 2: Input parameters

Name Value Description

Task length 50,000–70,000 (MIPS) Increment of 1000
Host MIPS 1000–4000 Increment of 512
Host ram 0.5 to 4 GB
Host bandwidth 1–5 Increment of 1
Host throughput 0.1–1 Increment of 0.1

4.2 Experimental Results
In this section, we explain the details about how to perform experiments. Experiments were

used to compare the efficiency and performance of the proposed GLEA algorithm with the
traditional BLA algorithm. In experiments using the system parameter like CPU MIPS, RAM,
Bandwidth, and throughput. The weightage is given to these system parameters according to the
requirement of users shown in Tab. 3.

Table 3: System parameters weights

System parameter Weight

MIPS 0.5
RAM 0.3
Bandwidth 0.1
Throughput 0.1

4.2.1 Experiment 1; Evaluation Through the Increment of Host
In the first conduct experiment, the efficiency of the proposed GLEA is compared with the

BLA algorithm based on execution time, SLA violation, and memory utilization. In this scenario,
evaluated the performance by incrementing the number of hosts/servers but used the fixed number
of tasks. The range of hosts is 20–100 with an increment of 20, and the tasks range is fixed
to 1000. In this simulation, the number of hosts is not fixed (increment by 20) and the task

CMC, 2021, vol.68, no.2 2479

number is fixed. Fig. 5, shows that the proposed GLEA performance is better than BLA in
terms of execution time. GLEA takes minimum time to complete a task as compared to the
BLA algorithm. Fig. 6 shows SLA violation, the GLE algorithm remains to perform better as
compared to the BLA algorithm with the fixed number of tasks. Fig. 7 shows the utilization
of resources for both GLEA and BLA algorithms. Utilization is the same because algorithms
schedule VMs to hosts is the same. Utilization is shown in the range of 0 to 1. Results validate
that the GLEA performance is better and improved the efficiency with the increment of servers
in terms of performance parameters like execution time and SLA violation.

Figure 5: Execution time

Figure 6: SLA violation

2480 CMC, 2021, vol.68, no.2

Figure 7: Memory utilization

4.2.2 Experiment 2; Evaluation Through the Increment of Task
In the second experiment, to evaluate the performance and efficiency by incrementing task and

the number of hosts is fixed. The range of tasks from 100 to 10,000 with an increment of 100. In
this experimental set-up, the number of hosts is 50. Fig. 8 equate the time to completely execute
the assigned tasks or jobs. In this scenario validate the performance parameter like execution time
by incrementing the number of tasks and the number of hosts is fixed. The BLA algorithm is less
performed in the execution of a task to complete than the GLEA algorithm. It is the efficiency
of the GLEA that takes less time to complete the job execution. Fig. 9 shows the GLEA reduces
the SLA violation as in comparison to the BLA algorithm during the execution of a workflow.

Figure 8: Execution time

CMC, 2021, vol.68, no.2 2481

Figure 9: SLA violation

4.2.3 Experiment 3; Evaluation Through Different Weightage
In this simulation, changed the weightage of parameters to evaluate the performance of the

GLEA algorithm with the BLA algorithm. We used two different scenarios, in each simulation
to give different weightage to parameters shown in Tab. 4. Using this distinct weightage of
parameters analyze the execution time and SLA violation of both GLEA and BLA algorithms. In
scenarios 1, the number of tasks is increasing by 1000, and the number of hosts is not increasing
that is fixed. The range of hosts is the same, that is 50 but the weightage of resources is different.
The weightage of the parameter in scenario 1 is CPU 10%, RAM 60%, Bandwidth 20%, and
Throughput 10% shown in the above table. To ensure the validity of the GLEA algorithm in
terms of execution time and SLA violation. Fig. 10 shows the GLEA algorithm again performs
better in time to complete the task or job execution. When the number of hosts is increased then
SLA violation is decreased because greater resources are accessible to complete the execution of
the tasks. This experiment results prove that the GLEA algorithm substantial performance and
improved efficiency in terms of performance metrics. In scenario 2, the number of hosts and the
number of tasks or jobs is the same as scenario 1. The weightage of system parameters is changed.
The weightage of CPU 10%, RAM 10%, Bandwidth 70%, and Throughput 10% in scenario 2.
Fig. 11 shows the execution time and SLA violation is better by experimenting with the GLEA as
compared to the BLA algorithm. As a result, prove by performing these experiments the GLEA
algorithm achieves better performance in terms of performance parameters when compared with
the BLA algorithm.

Table 4: System parameter’s weightage for different scenarios

Parameter Scenario 1 Scenario 2

CPU MIPS 0.1 0.1
RAM 0.6 0.1
Bandwidth 0.2 0.7
Throughput 0.1 0.1

2482 CMC, 2021, vol.68, no.2

Figure 10: Scenario 1

Figure 11: Scenario 2

4.2.4 Tasks Scheduling Comparison
Now we compare the performance of the GLEA Algorithm with the conventional algorithm

BLA. In this simulation, ten tasks are randomly generated, and the length of each task is (51000–
60000). Then, the execution time of each server can be calculated as shown in Tab. 5. Fig. 12
represents the assignments of tasks by the BLA algorithm and Fig. 13 shows the execution time
of tasks on different sever after applying the GLEA algorithm. GLEA schedules the tasks on
those servers which meet the requirement of tasks and efficiently execute it with the minimum
time. Through GLEA, T9 executes on S2 with minimum time as compared to BLA execute T9
on S3, so GLEA efficiently executes the tasks as compared to BLE.

CMC, 2021, vol.68, no.2 2483

Table 5: Execution time

Tasks/Server S0 S1 S2 S3 S4

0 51.00 34.00 25.50 20.40 17.00
1 52.00 34.67 26.00 20.80 17.33
2 53.00 35.33 26.50 21.20 17.67
3 54.00 36.00 27.00 21.60 18.00
4 55.00 36.67 27.50 22.00 18.33
5 56.00 37.33 28.00 22.40 18.67
6 57.00 38.00 28.50 22.80 19.00
7 58.00 38.67 29.00 23.20 19.33
8 59.00 39.33 29.50 23.60 19.67
9 60.00 40.00 30.00 24.00 20.00

Figure 12: Execution time through BLA

Figure 13: Execution time through GLEA

5 Conclusion

In our work, we centered on the issues of leader election in an IoT environment, through
cloud data centers to ensure that the task is executed efficiently with well-organized services
and satisfy the user requirements. Leader election is a challenging task in the cloud computing

2484 CMC, 2021, vol.68, no.2

environments due to the occurrence of deadlock and node failures in resource sharing. To
overcome the aforementioned challenges, we have proposed an optimized algorithm called the
GLEA algorithm, motivated by the genetic processes that occur in nature. The presented GLEA
algorithm utilizes the available resources to analyze the candidate nodes during the LE process.
Initially, the fittest value of individual nodes and overall cluster cost is calculated based on
available resources. Secondly, the optimal nodes are selected as the leader nodes by employing the
GA against a cost function by considering the useable resources. To analyze the efficiency and
reliability of our algorithm, we performed a simulation of the GLEA algorithm and compared the
results against the BLA method. Our findings suggest that the GLEA algorithm is more efficient
in terms of execution time, memory utilization, and SLA violation. In the future, we plan to
extend our work to fog and mobile computing.

Funding Statement: This research was supported by the Research Management Center, Xiamen
University Malaysia under XMUM Research Program Cycle 3 (Grant No: XMUMRF/2019-
C3/IECE/0006).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] D. Evans, “The internet of things: How the next evolution of the internet is changing everything,”

CISCOWhite Paper, vol. 1, pp. 1–11, 2011.
[2] Schooler, E. Zage, D. Sedayao, J. Moustafa, H. Brown et al., “An architectural vision for a data-centeric

IoT: Rethinking things, trust and clouds,” in IEEE 37th Int. Conf. on Distributed Computing System,
Atlanta, GA, USA, pp. 1717–1728, 2017.

[3] K. H. N. Bui and J. J. Jung, “Computional negatiation-based edge analytics for smart objects,”
Information Sciences, vol. 480, no. 2, pp. 222–236, 2019.

[4] M. Loi and P. O. Dehaye, “If data is the new oil, when is the extraction of value from data unjust?,”
Filosofia e Questioni Pubbliche, vol. 7, no. 2, pp. 137–178, 2017.

[5] J. M. Nolin, “Data as oil, infrastructure or asset? Three metaphors of data as economic value,” Journal
of Information, Communication and Ethics in Society, vol. 18, no. 1, pp. 28–43, 2019.

[6] B. Assiri, “Leader election and blockchain algorithm in cloud environment for e-health,” in 2nd Int.
Conf. on New Trends in Computing Sciences, Amman, Jordan, pp. 1–6, 2019.

[7] D. Becker, F. Junqueira and M. Serafini, “Leader election for replicated services using applica-
tion scores,” in ACM/IFIP/USENIX Int. Conf. on Distributed Systems Platforms and Open Distributed
Processing, Lisbon, Portugal, pp. 289–308, 2013.

[8] T. Koponen, K. Amidon, B. Peter, M. Casado, C. Anupam et al., “Network virtualization in multi-
tenant datacenters,” in 11th Symp. on Networked Systems Design and Implementation, Seattle, WA,
pp. 203–216, 2014.

[9] A. Mostafa and A. E. Youssef , “A leader replacement protocol based on early discovery of battery
power failure in MANETs,” in Int. Conf. on IT Convergence and Security, Macao, China, pp. 1–4, 2013.

[10] Quttoum and A. Nahar, “Interconnection structure, management and routing challenges in cloud-
service data center networks: A survey,” International Journal of Interactive Mobile Technologies, vol. 12,
no. 1, pp. 36–60, 2018.

[11] T. Biswas, R. Bhardwaj, A. K. Ray and P. Kuila, “A novel leader election algorithm based on resources
for ring networks,” International Journal of CommunicationSystems, vol. 31, no. 10, pp. 3583–3596, 2018.

[12] R. Ingram, T. Radeva, P. Shields, S. Viqar, J. E. Walter et al., “A leader election algorithm for dynamic
networks with causal clocks,” Distributed Computing, vol. 26, no. 2, pp. 75–97, 2013.

CMC, 2021, vol.68, no.2 2485

[13] M. Ranwa, P. Sharma and G. Mehrotra, “Novel leader election algorithm using buffer,” in 2nd Int.
Conf. on Telecommunication and Networks, Noida, India, pp. 1–4, 2017.

[14] N. Fathollahnejad, R. Barbosa and J. Karlsson, “A probabilistic analysis of a leader election protocol
for virtual traffic lights,” in IEEE 22nd Pacific Rim Int. Symp. on Dependable Computing, Christchurch,
New Zealand, pp. 311–320, 2017.

[15] B. Zhang, G. Liu and B. Hu, “The coordination of nodes in the internet of things,” in 2010 Int. Conf.
on Information, Networking and Automation, Kunming, China, pp. 299–302, 2010.

[16] N. Kadjouh, A. Bounceur, M. Bezoui, M. E. Khanouche, R. Euler et al., “A dominating tree based
leader election algorithm for smart cities IoT infrastructure,” Mobile Networks and Applications, vol. 56,
no. 10, pp. 1–14, 2020.

[17] S. H. Lee and H. Choi, “The fast bully algorithm for electing a coordinator process in distributed
systems,” in Int. Conf. on Information Networking, Island, Korea, pp. 609–622, 2002.

[18] M. G. Murshed and A. R. Allen, “Enhanced bully algorithm for leader node election in synchronous
distributed systems,” Computers, vol. 1, no. 1, pp. 3–23, 2012.

[19] M. Méndez, F. G. Tinetti, A. M. Duran, D. A. Obon and N. G. Bartolome, “Distributed algorithms on
IoT devices bully leader election,” in Int. Conf. on Computational Science and Computational Intelligence,
Las Vegas, NU, USA, pp. 1351–1355, 2017.

[20] M. S. Kordafshari, M. Gholipour, M. Mosakhani, A. T. Haghighat and M. Dehghan, “Modified bully
election algorithm in distributed systems,” WSEAS Transactions on Information Science and Applications,
vol. 2, no. 8, pp. 1189–1194, 2005.

[21] M. Abdullah, I. Al-Kohali and M. Othman, “An adaptive bully algorithm for leader elections in
distributed systems,” in Int. Conf. on Parallel Computing Technologies, Almaty, Kazakhstan, pp. 373–
384, 2019.

[22] I. Abraham, D. Dolev and J. Y. Halpern, “Distributed protocols for leader election: A game-theoretic
perspective,” ACM Transactions on Economics and Computation, vol. 7, no. 1, pp. 1–26, 2019.

[23] N. Malpani, J. L. Welch and N. Vaidya, “Leader election algorithms for mobile ad hoc networks,”
in Proc. of the 4th Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications, Boston, MA, USA, pp. 96–103, 2000.

[24] M. U. Rahman, “Leader election in the internet of things challenges and opportunities,” arXiv preprint
arXiv: 1911.00759, 2019. https://arxiv.org/abs/1911.00759.

[25] G. Yu, L. Hua, L. Yuanping, L. bowei, W. Xianrong et al., “Using TLA+ to specify leader election of
RAFT algorithm with consideration of leadership transfer in multi controllers,” in IEEE 19th Int. Conf.
on Softwear Quality, Realibality and Security Companion, Sofia, Bulgaria, Bulgaria, pp. 219–226, 2011.

[26] X. Guo and Z. Yang, “Analyzing leader election protocol by probabilistic model checking,” in 7th IEEE
Int. Conf. on Software Engineering and Service Science, Beijing, China, pp. 564–567, 2016.

[27] R. Franklin, “On an improved algorithm for decentralized extrema finding in circular configurations
of processors,” Communications of the ACM, vol. 25, no. 5, pp. 336–337, 1982.

[28] K. Altisen, A. K. Datta, S. Devismes, A. Durand and L. L. Larmore, “Leader election in asymmetric
labeled unidirectional rings,” in IEEE Int. Parallel andDistributed Processing Sympo., Orlando, FL, USA,
pp. 182–191, 2017.

[29] E. Chang and R. Roberts, “An improved algorithm for decentralized extrema-finding in circular
configurations of processes,” Communications of the ACM, vol. 22, no. 5, pp. 281–283, 1979.

[30] A. Biswas, A. K. Maurya, A. K. Tripathi and S. Aknine, “FRLLE: A failure rate and load-based
leader election algorithm for a bidirectional ring in distributed systems,” Journal of Supercomputing,
vol. 77, pp. 1–29, 2020.

[31] R. Ingram, T. Radeva, P. Shields, J. E. Walter and J. L. Welch, “An asynchronous leader election
algorithm for dynamic networks without perfect clocks,” in The Proc. of the Int. Symp. on Parallel and
Distributed Processing, Rome, Italy, vol. 10, 2009.

[32] S. Tucci-Piergiovanni and R. Baldoni, “Eventual leader election in infinite arrival message-passing
system model with bounded concurrency,” in European Dependable Computing Conf., Valencia, Spain,
pp. 127–134, 2010.

https://arxiv.org/abs/1911.00759

2486 CMC, 2021, vol.68, no.2

[33] M. Ktari, M. Mosbah and A. H. Kacem, “Electing a leader in dynamic networks using mobile agents
and local computations,” Procedia Computer Science, vol. 109, no. 2, pp. 351–358, 2017.

[34] H. Garcia-Molina, “Elections in a distributed computing system,” IEEE Transactions on Computers,
vol. 31, no. 1, pp. 48–59, 1982.

[35] M. EffatParvar, N. Yazdani, M. EffatParvar, A. Dadlani and A. Khonsari, “Improved algorithms
for leader election in distributed systems,” in 2nd Int. Conf. on Computer Engineering and Technology,
Chengdu, China, pp. 6–10, 2010.

[36] G. Antonoiu and P. K. Srimani, “A self-stabilizing leader election algorithm for tree graphs,” Journal
of Parallel and Distributed Computing, vol. 34, no. 2, pp. 227–232, 1996.

[37] A. Bounceur, M. Bezoui, R. Euler and F. Lalem, “A wait-before-starting algorithm for fast, fault-
tolerant and low energy leader election in WSNs dedicated to smart-cities and IoT,” in IEEE Sensors,
Glasgow, UK, pp. 1–3, 2017.

[38] J. Surolia and M. M. Bundele, “Design and analysis of modified bully algorithm for leader election in
distributed system,” in Int. Conf. on Artificial Intelligence: Advances and Applications, Singapore, pp. 337–
347, 2020.

[39] S. Sivasubramaniam, T. Kulkarni and J. Augustine, “Leader election in sparse dynamic networks with
churn,” Internet Mathematics, vol. 12, no. 6, pp. 402–418, 2016.

[40] P. Chaparala, A. R. Atmakuri and S. S. S. Rao, “3-phase leader election algorithm for distributed
systems,” in 3rd Int. Conf. on Computing Methodologies and Communication, Erode, India, pp. 898–
904, 2019.

[41] H. Shindo, H. Kobayashi, G. Ishigaki and N. Shinomiya, “Multi-leader election in a clustered graph
for distributed network control,” in IEEE 31st Int. Conf. on Advanced Information Networking and
Applications, Taipei, Taiwan, pp. 342–346, 2017.

[42] C. Newport, “Leader election in a smartphone peer-to-peer network,” in IEEE Int. Parallel and
Distributed Processing Symp., Orlando, FL, USA, pp. 172–181, 2017.

[43] E. Amiri, H. Keshavarz, A. S. Fahleyani, H. Moradzadeh and S. Komaki, “New algorithm for
leader election in distributed WSN with software agents,” in IEEE Int. Conf. on Space Science and
Communication, Melaka, Malaysia, pp. 290–295, 2013.

[44] S. H. Park, S. G. Lee and S. C. Yu, “Notice of violation of IEEE publication principles a fault
tolerant election protocol in asynchronous distributed systems with fail-stop model,” in 12th Int. Conf.
on Information Technology-New Generations, Las Vegas, NU, USA, pp. 44–48, 2015.

[45] H. Bagheri, M. J. Salehi, B. H. Khalaj and M. Katz, “An energy-efficient leader selection algorithm
for cooperative mobile clouds,” in IFIP Wireless Days, Valencia, Spain, pp. 1–4, 2013.

[46] C. Yu, X. Gou, C. Zhang and Y. Ji, “Supernode election algorithm in P2P network based upon district
partition,” International Journal of Digital Content Technology and Its Applications, vol. 5, no. 1, pp. 186–
194, 2011.

[47] L. Xu and P. Jeavons, “Led by nature distributed leader election in anonymous networks,” in 10th Int.
Conf. on Natural Computation, Xiamen, China, pp. 445–450, 2014.

[48] K. Fitch and N. E. Leonard, “Information centrality and optimal leader selection in noisy networks,”
in 52nd IEEE Conf. on Decision and Control, Florence, Italy, pp. 7510–7515, 2013.

[49] M. Silva, A. Teles, R. Lopes, F. Silva, D. Viana et al., “Neighborhood-aware mobile hub: An edge gate-
way with leader election mechanism for internet of mobile things,” Mobile Networks and Applications,
pp. 1–14, 2020. https://link.springer.com/article/10.1007/s11036-020-01630-3.

[50] K. Lei, M. Du, J. Huang and T. Jin, “Groupchain: Towards a scalable public blockchain in fog
computing of IoT services computing,” IEEE Transactions on Services Computing, vol. 13, no. 2,
pp. 252–262, 2020.

[51] F. T. Lin, “Solving the knapsack problem with imprecise weight coefficients using genetic algorithms,”
European Journal of Operational Research, vol. 185, no. 1, pp. 133–145, 2008.

https://link.springer.com/article/10.1007/s11036-020-01630-3

