
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.015586

Article

Code Smell Detection Using Whale Optimization Algorithm

Moatasem M. Draz1, Marwa S. Farhan2,3,*, Sarah N. Abdulkader4,5 and M. G. Gafar6,7

1Department of Software Engineering, Faculty of Computers and Information, Kafrelsheikh University,
Kafr Elsheikh, Egypt

2Faculty of Informatics and Computer Science, British University in Egypt, Cairo, Egypt
3Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt
4Department of Computer Science, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt

5Faculty of Computer Studies, Arab Open University, Cairo, Egypt
6Department of Computer Science, College of Science and Humanities in Al-Sulail,

Prince Sattam bin Abdulaziz University, Kharj, Saudi Arabia
7Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University,

Kafr Elsheikh, Egypt
*Corresponding Author: Marwa S. Farhan. Email: Marwa.salah@bue.edu.eg

Received: 29 November 2020; Accepted: 14 February 2021

Abstract: Software systems have been employed in many fields as a means
to reduce human efforts; consequently, stakeholders are interested in more
updates of their capabilities. Code smells arise as one of the obstacles in
the software industry. They are characteristics of software source code that
indicate a deeper problem in design. These smells appear not only in the
design but also in software implementation.Code smells introduce bugs, affect
software maintainability, and lead to higher maintenance costs. Uncovering
code smells can be formulated as an optimization problem of finding the best
detection rules. Although researchers have recommended different techniques
to improve the accuracy of code smell detection, these methods are still unsta-
ble and need to be improved. Previous research has sought only to discover
a few at a time (three or five types) and did not set rules for detecting their
types. Our research improves code smell detection by applying a search-based
technique; we use the Whale Optimization Algorithm as a classifier to find
ideal detection rules. Applying this algorithm, the Fisher criterion is utilized
as a fitness function to maximize the between-class distance over the within-
class variance. The proposed framework adopts if-then detection rules during
the software development life cycle. Those rules identify the types for both
medium and large projects. Experiments are conducted on five open-source
software projects to discover nine smell types that mostly appear in codes. The
proposed detection framework has an average of 94.24% precision and 93.4%
recall. These accurate values are better than other search-based algorithms of
the same field. The proposed framework improves code smell detection, which
increases software qualitywhileminimizingmaintenance effort, time, and cost.

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.015586

1920 CMC, 2021, vol.68, no.2

Additionally, the resulting classification rules are analyzed to find the software
metrics that differentiate the nine code smells.

Keywords: Software engineering intelligence; search-based software
engineering; code smell detection; software metrics; whale optimization
algorithm; fisher criterion

1 Introduction

The complexity of software systems is rapidly increasing, which leads software houses to
anticipate continuous change. Due to stakeholders’ continuous demands for their reliance on these
systems, software houses are under constant pressure to deliver the product on time [1]. Software
systems contain high levels of complexity, and maintenance can prove to be difficult. Developers
spend more than 60% of their time understanding the code before proceeding with its mainte-
nance, leading to massive costs [2], which accounting for 50%–80% of software expenditure [3].
These expenses can be reduced by detecting and eliminating code smells in the early stages of
development [4].

Fowler [5] defines code smells as signs in the program’s source code indicating deeper issues
that make it difficult to understand, modify, and maintain software. He [5] defines 22 types of
code smells and refactoring opportunities. Our research focused on nine types: Large Class (Blob),
Long Method (LM), Feature Envy (FE), Spaghetti Code (SC), Data Class (DC), Lazy Class (LC),
Functional Decomposition (FD), Parallel Inheritance (PI), and Long Parameter List (LPL). Some
of these smells appear in the design phase, whereas others appear in the implementation phase
of the software development life cycle (SDLC) [6]. These negatively impact software maintain-
ability and reliability, and damage software quality in the long term by incurring technical debt,
introducing bugs, and increasing tension among team members [7].

We select these types because of their critical effect on software systems. Additionally, they
continuously appear during the development process and have been used frequently in recent
studies [8–13]. Our research will focus on optimizing detection rules for bad smells. We use a
search-based technique that learns identification rules from software quality metrics to capture its
structural architecture.

Search-based software engineering (SBSE) [14] defines detecting code smells as a search
problem; an algorithm explores the search areas, guided by a fitness function that captures the
properties of the desired solutions. Search space solutions represent the rules that identify code
smells. To find the optimal detection rules, this research utilizes the Whale Optimization Algorithm
(WOA) [15] as a classifier. WOA encircles the prey (optimal solution) and updates the search
agents’ positions to find the best solution using the Fisher criterion [16] as a fitness function. The
Fisher criterion calculates the desirability of the rule by maximizing the between-class distance
over the within-class variance. WOA improves the accuracy of code smell detection more than
other genetic and evolutionary algorithms. It adopts if-then classification rules, which detect code
smells during the life cycle of software development.

The rest of this paper is structured as follows: Section 2 provides an overview of code smells.
Section 3 is a literature review. Section 4 presents and discusses the proposed SBSE solution for
code smell detection. Section 5 presents and discusses experimental results. Section 6 concludes
our findings and suggests future research directions.

CMC, 2021, vol.68, no.2 1921

2 Code Smell Overview

Code smells are symptoms of inadequate design or coding practices adopted by developers
due to deadline pressure, lack of skills, or lack of experience [17]. These actions are also called
bad-practices, anti-patterns, anomalies, or design defects. Fowler [5] defines 22 types of code
smells, as well as refactoring opportunities. This research detects nine code smells types, explained
as follows:

1. Large Class (Blob) is a class that monopolizes the behavior of the system. It can modify
many fields and properties of the system without taking care of a principle of consistency.
This smell type causes low cohesion and high coupling, and can need to difficulties in
maintenance. It is also called Blob, Winnebago, and God class.

2. Long Method (LM (is a method that has many lines of code (LOC). If a method has ten
lines of code or more, questions should be asked.

3. Feature Envy (FE) occurs when a method is more familiar with the properties of other
classes than its own properties.

4. Spaghetti Code (SC) occurs when the necessary system structures are not included in the
code. Object-oriented concepts are forbidden, such as polymorphism and inheritance.

5. Data Class (DC) is a class that has data fields but no methods calling the data. The only
methods defined are the setters and the getters of these data.

6. Lazy Class (LC) is a useless class, which means that the class has low complexity and does
not do much.

7. Functional Decomposition (FD) is found in code written by novice developers and refers
to classes that are built to perform a single function.

8. Parallel Inheritance (PI) occurs when an inheritance tree is based on another inheritance
tree after configuration. In other words, creating a sub-category for one category and then
needing to create a sub-category for another category.

9. Long Parameter List (LPL) appears when a method contains many parameters in its
signature; this code smell occurs when the method has more than four parameters.

The previous code smells are a direct result of bad practices from developers during SDLC.
Testers found a list of software metrics related to them. This research is interested in studying
12 software metrics that constitute the features of the training and testing data detected by if-then
rules. These metrics are as follows [7]:

1. Response for Class (RFC): The number of methods in an entity that can be executed when
a message is received by an object belonging to the class.

2. Weighted Methods Per Class (WMC): The number of methodological complexities.
3. Lack of Cohesion between Methods (LCOM): the number of methods in a class that does

not have at least one field in it.
4. Lines of Code (LOC): The number of lines in the code, except for abandoned lines and

comments.
5. Coupling between Object Classes (CBO): The number of classes attached to a given class

via field access, arguments, method calls, return type, and exceptions.
6. Number of Attributes Declared (NAD): The number of attributes declared.
7. Number of Parameters (NoParam): The number of parameters defined in a method.
8. Cyclomatic Complexity (CC): Indicates the complexity of a program. This measures the

number of linearly independent paths within it. It is also called McCabe.
9. Number of Methods (NOM): The number of methods in a class specified.

1922 CMC, 2021, vol.68, no.2

10. Number of Overridden Methods (NMO): The number of methods overridden of an entity.
11. Depth of Inheritance Tree (DIT): The length of the hierarchy tree from the class to the

parent class.
12. Number of Children (NOC): The number of the class’s immediate descendants.

3 Literature Review

Over the last three decades, a variety of detection techniques has been used to detect code
smell. Researchers have proposed manual technology [18,19], metric techniques [20–22], symptom-
based techniques [23,24], probability-based techniques [25], visualization-based techniques [26,27],
machine learning techniques [17,28–30], search-based software engineering [8,31–33], and other
detection tools [34–37].

The code smell detection problem was formulated using search-based software engineering
(SBSE) methods as an optimization issue. When a software engineering problem is formulated as
a search issue, optimization algorithms can be used to solve it [14].

Kessentini et al. [31] employed the genetic programming (GP) to describe code smell detection
rules. These rules are a blend of values and metrics that formulate the optimal identification of
smells. The average accuracy of this approach is 70%.

Ouni et al. [32] developed a detection and correction technique. It has two targets: The first
is the detection of code smell, and the second is the correction of it. They used GP for detection,
a correction mission, and the non-dominated sorting genetic algorithm (NSGA-II). The average
accuracy was 85% for precision and 90% for recall. This technique was applied to detect three
types of code smells.

Boussaa et al. [33] implemented a detection technique that maximizes the coverage base of
code smell examples and increases the number of “synthetic” software smells produced and not
protected by the first population solutions. This technique used a competitive co-evolutionary
algorithm (CCEA); it detected only three types with an average 80% for precision and recall. These
approaches’ accuracies were not promising as same as the technique presented by Ouni et al. [32],
which also detected three types.

Usman et al. [8] introduced a multi-objective search-based technique to discover the most
potent combination of metrics that not only maximizes the detection of code smell but also
minimizes the detection of well-designed code. This research enhanced the accuracy of detection
to 87% precision and 92% recall and increased it to five types.

Tab. 1 provides a comparison between the different approaches; to summarize

• The studies detected only a few code smells (between three and five) of the 22 types that
Fowler [5] defined;

• As indicated, the detection accuracy was not high;
• Just one study defined rules for detection;
• They did not define the rules based on the size of software systems.

To address these shortcomings, this research constructs detection rules for both medium and
large systems, and it enhances detection accuracy via a search-based technique. The proposed
framework utilizes WOA [15] search capabilities to find the optimal metrics-based detection rules.
They are guided by data given by five open-source systems on nine types, as defined in Section 2.
This proposed framework uses the Fisher criterion, whose objective function maximizes the dis-
tance between different classes while minimizing the within-class distance. Hence, the detection

CMC, 2021, vol.68, no.2 1923

rules that best satisfy the objective will be chosen as the optimal solution. The WOA, Fisher
criterion, and our proposed integration technique are introduced in Section 4.

Table 1: A comparison between the different search-based solutions

Comparison Kessentini [31] Ouni [32] Boussaa [33] Usman [8]

Algorithm Genetic
programming
(GP)

Genetic
programming
and
non-dominated
sorting genetic
algorithm
(NSGA-II)

Competitive
co-evolutionary
algorithm
(CCEA)

Multi-objective
genetic
programming
(MOGP)

Goal Defining rules
for code smell
detection

Detecting and
correcting of
code smells

Maximizing the
coverage base of
code smell

Maximizing the
detection of
code smell and
minimizing the
detection of
well-designed
code

No. of detected
code smells

3 3 3 5

Accuracy (%) Precision 70 85 80 87
Recall 90 92

4 The Proposed SBSE Framework for Code Smell Detection

Harman describes metaheuristic search in SBSE as shifting from human-based to machine-
based solutions to software engineering issues [14]. SBSE aims at reformulating software engi-
neering issues as optimization topics [38,39] where, optimal or near-optimal solutions exist in the
candidate solution search space. Driven by a fitness function, algorithms may differentiate between
good and bad solutions to find the optimal one for the problem.

To solve the optimization problem of detection, we perform optimization with WOA [15],
using the Fisher criterion [16] with software metrics as a fitness function. Fig. 1 shows the
Business Process Model and Notation for the proposed SBSE framework for code smell detection.
The process within the framework is discussed in the following subsections.

4.1 Prepare the Dataset Metrics in Columns and Define Code Smells Based on Rules of Detection
A metric or set of metrics is used to determine whether the code has bad smells or not. We

identify code smells for each application based on rules that were used in earlier studies. Tab. 2
shows metrics used to define each type.

1924 CMC, 2021, vol.68, no.2

Figure 1: An overview of the proposed SBSE framework

Table 2: The sofware quality metrics used to define each type

Code smell type Software quality metrics

Large Class (Blob) LOC, NAD [8,40]
Spaghetti Code (SC) McCabe, NOC [8,9]
Feature Envy (FE) CBO, LCOM [40]
Long Method (LM) CC [41]
Data Class (DC) LCOM, WMC [40]
Long Parameter List (LPL) NOPARAM [9]
Lazy Class (LC) NOM, RFC [40]
Functional Decomposition (FD) DIT, NMO [9]
Parallel Inheritance (PI) DIT, NOC [40]

This research is conducted on five Java software projects. ArgoUML [42] is an application
that helps stakeholders create complex and professional diagrams. Azure [43] is a file-sharing
tool. Gantt Project [44] is a project or application-scheduling tool. Log4j [45] is a Java jar that
helps in Java login. Xerces-J [46] is a tool used to parse XML. These projects are checked for
the code smells based on the 12-software metrics using traditional software testing techniques.
The metrics data and the code smells are used to prepare training and testing datasets, which we
split using an 80:20 ratio. The training dataset is used to learn and train the algorithm to build
the detection rules. The test data is used to evaluate our algorithm based on accuracy measures
such as precision and recall. The number of modules and the detected code smells in each system
are reported in Tab. 3.

4.2 Discretize Datasets
The probability of an exact match in metrics during the search is very low. To make the

matching process possible, we discretize the search space using a binning technique to divide the

CMC, 2021, vol.68, no.2 1925

selected attributes into a user-specified number of ranges (bins). The range of numerical values
for each metric (feature) is divided into equal-size segments (bins) by the Rapidminer tool [47].

Table 3: The number of modules and the detected code smells in each system

Project name Release Number of
modules

Detected code smells

Blob SC FE LM DC LPL LC FD PI

ArgoUML [42] V0.3 1470 16 47 38 79 24 17 22 51 14
Azure [43] V2.3.0.6 1995 41 54 29 93 42 67 18 46 33
Gantt [44] V1.10.2 229 5 14 8 12 11 10 0 9 3
Log4j [45] V1.2.1 207 4 10 7 9 6 8 2 6 2
Xerces-J [46] V2.7.0 911 13 29 25 43 21 19 20 29 12

4.3 Create Random Population for Each System (Probable Rules)
Optimization algorithms use a random initial population of probable solutions. The solution

for the bad smell detection problem is a set of if-then rules defining the code smell types, and
the initial population is a random sample of these if-then rules. The software metrics form the
condition of each rule, and the code smell type forms the result. For example, “if (f1 ∈ r1&f2 ∈
r2& . . .&f12 ∈ r1), then CodeSmell = true” is a detection rule where, f is the software metric and
r is the range. For each project, the population contains 100 individuals. The best if-then rule is
the search agent that maximizes the calculated fitness function. A tolerance threshold is used to
match search agents (rules) with the training data. The search agents with their corresponding
fitness values become the input to the learning algorithm.

4.4 Calculate Fitness Function
Detection is solved using an optimization algorithm guided by a fitness function [38]. This

evaluation function measures how a given solution is close to the optimum one for the problem
(how fit a solution is). The fitness function evaluates the performance of each agent and gives
agents with the most improvement for the highest probability of survival [48,49]. We use the
Fisher criterion as a fitness function, which tests the distribution of inter-class scatter over in-class
scatter [16].

A high fitness value means that the gap between any two classes is significant. Hence, the
rules that maximize the distance between different classes are the fittest ones. The Fisher criterion
between two groups, i and j, is defined as

f i,j =
|i− j|
Vi +Vj

(1)

where Vj is the variance of the jth class, defined as Vj = 1
N−1

∑N
k=1(Xk−µi)

2, and µi represents

the mean of the ith class, defined as µi = 1
N

∑N
k=1Xk. Xk represents the kth observation in class

i, where, 1≤ k≤N, and N is the number of observations. Each search agent is matched against
the dataset instances. The one that maximizes the Fisher criterion (or maximizes the difference
between the center of different classes while minimizing the differences between instances of the
same class) is selected as the best search agent. The agents with the highest fitness function values
represent the closest optimum solutions and are chosen as inputs for the WOA.

1926 CMC, 2021, vol.68, no.2

4.5 Apply Whale Optimization Algorithm (WOA) as a Classifier (Classification Rules)
We choose WOA as our classifier because several studies [50–52] showed that WOA [53]

had the highest accuracy compared to the other state-of-the-art evolutionary algorithms, such as
PSO [54] and GA [55]. WOA is a swarm-based metaheuristic algorithm. Inspired by the hunting
behavior of humpback whales that prefer catching frogs or small fish near the surface of the
water using traps, WOA mimics humpback whales in two phases [15]. The first is the exploitation
phase, where whales encircle the prey and use the bubble net attacking method, and the second
is the exploration phase where they randomly search for prey (Fig. 2).

Figure 2: Whales encircle the prey [15]

4.5.1 Exploitation Phase (Encircling the Prey and Bubble-Net Attacking Method)
Since the optimal agent in the search space is not known, humpback whales decide on a

location of the prey and encircle it. WOA assumes the target is near the best existing solution.
Other search agents can mathematically move their positions closer to the best search agent after
selecting it with these equations

D=C ·X∗ −X(t) (2)

X (t+ 1)=X∗ (t)−A ·D (3)

where C and A are coefficient vectors, X∗ is the best-solution obtained, t is the real iteration, and
X is the absolute value of the current solution. Values A and C are determined by

A= 2a · r− a (4)

C = 2 · r (5)

where a is linearly decreasing vector from 2 to 0, and r is a random vector between 0 and 1.
The agents update their positions according to Eq. (3) based on the best-known solution. Eqs. (4)
and (5) aid by monitoring the areas where new solutions can be found in the best solution’s
neighborhood. The whales shrink around new solutions by reducing the value of a by

a= 2− t · (2 ·MaxIteration) (6)

where t is the current iteration, and MaxIteration is the maximum number of allowed iterations.

CMC, 2021, vol.68, no.2 1927

After encircling shrinks, WOA calculates the distance between the current solution (X) and
the best solution (X∗). The path between the humpback whale and the prey is represented as

X (t+ 1)=D′ · ebl · cos(2π l)+X∗(t) (7)

where D′ = X∗ (t)−X(t) is the distance between the whale X and the prey, b is the logarithmic
spiral form, and l is a random value between −1 and 1. From previous equations, shrinking and
moving in a spiral-shaped direction occur with a 50 percent probability (8)

X(t+ 1)=
{
shrinking (Eq. 2) if (p< 0.5)
spiraling (Eq. 6) if (p> 0.5) (8)

where p is a random number between 0 and 1.

Figure 3: WOA flowchart

1928 CMC, 2021, vol.68, no.2

4.5.2 Exploration Phase (Search for a Prey)
Through updating the random solution chosen in this phase, WOA explores the optimal

solution. To move suboptimal solutions away from the more popular search sites, the vector A is
used to introduce random values less than −1 or greater than 1. As in the equation, it can be
modeled mathematically in (9) and (10), respectively:

D=C ·XRand −A ·D (9)

X (T + 1)=C ·XRand −X (10)

where Xrand stands for a random whale picked from the current population. The flowchart for
the previously outlined WOA phases is shown in Fig. 3.

5 Experimental Study and Evaluation

After completing the search, the resulting classification rules with the same software metrics
are applied on a separate testing dataset to verify the efficiency of the proposed framework. In this
section, we present the experimental setup and compare performance with previous approaches.

5.1 Experiment Setup
These experiments are simulated on a PC using an Intel(R) Core(TM) i5 CPU, 8 GB RAM

and 1 TB hard disk using the following tools and jars:

• NetBeans IDE V. 8.2 [56] for data preprocessing and defining code smell types in training
data;

• JDK 1.8 [57] for installing Java and coding;
• RapidMiner V. 5.3 [47] for the discretization process;
• JXL (Java Excel API) [58] and Apache POI (HSSf and SS) [59] for reading and writing in

datasets Excel sheets;
• NetBeans IDE V. 8.2 [56] for the creation of random populations, calculating the fitness

method, training the WOA, testing the WOA, and calculating accuracy.

The five software projects are traced for code smells using the corresponding software quality
metrics and the rules explained in Section 4.1 (Tab. 2). The tracing process produces an initial
version of the software metrics dataset that is further discretized to facilitate the incoming match-
ing process. Afterward, the preprocessed dataset is fed into the integrated WOA framework, which
initializes a population of probable classification rules and performs exploitation and exploration
process of the search space. The resulting classification rules are determined by the Fisher criterion
and the performance on testing data is measured.

5.2 Performance Measure
We use a confusion matrix model to measure the performance of our algorithm on test data.

The performance parameters of the detection framework are shown in Tab. 4.

Table 4: A confusion matrix model

Actual class Detected class

Non-smell Smell

Non-smell TN FP
Smell FN TP

CMC, 2021, vol.68, no.2 1929

True positive (TP) indicates smell types detected correctly as a smell, false positive (FP) indi-
cates non-smells detected incorrectly as a smell, True negative (TN) indicates non-smells detected
correctly as it is not a smell, and false negative (FN) indicates smell types detected incorrectly as
it is a non-smell.

We use precision and recall (Eqs. (11) and (12)) to evaluate the performance of our proposed
smell detection framework. Precision is the number of relevant code smells among the found ones,
while recall is the number of the total amount of relevant code smells that were retrieved.

Precision (PR)= TP
TP+FP

(11)

Recall (RE)= TP
TP+FN

(12)

Suppose that the proposed detection framework identifies 10 code smells in a system contain-
ing 14 modules (including both actual code smells and non-code smells). Of the 10 identified as
code smells, 7 are code smells (TP), whereas the rest are not (FP). The model precision is 7/10,
while its recall is 7/14. In this case, precision is “how beneficial the results of the detection model
are,” and recall is “how full the results are.”

5.3 Experimental Results
Tab. 5 reports the performance evaluations (confusion matrix) of each software system with

80% training and 20% testing of data. A confusion matrix was used to calculate precision
and recall on the five software systems and showed promising results. Our proposed framework
achieves both high precision and recall.

Table 5: A confusion matrix of each software system

Project name Release Actual class Non-smell Smell Precision Recall

ArgoUML [42] V0.3 Non-smell 260 1 97.2 97.2
Smell 1 35

Azure [43] V2.3.0.6 Non-smell 336 2 96.5 94.9
Smell 3 56

Gantt [44] V1.10.2 Non-smell 27 1 91.6 84.6
Smell 2 11

Log4J [45] V1.2.1 Non-smell 21 1 92.8 92.8
Smell 1 13

Xerces-J [46] V 2.7.0 Non-smell 181 3 92.8 97.5
Smell 1 39

5.4 Evaluation and Discussions
Tab. 6 compares the precision and recall between our proposed solution and different search-

based algorithms such as MOGP [8], GP [32], CCEA [33], Multiobjective Immune Algorithm
(MOIAS) [60], and GA [61]. The comparisons demonstrate the efficiency of the proposed solution
in detecting code smells on large systems such as ArgoUML [42], Azure [43], and Xerces-J [46],
and on medium systems such as Gantt [44] and Log4J [45] (Figs. 4 and 5). The WOA classifier

1930 CMC, 2021, vol.68, no.2

on the five software systems is better than the other optimization algorithms in terms of precision
and recall, with averages of 94.42% and 93.4%, respectively (Tab. 6).

Table 6: The percentage of precision and recall of WOA and different search-based algorithms

Algorithm WOA MOGP [8] MOAIS [60] GP [32] GA [61] CCEA [33]

PR. RE. PR. RE. PR. RE. PR. RE. PR. RE. PR. RE.

ArgoUML [42] 97.2 97.2 86 90 86 88 73 81 – – – –
Azure [43] 96.5 94.9 86 95 86 92 76 97 – – 71 74
Gantt [44] 91.6 84.6 79 90 76 86 63 83 84 87 – –
Log4J [45] 92.8 92.8 – – – – 86 83 83 82 – –
Xerces-J [46] 92.8 97.5 85 90 85 90 71 83 87 82 93 88

Figure 4: A comparison between WOA and other search-based algorithms using precision measure

Next, the most optimal set of search agents in the final WOA population is utilized as
the code smell classification rules. The best solutions for both medium and large systems are
used to further analyze the software metrics that distinguish the nine code smell types listed in
Section 2. Tab. 7 provides the analysis results for both large and medium software systems used
in experiments. Each type is characterized by one, two, or three software metrics. The ranges
described in Tab. 7 indicate the bins resulting from discretization of the search space. For example,
long method code smell (LM) is defined by the presence of McCabe numbers greater than or
equal to 40 and greater than 15 for large and medium systems, respectively.

CMC, 2021, vol.68, no.2 1931

Figure 5: A comparison between WOA and other search-based algorithms using recall measure

Table 7: The detection rules of code smell types for both large and medium systems

Code smell type Detection rules for large systems Detection rules for medium systems

Large Class (Blob) LOC >= 2700 ‖
NAD > 30

LOC > 200 ‖
NAD > 9

Spaghetti Code
(SC)

NOC > 40 NOC > 17

Feature Envy (FE) CBO >= 45 ‖
LCOM >= 75

CBO >= 10 ‖
LCOM >= 30

Long Method
(LM)

McCabe >= 40 McCabe > 15

Data Class (DC) WMC >= 133 ‖
LCOM > 110

WMC > 40 ‖
LCOM > 55

Long Parameter
List (LPL)

NOPARAM >= 5 NOPARAM > 3

Lazy Class (LC) Nom < 2 ‖
(RFC < 20 && LOC < 100)

Nom == 0 ‖
(RFC < 2 && LOC <= 10)

Functional
Decomposition
(FD)

DIT > 3 ‖
NMO > 4

DIT > 1 ‖
NMO > 0

Parallel Inheritance
(PI)

DIT > 6 ‖
NOC > 17

DIT > 2 ‖
NOC > 4

1932 CMC, 2021, vol.68, no.2

6 Conclusion and Future Work

Due to additional customer requests, software houses have to implement continuous change in
software systems. Hence, it is necessary to avoid software engineering problems that arise during
SDLC by discovering and determining the appropriate solutions. Code smells are critical software
design problems that emerge from continuous changes. This research detects code smell by finding
the optimal classification rules that characterize them. WOA is utilized to search for the best
classification rules using the exploration and exploitation processes. The Fisher criterion guides the
WOA through the search by measuring the fittest probable classification rules after matching with
the training dataset. The proposed framework detects nine types of code smell on five open-source
Java software projects. Experimental results demonstrate a precision of 94.42% and recall of
93.4%, which are enhanced over the previous techniques in the literature. The proposed framework
provides an efficient and feasible detection model that increases software quality while minimizing
maintainability time, expenses, and efforts. Additionally, our framework can define classification
rules for these types in medium and large systems; they are further analyzed to distinguish the
software metrics characterizing each type of the detected code smell.

Future work includes verifying the validity of this framework with other types of code
smells and testing it on more datasets. Another direction for future work is automatic correction
of different types, which would be of a great help to software development teams and would
minimize the SDLC time and expenditure.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] B. Vogel-Heuser, A. Fay, I. Schaefer and M. Tichy, “Evolution of software in automated production

systems: Challenges and research directions,” The Journal of Systems and Software, vol. 110, pp. 54–
84, 2015.

[2] M. Agnihotri and A. Chug, “Application of machine learning algorithms for code smell prediction
using object-oriented software metrics,” Journal of Statistics and Management Systesms, vol. 23, no. 7,
pp. 1159–1171, 2020.

[3] G. Lacerda, F. Petrillo, M. Pimenta and Y. G. Gueheneuc, “Code smells and refactoring: A tertiary
systematic review of challenges and observations,” Journal of Systems and Software, vol. 167, pp. 1–
36, 2020.

[4] I. M. Umesh and D. Srinivasan, “A study on bad code smell,” Ijltemas Journal, vol. 4, no. 5, pp. 11–
13, 2015.

[5] M. Fowler, K. Beck, J. Brant, W. Opdycke and D. Robert, “Bad smells in code,” in Refactoring:
Improving the Design of Existing Code, 2nd ed. Boston, US: Addison-Wesley, pp. 75–87, 2018.

[6] F. Palomba and A. Zaidman, “The smell of fear: On the relation between test smells and flaky tests,”
Empirical Software Engineering, vol. 24, no. 5, pp. 2907–2946, 2019.

[7] F. Pecorelli, F. Palomba, D. D. Nucci and A. D. Lucia, “Comparing heuristic and machine learn-
ing approaches for metric-based code smell detection,” in IEEE/ACM 27th Int. Conf. on Program
Comprehension, Montreal, QC, Canada, pp. 93–104, 2019.

[8] U. Mansoor, M. Kessentini, B. R. Maxim and K. Deb, “Multi-objective code smells detection using
good and bad design examples,” Software Quality Journal, vol. 25, no. 2, pp. 529–552, 2017.

CMC, 2021, vol.68, no.2 1933

[9] N. Moha, Y. G. Gueheneuc, L. Duchien and A. Meur, “Decor: A method for the specification and
detection of code and design smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–
36, 2009.

[10] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y. G. Gueheneuc et al., “Smurf: A svm-based incremen-
tal anti-pattern detection approach,” in 19th Working Conf. on Reverse Engineering, Kingston, Ontario,
Canada, pp. 466–475, 2012.

[11] J. Aldallal, “Identifying refactoring opportunities in object-oriented code: A systematic literature
review,” Information and Software Technology, vol. 58, pp. 231–249, 2015.

[12] D. Sahin, M. Kessentini, S. Bechikh and K. Deb, “Code smell detection as a bilevel problem,” ACM
Transactions on Software Engineering and Methodology, vol. 24, no. 1, pp. 1–44, 2014.

[13] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto and A. D. Lucia, “Do they really smell bad? A study
on developers’ perception of bad code smells,” in IEEE Int. Conf. on SoftwareMaintenance andEvolution,
Victoria, BC, Canada, pp. 101–110, 2014.

[14] M. Harman, S. A. Mansouri and Y. Zhang, “Search based software engineering: Trends, techniques
and applications,” ACM Computing Surveys, vol. 45, no. 1, pp. 1–61, 2012.

[15] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engineering Softwares,
vol. 95, pp. 51–67, 2016.

[16] H. Guo, Q. Zhang and A. K. Nandi, “Feature generation using genetic programming based on fisher
criterion,” in 15th European Signal Processing Conf., Poznan, Poland, 2007.

[17] M. I. Azeem, F. Palomba, L. Shi and Q. Wang, “Machine learning techniques for code smell detec-
tion: A systematic literature review and meta-analysis,” Information and Software Technology, vol. 108,
pp. 115–138, 2019.

[18] G. Travassos, F. Shull, M. Fredericks and V. R. Basili, “Detecting defects in object-oriented designs:
Using reading techniques to increase software quality,” ACM Sigplan Notices, vol. 34, no. 10, pp. 47–
56, 1999.

[19] O. Ciupke, “Automatic detection of design problems in object-oriented reengineering,” in Proc. of
Technology of Object Oriented Languages and Systems, Santa Barbara, CA, USA, pp. 18–32, 1999.

[20] G. Ganea, I. Verebi and R. Marinescu, “Continuous quality assessment with in code,” Science of
Computer and Programming, vol. 134, pp. 19–36, 2017.

[21] J. Dexun, M. Peijun, S. Xiaohong and W. Tiantian, “Detection and refactoring of bad smell caused by
large scale,” International Journal of Software Engineering & Applications, vol. 4, no. 5, pp. 1–13, 2013.

[22] R. Naveen, “Jsmell: A bad smell detection tool for java systems,” M.S. Thesis. Maharishi Dayanand
University, Rohtak, India, 2009.

[23] A. Rani and H. Kaur, “Detection of bad smells in source code according to object oriented metrics,”
International Journal for Technological Research in Engineering, vol. 1, no. 10, pp. 1211–1214, 2014.

[24] N. Moha, Y. Gueheneuc, A. Meur, L. Duchien and A. Tiberghien, “From a domain analysis to the
specification and detection of code and design smells,” Formal Aspects of Computing, vol. 22, no. 3,
pp. 345–361, 2010.

[25] N. Mathur, “Java smell detector,” M.S. Thesis. San Jose State University, San Jose, California,
USA, 2011.

[26] F. Simon, F. Steinbruckner and C. Lewerentz, “Metrics based refactoring,” in Proc. Fifth EuropeanConf.
on Software Maintenance and Reengineering, Lisbon, Portugal, pp. 30–38, 2001.

[27] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization for code smells,” in Proc. of the
5th Int. Sym. on Software Visualization, New York, YK, USA, pp. 5–14, 2010.

[28] H. Grodzicka, A. Ziobrowski, Z. Lakomiak, M. Kawa and L. Madeyski, “Code smell prediction
employing machine learning meets emerging java language constructs,” Data-Centric Business and
Applications, vol. 40, pp. 137–167, 2020.

[29] T. Guggulothu and S. A. Moiz, “Code smell detection using multi-label classification approach,”
Software Quality Journal, vol. 28, no. 3, pp. 1063–1086, 2020.

1934 CMC, 2021, vol.68, no.2

[30] N. Pritam, M. Khari, L. H. Son, R. Kumar, S. Jha et al., “Assessment of code smell for predicting
class change proneness using machine learning,” IEEE Access, vol. 7, pp. 37414–37425, 2019.

[31] M. Kessentini, H. Sahraoui, M. Boukadoum and M. Wimmer, “Search based design defects detection
by example,” in Int. Conf. on Fundamental Approaches to Software Engineering, Saarbrucken, Germany,
pp. 401–415, 2011.

[32] A. Ouni, M. Kessentini, H. Sahraoui and M. Boukadoum, “Maintainability defects detection and cor-
rection: A multi-objective approach,” Automated Software Engineering, vol. 20, no. 1, pp. 47–79, 2013.

[33] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh and S. Chikha, “Competitive coevolutionary
code smells detection,” in Int. Sym. on Search Based Software Engineering, Petersburg, Russia, pp. 50–
65, 2013.

[34] JDeodorant, “Eclipse marketplace,” 2020. [Online]. Available: http://marketplace.eclipse.org/content/
jdeodor.

[35] S. M. Adnan, M. Ilyas, S. Razzaq, F. Maqbool, M. Wakeel et al., “Code smell detection and refactoring
using AST visitor,” Technical Journal, vol. 25, no. 1, pp. 59–65, 2020.

[36] A. P. Mathew and F. Capela, “An analysis on code smell detection tools,” in 17th SC@ RUG 2020.
Groningen, Netherlands, pp. 57–62, 2020.

[37] R. Ibrahim, M. Ahmed, R. Nayak and S. Jamel, “Reducing redundancy of test cases generation
using code smell detection and refactoring,” Journal of King Saud University—Computer and Information
Sciences, vol. 32, no. 3, pp. 367–374, 2020.

[38] M. Harman and B. F. Jones, “Search based software engineering,” Information and Software Technology,
vol. 43, no. 14, pp. 833–839, 2001.

[39] M. Harman, J. Krinke, J. Ren and S. Yoo, “Search based data sensitivity analysis applied to require-
ment engineering,” in Proc. of the 11th Annual Conf. on Genetic and Evolutionary Computation, Montreal,
Canada, pp. 1681–1688, 2009.

[40] F. A. Fontana, M. V. Mantyla, M. Zanoni and A. Marino, “Comparing and experimenting machine
learning techniques for code smell detection,” Empirical Software Engineering, vol. 21, no. 3, pp. 1143–
1191, 2016.

[41] M. Lanza and R. Marinescu, “Evaluating the design,” in Object-Oriented Metrics in Practice, 1st ed.
Berlin, Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, pp. 45–72, 2006.

[42] ArgoUML, “ArgoUML-tigris,” 2020. [Online]. Available: http://argouml.tigris.org/.
[43] Azure, “Vuze bittorrent client,” 2020. [Online]. Available: http://vuze.com.
[44] Gantt, “Gantt project,” 2020. [Online]. Available: www.ganttproject.biz.
[45] Log4j, “Log4j,” 2020. [Online]. Available: http://logging.apache.org/log4j/2.x/.
[46] Xerces-J, “Xerces java parser,” 2020. [Online]. Available: http://xerces.apache.org/xerces-j/.
[47] RapidMiner Studio, “RapidMiner,” 2020. [Online]. Available: https://rapidminer.com/get-started/.
[48] J. R. Sherrah, R. E. Bogner and A. Bouzerdoum, “The evolutionary pre-processor: Automatic feature

extraction for supervised classification using genetic programming,” in Genetetic Programming Proc.
Second Annual Conf., New Jersey, NJ, USA, pp. 304–312, 1997.

[49] M. Kotani, S. Ozawa, M. Nakai and K. Akazawa, “Emergence of feature extraction function using
genetic programming,” in Int. Conf. Knowledge-Based Intelligent Electronic SystemsProceedings, Adelaide,
SA, Australia, pp. 149–152, 1999.

[50] A. Kaveh and M. I. Ghazaan, “Enhanced whale optimization algorithm for sizing optimization of
skeletal structures,”Mechanics BasedDesign of Structures andMachines, vol. 45, no. 3, pp. 345–362, 2017.

[51] S. K. Cherukuri and S. R. Rayapudi, “A novel global MPP tracking of photovoltaic system based
on whale optimization algorithm,” International Journal of Renewable Energy Development, vol. 5, no. 3,
pp. 225–232, 2016.

[52] H. J. Touma, “Study of the economic dispatch problem on ieee 30-bus system using whale optimization
algorithm,” International Journal of Engineering Technology and Sciences, vol. 5, no. 1, pp. 11–18, 2016.

http://marketplace.eclipse.org/content/jdeodor
http://marketplace.eclipse.org/content/jdeodor
http://argouml.tigris.org/
http://vuze.com
http://www.ganttproject.biz
http://logging.apache.org/log4j/2.x/
http://xerces.apache.org/xerces-j/
https://rapidminer.com/get-started/

CMC, 2021, vol.68, no.2 1935

[53] M. A. ElAziz, A. A. Ewees and A. E. Hassanien, “Whale optimization algorithm and moth-flame
optimization for multilevel thresholding image segmentation,” Expert Systems with Applications, vol. 83,
no. 3, pp. 242–256, 2017.

[54] F. E. Junior and G. G. Yen, “Particle swarm optimization of deep neural networks architectures for
image classification,” Swarm and Evolutionary Computation, vol. 49, no. 5, pp. 62–74, 2019.

[55] S. M. Elsayed, R. A. Sarker and D. L. Essam, “A new genetic algorithm for solving optimization
problems,” Engineering Applications of Artificial Intelligence, vol. 27, pp. 57–69, 2014.

[56] NetBeans IDE, “NetBeans IDE,” 2020. [Online]. Available: https://netbeans.org/downloads/8.2/rc/.
[57] Java Development Kit, “Java development kit,” 2020. [Online]. Available: https://www.oracle.com/java/

technologies/javase-jdk11-downloads.html.
[58] Java Excel API Jar, “Java excel api,” 2020. [Online]. Available: http://www.java2s.com/Code/Jar/j/

Downloadjxl26jar.htm.
[59] Apache Poi, “Apache poi,” 2020. [Online]. Available: http://poi.apache.org/download.html.
[60] M. Gong, L. Jiao, H. Du and L. Bo, “Multiobjective immune algorithm with nondominated neighbor-

based selection,” Evolutionary Computation, vol. 16, no. 2, pp. 225–255, 2008.
[61] D. E. Goldberg, “Introduction to genetics based machine learning,” in Genetic Algorithms in Search,

Optimization and Machine Learning, 1st ed. Boston, MA, USA: Addison-Wesley, pp. 217–259, 1989.

https://netbeans.org/downloads/8.2/rc/
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.java2s.com/Code/Jar/j/Downloadjxl26jar.htm
http://www.java2s.com/Code/Jar/j/Downloadjxl26jar.htm
http://poi.apache.org/download.html

