
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.016436

Article

Transmission Control under Multi-Service Disciplines in
Wireless Sensor Networks

Cheng Gong1, Dingbang Xie2, Chao Guo2,* and Sonia Kherbachi3

1School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing, 100083, China

2Department of Electronics and Communication Engineering, Beijing Electronics Science and Technology Institute,
Beijing, 100070, China

3Department of Management, University of Bejaia, Bejaia, 06000, Algeria
*Corresponding Author: Chao Guo. Email: guo99chao@163.com

Received: 02 January 2021; Accepted: 18 February 2021

Abstract:Thewireless sensor network (WSN), as the terminal data acquisition
system of the 5G network, has attracted attention due to advantages such
as low cost and easy deployment. Its development is mainly restricted by
energy. The traditional transmission control scheme is not suitable for WSNs
due to the significant information interaction. A switchable transmission con-
trol scheme for WSNs based on a queuing game (SQGTC) is proposed to
improve network performance. Considering that sensor nodes compete for the
resources of sink nodes to realize data transmission, the competitive relation-
ship between nodes is described from the perspective of a game.Different types
of sensor node requests require a sink node to provide different service disci-
plines. Mathematical models of social welfare are established for a sink node
under the service disciplines of first-come, first-served (FCFS), egalitarian
processor sharing (EPS), and shortest service first (SSF). The optimal service
strategies are obtained bymaximizing social welfare. The sensor nodes provide
the expected benefits and satisfy the service requirements of the requests, and
the sink node switches the transmission control strategy for the service. Simu-
lation results show that the proposed scheme improves the data transmission
efficiency of WSNs and achieves the optimal allocation of resources.

Keywords: WSNs; transmission control; queuing game; service disciplines

1 Introduction

With the rapid development of internet technology, the internet of everything has become
an important feature of 5G networks [1]. Technologies such as cloud and edge computing have
promoted the development of the internet of things [2,3]. Wireless sensor networks (WSNs) can
be deployed in a variety of complex geographic environments, connecting the physical world with
the internet through information acquisition and monitoring [4,5]. However, the development of
communication technology brings about a dramatic expansion of network scale, which greatly
increases the data demand of WSNs. Network congestion will occur when the data requests of
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sensor nodes exceed the service capacity of a sink node, and sudden data requests, dynamic
changes in a network, or failures of WSN devices may cause network congestion, which can cause
network performance to deteriorate rapidly, and even lead to network paralysis, which seriously
affects service quality and network performance. Transmission control protocol (TCP) is usually
used to alleviate and avoid congestion [6,7]. However, due to the limited energy and unstable
network state of WSNs, it is difficult to achieve the network goal of high efficiency and low energy
consumption using TCP. Therefore, a novel transmission control scheme for WSNs is necessary
to improve overall network performance.

To avoid performance degradation caused by network congestion, appropriate transmission
control technology is adopted in different networks [8,9]. In WSNs, nodes are usually small in size,
simple in function, limited in energy, and difficult to repair after failure. Given these character-
istics, traffic-based, resource-based, and hybrid transmission control schemes have been proposed
to improve the information transmission rate of WSNs based on traditional TCP [10–12]. The
traffic-based transmission control scheme considers the distribution of traffic in WSNs, dispersing
overly concentrated traffic to low-load nodes to reduce network congestion. The resource-based
transmission control scheme focuses on bandwidth, storage space, and residual energy of WSNs.
The data flow is directed to nodes with sufficient resources to optimize the allocation of network
resources. The hybrid transmission control scheme combines the two schemes to plan network data
transmission from a global perspective, making full use of WSN network resources while reducing
the excessive traffic load of nodes. The limited resources of WSNs lead to competition among
nodes. To realize the global optimization of the data transmission system, a game model can be
established so as to choose whether a node will join a service queue. The optimal transmission
control scheme is determined through a Nash equilibrium.

This paper proposes a switchable transmission control scheme for WSNs based on a queuing
game (SQGTC). The game’s three key elements are competition among nodes, strategies adopted,
and influence on social welfare. The requests of nodes waiting for service in the sink node follow
queuing theory. To distinguish different types of requests from sensor nodes, the sink node uses
the service disciplines of first-come, first-served (FCFS), egalitarian processor sharing (EPS), and
shortest service first (SSF), under which system models are established. The social welfare function
of the system is constructed according to a node’s service demand, expected benefit, and waiting
cost. SQGTC realizes the optimization of transmission control and resource allocation through
the algorithm design of solving the optimal strategy under the three service disciplines. The main
contributions can be summarized as follows.

• Queuing game theory is introduced to the SQGTC scheme, and a transmission control
unit is established. By solving the Nash equilibrium solution of the game model under the
FCFS, EPS, and SSF service disciplines, the optimal transmission control strategy of the
system is obtained.

• The service time and service value required by sensor node requests are defined as random
variables to describe the request types of different demands and their importance in the
network. When system parameters are consistent, if the sink node switches to the SSF
service discipline, then the system will achieve the maximum social welfare.

The rest of this paper is organized as follows. The related work of transmission control
schemes for WSNs is presented in Section 2. The system model and problem formulation are
described in Section 3. In Section 4, the SQGTC scheme is proposed. Section 5 deals with
simulation and comparison results, followed by conclusions in Section 6.
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2 Related Work

WSNs have always been a focus of research due to their extensive application scenarios.
Their performance largely depends on the effect of data transmission and resource optimization
schemes. Data transmission methods in WSNs have been studied from the perspective of data
analysis [13–16]. Considering resource constraints, congestion control schemes in WSNs have been
analyzed and improved [10,17,18]. The resource allocation scheme of edge computing has also
provided a reference for the transmission control of WSNs to some extent [19]. In recent years,
game theory has been applied to the design of data collection and routing schemes in WSNs,
with good results [20,21].

Considering the conflicts of mass data transmission in the dense deployment of marginal
WSNs, a reliable multi-path transmission approach was proposed [13]. It adopted a redundancy
mechanism and concurrent woven multi-path technology to reduce transmission delay and improve
the network lifetime. However, while the redundancy mechanism improved reliability, it reduced
the efficiency of data transmission. From the perspective of eliminating redundancy, appropriate
information was mined in the collected data for forwarding [14]. A strategy to eliminate data
redundancy was proposed to improve the data transmission efficiency of WSNs, but this was
limited to improving network performance. Congestion control schemes in WSNs consist of flow-
based, resource-based, and hybrid schemes [10]. It was concluded that a single metric was unable
to accurately detect congestion. A tradeoff mechanism was proposed to determine the optimal
congestion control mechanism and applicable scenarios.

Adding the idea of the game, two data collection schemes of multi-mobile sink nodes were
proposed [20]. They sent data directly and via a static gateway, in response to the imbalance
of energy consumption caused by multi-hop communication. Cooperative game theory with non-
transferable utility was used to model the system to maximize the network lifetime and data
collection. The mobile sinks cooperatively selected their strategies by solving the system model.
WSN nodes tended to choose the desired route for data forwarding to save energy under limited
energy resources [21]. This resulted in higher latency and additional packet collisions. A replicator
dynamics mechanism was proposed for sensor path selection by modeling the routing problem
as an evolutionary anti-coordination game. Both schemes adopted game theory to model the
data transmission problem in WSNs. Not only considering the influence of single or limited
indicators on network performance, they started from the existing problems of the network,
designing a dynamic comprehensive approach to improve network performance. However, the
energy constraints of multiple mobile sink nodes can cause WSN failure due to premature
exhaustion of energy. The information interaction and strategy modification of the replication
dynamic mechanism caused excessive computation and redundant information.

This paper analyzes the competition of sensor nodes for service resources of sink nodes from
a game theory perspective. The data transmission problem in WSNs is modeled as a queuing
game under multiple service disciplines, and the Nash equilibrium of each service discipline is
derived. To describe the differences between node requests, the service time of a request is defined
as a continuous random variable. According to different service requirements requested by sensor
nodes, the sink node switches the service disciplines and provides the optimal transmission control
strategy to maximize the social welfare of the system.
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3 System Model and Problem Formulation

3.1 System Model
Multiple wireless sensor nodes and sink nodes are deployed in the WSN target region, as

shown in Fig. 1. Network equipment wirelessly connects sensor nodes, sensor nodes and sink
nodes, sink nodes and internet/5G/WAN, and other external networks. A single sink node and
multiple sensor nodes form a transmission control unit (TCU). We focus on the design of a
transmission control scheme, which is suitable for TCU for WSNs to improve the efficiency of
data transmission and simplify the process of information interaction. In the TCU, n wireless
sensor nodes are directly connected to the sink node. The request arrival rate of each wireless
sensor node to the sink node is assumed to obey a Poisson distribution, and λi denotes the arrival
rate of the ith wireless sensor node WSi (i= 1, 2, . . . , n). The service rate μ of sink node SK
follows the general distribution. To represent different WS requests, the requested service time rst
is assumed as a continuous random variable. Upon receiving a request, the sink node provides
the service using different service disciplines. We consider the three disciplines of FCFS, EPS, and
SSF, and the optimal transmission control strategy of the TCU is designed.

Sink

Wireless Sensor

Internet /5G/WAN▪▪▪

Link between sensors

Link between sensor and Sink

Link between Sink and Internet▪▪▪

WS1

WS2

WSn

SK1
Transmission Control Unit

Figure 1: Data transmission system model of wireless sensor networks (WSNs)

Previous transmission control schemes of WSNs usually arranged data transmission by detect-
ing the change of traffic distribution or resource use in the network. These schemes could grasp
the network status in real time and control the data transmission flow. However, their high demand
for network detection information leads to a sharp increase in additional information interaction
as the network size grows. This affects the efficiency of network data transmission. To improve
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upon this, based on the dynamic performance of WSNs, queuing game theory was used to model
a data transmission system [22]. The number of interactions between nodes was decreased from
four to three, as shown in Fig. 2. When the network state changes, the network parameters are
updated. In previous schemes, WS initiated the request, and SK returned status information
and a congestion window (CWND). After receiving CWND, WS sends data, and SK returns
ACK. There are four interactions. In the proposed SQGTC scheme, SK publishes the service time
thresholds t∗ of disciplines. WS selects a service discipline according to service requirements. When
the service requirement service time is less than the service time threshold of SK, WS sends data.
Finally, SK returns ACK. There are three interactions.

WS SK WS SK

4 interactions 3 interactions

Previous Schemes SQGTC Scheme

Figure 2: Number of interactions between nodes

3.2 Problem Formulation
The limited resources of aggregation nodes (such as data processing bandwidth and storage

resources) in sensor networks will lead to competition among sensor nodes. The idea of a queuing
game is introduced to the data transmission system of WSNs to find the optimal strategy from
the perspective of global optimization. The players in the game are sensor nodes and the sink
node. The strategy is whether the sensor node requests to join the queue of the sink node. The
effect function is the system welfare obtained by the sink node after it satisfies the request of
the sensor node. Each sensor node request has an expected service value R, which represents the
benefit the sensor node will receive after the request is serviced. Each request has a service time
rst, which is a random variable with a distribution � and density function ψ . When a request
joins the queue of the sink node, the waiting cost per unit time is C. In each TCU, the request
arrival rate from the sensor to the sink node is �= ∑n

i=1 λi. Only when the service time rst of
the sensor request is less than t, will it join the queue of the sink node. The effective arrival rate
is λs =�� (t). Therefore, the social welfare of the system is given by

� (t)=� (t)
n∑
i=1

λi [R−CW ] , (1)

where W is the expected waiting time.

Since the services of the sink node follow a general distribution, the queuing system of
the TCU is assumed to be M/G/1. The FCFS, EPS, and SSF service disciplines have different
characteristics. In the FCFS discipline, sensor requests are queued according to the order in which
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they arrive at the sink node, and the first to arrive gets the service first. In the queuing game,
a new join request at the end of the FCFS queue will have a negative impact on future join
requests, resulting in the value of the individual optimal solution being larger than the global
optimal solution. This effect can be eliminated through an admission fee. In the EPS discipline,
when multiple requests share a common resource, the individual benefit decreases with the increase
of the number of participants and demand. The SSF discipline assumes that the sink node knows
the service time of sensor node requests, and the sink node gives priority to servicing the request
with the shortest service time. The overall problem can be expressed as solving the threshold
service time of each of the three service disciplines to obtain the optimal strategy of the system.

4 Transmission Control Strategies for Three Service Disciplines

The SQGTC scheme assumes that the service time of a sensor node is private information. To
describe the diversified development trend of WSN data transmission and the values generated by
different data, the service time and service value of a request are defined as continuous random
variables. To simplify the problem, assume that the two random variables are normally distributed,
as follows. The distribution of variables can be modified and optimized according to the situation.

Definition 1: The service time RST of a sensor node request is a normally distributed random
variable with mean ϑ and variance ς2, i.e., RST ∼ N

(
ϑ , ς2

)
. The probability distribution and

density function of RST are denoted by � and ψ , respectively, where

� (t)=
∫ t

−∞
ψ (x) dx=

∫ r

−∞
1√
2πς

e
− (x−ϑ)2

2ς2 dx. (2)

Definition 2: The service value R of a sensor node request is a normally distributed random
variable with mean ε and variance σ 2, i.e., R∼N

(
ε, σ 2). The probability distribution and density

function of R are denoted by � and φ, respectively, where

�(r)=
∫ r

−∞
φ (x)dx=

∫ t

−∞
1√
2πσ

e−
(x−ε)2
2σ2 dx. (3)

When 0 ≤ x≤ t, the request joins the sink node queue, where the probability density of the

service time is
ψ (x)
� (t)

. Obviously, when RST < 0, the probability density is 0. The expected service

time � (t) of joining sensor node requests is given by

χ (t)= 1
� (t)

∫ t

0
xψ (x) dx= 1

� (t)

∫ t

0

x√
2πς

e
− (x−ϑ)2

2ς2 dx, (4)

and the effective utilization factor can be expressed as

ρ (r)= λSχ (r)=�� (t) ·
1

� (t)

∫ r

0
xψ (x)dx=�

∫ r

−∞
x√
2πς

e
− (x−ϑ)2

2ς2 dx. (5)

Then, by maximizing the social benefits of the system under different service disciplines, the
possible optimal strategies are solved.
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4.1 Problem-Solving for FCFS, EPS, and SSF Service Disciplines
Since the queuing model of a single TCU is M/G/1, for the FCFS discipline, the Khintchine-

Pollaczek (K-P) formula [23] can be applied to calculate the expected queuing time of a
joining request,

WTFCFS (t)=
�

∫ t
0 x

2ψ (x)dx

2 [1−ρ (t)] =
∑n

i=1 λi
∫ t
−∞

x2√
2πς

e
− (x−ϑ)2

2ς2 dx

2

[
1−∑n

i=1 λi
∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

] . (6)

From Eq. (1), the social welfare �FCFS (t) of the system under the FCFS service discipline is

�FCFS (t)=�� (t) {E (R)−C [χ (t)+WTFCFS (t)]} . (7)

We maximize �FCFS (t) to get the social optimal threshold of service time under the FCFS
service discipline,

t∗FCFS = argmax
t

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

λi

∫ t

−∞
1√
2πς

e
− (x−ϑ)2

2ς2 dx

⎧⎪⎪⎨
⎪⎪⎩ε−C

⎡
⎢⎢⎣

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

∫ t
−∞

1√
2πς

e
− (x−ϑ)2

2ς2 dx

+
∑n

i=1 λi
∫ t
−∞

x2√
2πς

e
− (x−ϑ)2

2ς2 dx

2

[
1−∑n

i=1 λi
∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

]
⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (8)

Therefore, the maximum social welfare of the system under the FCFS service discipline can
be expressed as a function related to the service value R,

�∗
FCFS (R)=��

(
t∗FCFS

) {
R−C

[
χ

(
t∗FCFS

)+WT
(
t∗FCFS

)]}
. (9)

When the sink node service discipline is EPS, the K-P formula is no longer applicable.
According to Eq. (5), it can be concluded that under the EPS service discipline, the expected
queuing time of sensor node requests with service time RST [24] is

WTEPS (t)=
RST

1−ρ (t) =
RST

1−∑n
i=1 λi

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

. (10)

Based on queuing theory, the expected number of requests to join the system is

NUMEPS (t)= ρ (t)
1−ρ (t) =

∑n
i=1 λi

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

1−∑n
i=1 λi

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

. (11)
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From Eq. (1), the social welfare of the system under the FCFS service discipline is

�EPS (t)=�� (t)E (R)− Cρ (t)
1−ρ (t) . (12)

We maximize �EPS (t) to get the social optimal threshold of service time under the EPS
service discipline as

t∗EPS = argmax
t

⎧⎪⎪⎨
⎪⎪⎩ε ·

n∑
i=1

λi

∫ t

−∞
1√
2πς

e
− (x−ϑ)2

2ς2 dx−C ·
∑n

i=1 λi
∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

1−∑n
i=1 λi

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

⎫⎪⎪⎬
⎪⎪⎭ . (13)

Therefore, the maximum social welfare �∗
EPS (R) of the system under the EPS service

discipline can be expressed as a function related to the service value R,

�∗
EPS (R)=��

(
t∗EPS

)
R− Cρ

(
t∗EPS

)
1−ρ (

t∗EPS
) . (14)

According to Eq. (5), it can be concluded that under the SSF service discipline [25], the
expected queuing time WTSSF (t) of sensor node requests is

WTSSF (t)=
t [1−ρ (t)]+ ∫ t

0 xψ (x)dx

[1−ρ (t)]2 =
t

[
1−∑n

i=1 λi
∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

]
+ ∫ t

−∞
x√
2πς

e
− (x−ϑ)2

2ς2 dx

[
1−∑n

i=1 λi
∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

]2 .

(15)

Among them, there is a unique social optimal threshold t∗SSF that satisfies

C ·WTSSF
(
t∗EPS

)=E (R) . (16)

From Eqs. (15) and (16), this is given by

t∗SSF =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
t∗SSF

∣∣∣∣∣∣∣∣∣∣∣
ε

C
=
t∗SSF

[
1−∑n

i=1 λi
∫ t∗SSF−∞ x√

2πς
e
− (x−ϑ)2

2ς2 dx

]
+ ∫ t∗SSF−∞ x√

2πς
e
− (x−ϑ)2

2ς2 dx

[
1−∑n

i=1 λi
∫ t∗SSF−∞ x√

2πς
e
− (x−ϑ)2

2ς2 dx

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (17)
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Therefore, the maximum social welfare of the system under the SSF service discipline can be
expressed as a function related to the service value R,

�∗
SSF (R)=��

(
t∗SSF

) (
R−C · t∗SSF

)
. (18)

If the sensor node request does not specify the required service disciplines, the service dis-
ciplines of the sink node are determined by comparing the relationship between the maximum
social welfare of the system under the three service disciplines with different service values.

4.2 Realization of the SQGTC Scheme
Under different service disciplines, the data transmission strategy of a sensor node request is

obtained by solving the Nash equilibrium of each queuing game system model. When the service
time of the sensor node request t < t∗, it joins the queue of the sink node. Otherwise, it balks.
Considering the influence of the service value R on the maximum social welfare �∗ (R) of the
system, the optimal sink node service discipline is obtained by comparing the maximum social
welfare. According to these conclusions, the SQGTC scheme is designed, with the scheme flow
shown in Fig. 3. The scheme can be described in four steps.

Step 1. Parameter initialization.

The sensor node i assigns a value RSTi and Ri for the service time and value according to
the request type and demand received, following the normal distribution, RSTi ∼ N

(
ϑ , ς2

)
and

Ri∼N
(
ε, σ 2

)
. It provides the arrival rate λi of sensor node requests sent to the sink node. The

sink node provides the waiting cost C and service rate μ based on its service capability.

Step 2. The sink node determines the released information.

According to the comprehensive arrival rate
∑n

i=1 λi and service information of all the nodes
in a TCU, the sink node calculates the optimal service time threshold t∗, and publishes the
parameters t∗ and

∑n
i=1 λi.

Step 3. Determine whether to join the queue.

According to the information released by the sink node, the service disciplines required by the
sensor node request are determined. When the FCFS discipline is required, we compare the values
of RSTi and t∗FCFS. If RSTi < t∗FCFS, then it joins the queue of the sink node. Otherwise, it balks.
When the EPS discipline is required, we compare the values of RSTi and t∗EPS. If RSTi < t∗EPS,
then it joins the queue of the sink node, and otherwise it balks. Otherwise, we compare the values
of RSTi and t∗SSF . If RSTi < t∗SSF , then it joins the queue of the sink node, and otherwise it balks.

Step 4. Status update of controller.

Once the arrival rate changes due to a new addition, exit, or failure of sensors, the sink node
will recalculate the parameters t∗ and

∑n
i=1 λi, and the corresponding parameters are released.

After the input parameters of the system are initialized, the comprehensive arrival rate of
sensor node requests to the sink node is calculated. The values of t∗FCFS, t

∗
EPS and t∗SSF are cal-

culated according to Eqs. (8), (13), and (17), respectively. The sink node publishes the parameter
values. The sensor node requests determine the service disciplines provided. Then, by judging the
size relationship between the request service time RST and the threshold service time t∗ under the
corresponding service disciplines, it is determined whether the request joins the sink node queue
and waits for the service. Algorithm 1 describes the pseudocode of the SQGTC algorithm.
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Algorithm 1: SQGTC algorithm
Input: Requests with an arrival rate λi are generated by the sensor nodes.
Initialization:
The service time values RSTi and Ri of the sensor nodes obey the normal distributions
RSTi ∼N

(
ε, σ 2) and Ri ∼N

(
ϑ , ς2

)
.

The waiting cost C and service rate μ of the sink node are constant.
for i= 1: n
λ= λ+λi; //�=∑n

i=1 λi
end for
According to Eqs. (8), (13), and (17), calculate the values of t∗FCFS, t

∗
EPS, and t∗SSF , respectively.

t∗FCFS = argmax
t

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

λi

∫ t

−∞
1√
2πσ

e−
(x−ε)2
2σ2 dx

⎧⎪⎪⎨
⎪⎪⎩ϑ −C

⎡
⎢⎢⎣

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

∫ t
−∞

1√
2πσ

e−
(x−ε)2
2σ2 dx

+
∑n

i=1 λi
∫ t
−∞

x2√
2πς

e
− (x−ϑ)2

2ς2 dx

2

[
1−∑n

i=1 λi
∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

]
⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
;

t∗EPS = argmax
t

⎧⎪⎪⎨
⎪⎪⎩ϑ ·

n∑
i=1

λi

∫ t

−∞
1√
2πσ

e−
(x−ε)2
2σ2 dx−C ·

∑n
i=1 λi

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

1−∑n
i=1 λi

∫ t
−∞

x√
2πς

e
− (x−ϑ)2

2ς2 dx

⎫⎪⎪⎬
⎪⎪⎭ ;

t∗SSF =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
t∗SSF

∣∣∣∣∣∣∣∣∣∣∣
ϑ

C
=
t∗SSF

[
1−∑n

i=1 λi
∫ t∗SSF−∞ x√

2πς
e
− (x−ϑ)2

2ς2 dx

]
+ ∫ t∗SSF−∞ x√

2πς
e
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⎪⎪⎪⎪⎪⎭
;

if the FCFS discipline is required;
if RTSi < t∗FCFS;

the request joins the queue of the sink node;
else

it balks;
else if the EPS discipline is required;

if RTSi < t∗EPS;
the request joins the queue of the sink node;

else
it balks;

else R>R∗
2;

if RTSi < t∗SSF ;
the request joins the queue of the sink node;

else
it balks;
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Figure 3: Flow of the switchable transmission control scheme based on a queuing game (SQGTC)

5 Simulations and Comparisons

Performance verification of the SQGTC scheme included numerical simulation in MATLAB
and system simulation in OMNeT. After the numerical simulation parameters were given, the
main parameters generated by the SQGTC scheme were displayed, and the results compared and
analyzed. The results of numerical simulation were introduced to the system simulation environ-
ment, and the wireless sensor network model of a multi-sensor node and single sink node was
constructed. To compare the effect of the SQGTC scheme, a non-cooperative game theory-based
congestion control (NGTCC) scheme was selected [26]. The changes of network performance
index, throughput, and delay after the same period of network operation were analyzed.

In queuing game theory, parameters such as the expected benefit R of sensor node requests
and the waiting cost C of the sink node are usually abstract relative values. Combined with the
actual situation and requirements of WSNs, this paper endows these parameters with physical
meanings and sets corresponding values. The expected net benefit of a request is related to the
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amount of data requested and the importance of the data. Assume that requests have either high,
medium, or low importance, with associated factors of 1.2, 1, and 0.8, respectively. R is defined as
the product of the amount of data in KB and the importance factor. The waiting cost is related
to the queue space and energy consumed by the request. Assume that the proportion of queue
space is the ratio of the amount of data to the queue length. C is defined as the proportion of
the queue space multiplied by the energy consumed per unit time. The parameters of the SQGTC
scheme are described in Tab. 1.

Table 1: Parameter specifications of SQGTC scheme

Parameter name Meaning Value

n Number of sensor nodes in a single TCU 3
λi Arrival rate of sensor node {10, 15, 20}
R Expected benefit of sensor node requests R∼N (100, 25)
RST Service time of sensor node requests RST∼N (0.02, 0.01)
C Waiting cost of sink node 20

According to Eqs. (8) and (13), the optimal threshold service times t∗FCFS and t∗EPS under the
FCFS and EPS service disciplines can be obtained by substituting the simulation parameters, as
shown in Fig. 4.

Figure 4: Social welfare with service time under first-come, first-served (FCFS) and egalitarian
processor sharing (EPS) service disciplines

The social welfare � presents a unimodal curve with the change of sensor node request service
time t. An asterisk indicates the optimal service time threshold t∗. From Fig. 4, with the same
system parameters, the optimal service time threshold of the FCFS service discipline is higher
than that of the EPS service discipline. This means that if the sink node adopts the FCFS service
discipline, more requests are allowed to join the queue waiting for the service. Therefore, the social
welfare under the FCFS service discipline is higher than under the EPS service discipline.
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Under the condition of Eq. (17), the optimal service time threshold t∗SSF under the SSF
service discipline can be calculated, as shown in Fig. 5. By comparing the optimal service time
thresholds of the three service disciplines in Figs. 4 and 5, it can be seen that t∗SSF > t∗FCFS > t∗EPS
under the same system environment. When the optimal value of the service time threshold is
obtained, the social welfare of the system in the SQGTC scheme is the maximum.

Figure 5: Expected queuing time with service time under shortest service first (SSF) service
discipline

The optimal service time thresholds under the three service disciplines were substituted in
the social welfare. The variation trend of the maximum social welfare �∗ with the increase of
sensor node request service value was obtained, as shown in Fig. 6. The black dotted line is the
highest, indicating that the maximum social welfare of the system under the SSF service discipline
is the largest of the three. The blue dashed line in the middle indicates that the maximum social
welfare of the system under the FCFS service discipline is second. The solid magenta line is the
lowest, indicating that the maximum social welfare of the system is the least under the EPS service
discipline. Fig. 6 illustrates that when the system adopts the optimal transmission strategy and
the sink node chooses the SSF service discipline, the system obtains the optimal social welfare.
Therefore, if the sensor node request does not specify a service discipline, the SQGTC scheme
uses the SSF service discipline.

The WSNs environment was set up in OMNeT, and the influences of the SQGTC scheme
and NGTCC scheme on system performance were analyzed by comparing the end-to-end average
delay and throughput of the system. As shown in Fig. 7, compared with the NGTCC scheme,
the end-to-end delay of the system under the SQGTC Scheme grew slowly and was stable at a
low level.
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Figure 6: Maximum social welfare with service value under three service disciplines

Figure 7: End-to-end delay of the system

From Fig. 8, the system throughput under the SQGTC Scheme was higher than under the
NGTCC scheme. The SQGTC Scheme controls whether sensor node requests in WSNs join
the sink node through the service time threshold. According to the theoretical optimal strategy
obtained by the system, the transmission control scheme is designed to realize the optimization
of network performance in the system model of switchable multi-service discipline.
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Figure 8: System throughput

6 Conclusion

WSNs play an important role in raw data acquisition and aggregation, environmental mon-
itoring, and specific area network distribution. Due to the limited energy of wireless sensors, all
technologies applied in WSNs need to be lightweight and energy-efficient. If network congestion
occurs, it will lead to a sharp decline in WSN network performance and consume much energy,
eventually causing a reduction in the life of WSNs. This paper focused on the data transmission
control scheme between a multi-sensor node and single sink node in WSNs. A transmission
control scheme based on switching service disciplines according to the requirements of sensor
nodes was proposed to improve the network transmission performance. Queuing game theory was
introduced to the SQGTC scheme to model TCU. Then the optimal transmission control strategy
of the system was obtained by solving the Nash equilibrium solution of the game model under
the FCFS, EPS, and SSF service disciplines. The service time and service value required by the
sensor node request were defined as random variables to describe the request types of different
demands and importance in the network. When the system parameters are consistent, if the sink
node switches to the SSF service discipline, the system will achieve the maximum social welfare.
Simulation results showed that the SQGTC scheme improves the data transmission efficiency of
WSNs and reduces the probability of network congestion.

In future work, we will consider the priority of sensor nodes’ data transmission tasks, so as to
reduce the overall energy cost of the network and improve the efficiency of network transmission.
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