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Abstract: In the process of oil recovery, experiments are usually carried out on
core samples to evaluate the recovery of oil, so the numerical data are fitted
into a non-dimensional equation called scaling-law. This will be essential for
determining the behavior of actual reservoirs. The global non-dimensional
time-scale is a parameter for predicting a realistic behavior in the oil field from
laboratory data. This non-dimensional universal time parameter depends on
a set of primary parameters that inherit the properties of the reservoir fluids
and rocks and the injection velocity, which dynamics of the process. One of
the practical machine learning (ML) techniques for regression/classification
problems is gradient boosting (GB) regression. The GB produces a prediction
model as an ensemble of weak prediction models that can be done at each
iteration by matching a least-squares base-learner with the current pseudo-
residuals. Using a randomization process increases the execution speed and
accuracy of GB. Hence in this study, we developed a stochastic regression
model of gradient boosting (SGB) to forecast oil recovery. Different non-
dimensional time-scales have been used to generate data to be used with
machine learning techniques. The SGB method has been found to be the best
machine learning technique for predicting the non-dimensional time-scale,
which depends on oil/rock properties.

Keywords: Machine learning; stochastic gradient boosting; linear regression;
time-scale; oil recovery

1 Introduction

1.1 Background
The hydrocarbons reservoirs are naturally fractured, so that they consist of two main sections,

fractures and matrix blocks (Fig. 1). Fracture permeability is higher than matrix permeability, and
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the opposite is true for porosity, i.e., the volume of the hydrocarbons in matrix blocks is much
bigger than in fractures. In the oil recovery process, water is pumped, and oil is collected into
fractures from the matrix blocks and then into wells of production. The imbibition is considered a
common mechanism of oil extraction, whereas water pushes oil from the matrix into the adjacent
fracture. There are two sorts of imbibition, namely, counter-current imbibition and co-current
imbibition. In the co-current imbibition mechanism, water is injected into the matrix from one
side to displace oil to the opposite side. On the other hand, in the counter-current imbibition
type, water is injected into the matrix and collect oil from the same side. The counter-current is
one often mechanism because the matrix block (filled with oil) is surrounded by fractures (filled
with water) [1–8]. Usually, experiments are performed on small rock samples to estimate the oil
recovery. Therefore, the obtained data are fitted in a non-dimensional equation, called scaling-law.
This would help understand real reservoir behavior. This kind of scaling law is a non-dimensional
universal variable including primary parameters of rocks and fluids properties. Essentially, when
the data are presented in one curve with a few numbers of primary parameters, then we can
conclude that the scale is working well.

Water

Oil

Figure 1: Schematic diagram of the counter-current oil-water imbibition in a fractured rock

1.2 Research Motivation
In this study, we utilize the SGB machine learning technique to forecast oil recovery esti-

mation and its scaling-law. In general, the ML techniques, including Artificial Neural Networks
(ANNs), k-nearest neighbor (k-NN), and Support Vector Machine (SVM), can be utilized to
predict oil recovery too. However, most of the well-established machine learning techniques are
complex, and their training processes are time-consuming. Rule-based Decision Tree (DT) and
tree-based ensembles (TBE) methods such as Random Forest (RF), Extremely Randomized Trees
(ERT), and SGB are powerful and robust forecasting algorithms. The ML tools are recently
used widely in the oil/gas industry [9] due to their precise assessment of future recovery [9].
Therefore, several oil/gas industry problems can be solved [10–17]. On the other hand, the ANN
can be utilized to predict carbonate reservoirs’ permeability based on the well-log data [18–20]. For
example, Elkatatny et al. [12] have used the ANN model to predict reservoir well-logs heteroge-
neous permeability. Although the ANN method estimates the permeability with high precision and
minimal log-data, ANN has some problems, such as uncertainty. Also, the support vector machine
(SVM) method has been employed to predict reservoir permeability [11]. The SVM scheme has
some limitations, including the inability to eliminate uncertainties and the need to confirm the
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stability/consistency of the scheme. Fortunately, the SGB and RF schemes can sustain the above-
mentioned limitations. Those necessities and have not been applied to oil/gas reservoir predictions,
such as the current work, which is interested in oil recovery predictions.

1.3 Contribution
The machine learning SGB regression algorithm has been developed to predict oil recovery

from oil reservoirs based on laboratory measurements and analytical models. To the best of
the author’s knowledge, the machine learning tools have not been used before in oil recovery
prediction. The performance of oil recovery prediction is assured for the SGB model. Also, other
machine learning techniques, including k-NN, ANN, SVM, and RF, have been used oil recovery
besides the SGB model. Another significant coefficient in oil recovery prediction, namely, the
universal dimensionless time, has also been predicted along with oil recovery in a generalized
scaling-law [8].

1.4 Organization
In this paper, a novel ensemble prediction scheme is utilized to accomplish oil recovery

prediction. The proposed model utilizes the SGB model for oil recovery. The rest of the paper
is arranged as follows: In Section 2, scaling laws are discussed. In Section 3, machine learning
techniques are explained. Section 4 provides the results and discussions; and finally, conclusions
are presented in Section 5.

2 Traditional Models of Oil-Recovery and Time-Scale

Aronofsky et al. [21] have introduced an analytical formula of the oil recovery against the
dimensionless time, i.e.,

R=Rim
(
1− eαT

)
(1)

where α = 0.05 [-] is a rate coefficient [22], T [-] is the dimensionless time, R [m3] is the recovery,
Rim [m3] is the ultimate. Tab. 1 presents the most common analytical time-scales that can be found
in the literature.

Table 1: Scaling-Laws of the dimensionless time

Ref. Scaling-Laws Definitions

Bruce et al. [19] T =
(
K
φ

) 1
2 γ

μwL2 t K [m2] is the permeability
L [m] is a characteristic length
t [s] is imbibition realistic time
φ [-] is the porosity
γ [N/m] is the interfacial tension
μw [Pa s] is the water viscosity

El Ouahed et al. [20] T =
(
K
φ

) 1
2 γ cosθ

μwL2 t θ is the contact angle
0< θ < 90 for a strong water-wet
90 < θ < 180 for a weak water-wet

(Continued)
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Table 1: Continued

Ref. Scaling-Laws Definitions

Aronofsky
et al. [21]

T =
(
K
φ

) 1
2 γ√

μwμoL2 t μo is the oil viscosity

Mattax et al. [22] T =
(
K
φ

) 1
2 γ cosθ√

μwμoL2 t

Gupta et al. [23] T =
(
K
φ

) 1
2 γ

L2

√
λrwλro√

M + (1/
√
M)

t λr= kr/μ is the characteristic mobility
M = λrw/λro is the mobility ratio

El-Amin et al. [8] T = Um
c U

1−m
i

Lφ
t, Ui = K |∇P|

μw

m= 1−
log

aLφ

αUc

log
Ui

Uc

Ui [m/s] is the injection velocity
Uc [m/s] is the characteristic velocity
∇P [Pa/m] is the pressure gradient
a is the slope of the linear regression
α is the dimensionless rate constant

The generalized formula of dimensionless time by El-Amin et al. [8], contains spontaneous
and forced imbibition cases. For example, for the countercurrent imbibition (m= 1), the scaling-
law collapses to the other above formulas as those in Tab. 1. The velocity can be represented in
terms of the given rock characteristics as shown in Tab. 2 for different wettability cases.

Table 2: Wettability against characteristic velocity [8]

Wettability Ui [m/s]

Strong water-wet 3.09E−8
1.27E−7
3.20E−7
4.43E−6

Intermediate-wet 3.30E−7
6.60E−7
1.32E−6
2.65E−6
4.65E−6

Weak water–wet 3.3E−7
1.32E−6
4.65E−6
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3 Traditional Models of Oil-Recovery and Time-Scale

In the following subsections, selected machine learning methods have been presented including
k-NN, ANNs, SVM, RF and SGB.

3.1 The k-NN Method
The k-NN is a nonparametric technique that can be utilized for classification and regres-

sion [24]. In k-NN regression, the nearest examples of functional training space represent the
input, while the output is a property values average of the nearest neighbors of the object.
Also, the k-NN is instance-based lazy learning, which approximates the function locally delays all
computation after classification. This method can be utilized to give weight to the contributions
of neighbors. Thus, neighbors contribute more to the average distance. For example, the typical
weight for a given neighbor distance d is 1/d [24]. The neighborhood includes a set of objects
with known property values that can represent the algorithm training set.

3.2 The ANNs Method
The idea of ANNs is to mimic the human brain’s task of learning from experience and

then identify predictive patterns [25]. The neural network architecture generates nodes representing
neurons and linking nodes matching axons, dendrites, and synapses. The ANN includes an input
layer, an output layer, and a hidden layer. The input layer transforms the input variables, while the
output layer transforms variables of the target. The input data gave by input nodes can achieve
prediction. The input data is weighted by the links to the neural network’s values. A hidden layer
uses a particular transfer function, and the forecast is calculated at the output nodes. With an
additional recursive effort, ANN accumulates its predictive power. In a real sense, the network
learns such that the learning examples are delivered to the network one by one. Nevertheless, the
algorithms of the predictive model are close to other statistical methods. In a more straightforward
sense, neural networks could be defined as a mixture of regression and general multivariate
techniques. The architecture of the neural network was constructed from a multi-layer perspective.
One may differentiate between the development of the model forward and backward spread. The
method of backward propagation is commonly employed. ANNs can be described as a mixture
of various multivariate forecast models in theoretical terms. However, the results are usually
very complex and not instinctually simple. This approach is complex with simple, intermediate
stages and intuitively consistent tests compared to regression and decision tree modeling. ANN
was trained with 50 neurons in the hidden layer, 0.3 learning rate, 0.2 momentum value, and
backpropagation algorithm.

3.3 The SVMMethod
The SVM (Support Vector Machine) method is linear/nonlinear data classification algo-

rithms [26]. The SVM algorithm utilizes a nonlinear mapping to transform the original training
data to a higher dimension. In general, the data is divided into two groups by hyperplane, which
is created by a nonlinear mapping to a high dimension space. The SVM seeks the hyperplane
by margins and support vectors. SVMs are reliable since they can predict complex nonlinear
boundaries of decision; however, their training times are prolonged. SVMs are less sensitive than
other algorithms to overfit. Linear SVMs cannot be utilized for linearly inseparable data. The
linear SVM can be extended to contain nonlinear SVM for linearly inseparable data. Nonlinear
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SVMs allocate input space to nonlinear boundaries of decision (i.e., nonlinear hypersurfaces). Two
main steps are introduced to get a nonlinear SVM. Such steps generate a quadratic optimization
problem that a linear formulation of SVM can solve. SVM was trained with puk kernel with
C= 100.

3.4 The RF Method
The tree classifiers group, which is relevant to random vectors, is called random forest

(RF) [27]. Assuming that a given training data of the random vector, {Vi: i = 1, . . . , s} is and
identically distributed and independent, a decision tree can be built with a classification model.
This classification model has the highest voting classifier for the DT collection, {Mi: i= 1, . . . , s}.
On the other hand, the RF contains various decision trees’ ensemble schemes (e.g., bagging). The
random vectors can match the number of the elements directly in the data set of the training
object index, i.e., point to the successive bootstrap elements. Several sources like data sampling
training or various decision configuration tree inducer consider the randomization of trees, which
make up forests [28].

3.5 The SGBMethod
Grąbczewski [29] implemented bagging techniques with the idea that they could improve their

performance by introducing a type of randomness to the function of estimation procedures. Also,
Breiman [30] have used random sampling boost implementations. However, it was deliberated to
approximate stochastic weighting until the implementation of the base learner did not retain the
observation weights. Freund et al. [31] recently proposed a hybrid adaptive bagging technique that
replaces the base learner with the bagged base learner and replaces residuals “out of the bag” at
each boosting step. Freund et al. [31] prompted a small shift to gradient boosting to incorporate
uncertainty as an essential process metric. A minor change was inspired by gradient boosting to
integrate uncertainty as a critical measure of the process. Moreover, the SGB scheme has been
developed to be related to bagging and boosting [32–34]. The SBG technique has been applied in
different fields, such as remote sensing problems [35]. The SBG was used by Moisen et al. [36] to
predict the existence of species and basal area for 13 tree species.

4 Results and Discussion

4.1 Dataset
The dataset and input variables used in this study were mainly experimental data extracted

from many published papers [8,22,23,37–42]. The predicted values are typically the oil recovery
and dimensionless time.

4.2 Prediction Performance Metrics
It is well known that an independent test set is not a good indicator of performance on the

training set. One may use a training set based on each instance’s classifications within the training
set. In order to predict a classifier’s performance on new data, an error estimation is required on
a dataset (called test set), which has no role in classifier formation. The training data, as well
as the test data, are assumed to be representative samples. In some particular cases, we have to
differentiate between the test data and training data. It is worth mentioning that the test data
cannot be utilized to generate the classifier. In general, there are three types of datasets, namely,
training, validation, and test data. One or more learning schemes use the training data to create
classifiers. The validation data is often employed to modify specific classifier parameters or to
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pick a different one. The test data will then be used to estimate the error of the final optimized
technique. In order to obtain good performance, the training and testing sets should be chosen
independently. Thus, in order to achieve better performance, the test set should be different from
the training set. In many cases, the test data are manually classified, which reduces the number
of the used data. A subset of data, which is called the holdout procedure, is used for testing, and
the rest is employed for training, and sometimes a part can be used for validation [43]. In this
study, 2/3 of the data is utilized for training, and 1/3 is used for testing.

In order to evaluate the quality of each ML technique, a number of statistical measures are
listed in Tab. 3. These measures include correlation coefficient (R), mean-absolute error (MAE),
relative-absolute error (RAE), root relative squared error (RRSE) and root-mean-squared error
(RMSE) [44–46]. For n test cases, assuming that the actual values ai and the predicted ones pi
for the test case i are defined as:

a= 1
n

n∑
i=1

ai,p= 1
n

n∑
i=1

pi,

Given the following expressions:

SA = 1
n− 1

n∑
i=1

(ai− a)2 ,SP = 1
n− 1

n∑
i=1

(pi− p)2 ,SPA = 1
n− 1

n∑
i=1

(pi− p) (ai− a)

Table 3: Prediction performance metrics

Measure Equation

Correlation coefficient (R): R= SPA
SPSA

Mean-absolute error (MAE): MAE= |p1− a1| + . . .+ |pn− an|
n

Relative absolute error (RAE): RAE=
∑n

i=1 |pi− ai|∑n
i=1 |ai− a|

Root relative squared error (RRSE): RRSE=
√∑n

i=1 (pi− ai)2∑n
i=1 (ai− a)2

Root mean-squared error (RMSE): RMSE =
√

(p1− a1)2+ . . .+ (pn− an)2

n

4.3 Results
In this study, several machine learning algorithms are utilized to forecast the dimensionless

time and oil recovery in terms of primary physical parameters of rocks and fluids. In this regard,
diverse prediction models are developed, and the predictors’ performance is examined. As shown
in Tab. 4, the SGB learner has achieved better efficiency than the ANN, k-NN, SVM, and RF.

Figs. 2–4 demonstrate the predicted dimensionless time and oil recovery by the SGB model
against the scaling-law (actual) ones [8] for strong/weak/intermediate water-wet cases. The findings
show that the performance is enhanced with respect to the coefficient of correlation and MAE
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and less improvement with regard to RMSE, RAE, and RRSE. It is clearly observed that the
SGB method has the highest correlation coefficient. Consequently, one may observe that the SVM
method can be reliable in predicting both the oil recovery and dimensionless time because of its
ability to achieve better performance while ensuring a better generalization.

Table 4: Performance of different ML techniques to predict oil recovery and nondimensional time
for different wettability conditions

Classifier R MAE RMSE RAE RRSE

Oil Recovery for intermediate water-wet
ANN 0.8185 15.8604 19.0643 53.38% 56.45%
k-NN 0.9799 3.8663 6.6369 13.01% 19.65%
SVM 0.5669 16.9334 31.3068 56.99% 92.69%
RF 0.9754 5.0363 8.0282 16.95% 23.77%
SGB 0.9869 3.4592 5.6901 11.64% 16.85%
Dimensionless Time for intermediate water-wet
ANN 0.8390 85.2091 218.9916 39.25% 54.00%
k-NN 0.9413 50.2303 167.8127 23.14% 41.38%
SVM 0.9887 13.4459 60.6137 6.19% 14.95%
RF 0.9468 54.8753 175.6228 25.28% 43.31%
SGB 0.9906 10.3747 55.1585 4.78% 13.60%
Oil Recovery for strong water-wet
ANN 0.9689 5.3295 8.2838 19.05% 24.80%
k-NN 0.9936 2.3153 3.9147 8.28% 11.72%
SVM 0.9600 5.7694 9.3702 20.62% 28.05%
RF 0.9936 3.1598 4.9892 11.29% 14.94%
SGB 0.9958 1.8362 2.9497 7.07% 9.52%
Dimensionless Time for strong water-wet
ANN 0.9204 5.6367 8.1003 32.54% 39.19%
k-NN 0.9896 1.9435 2.9788 11.22% 14.41%
SVM 0.9442 4.0743 6.812 23.52% 32.95%
RF 0.9939 1.6865 2.5251 9.74% 12.22%
SGB 0.9956 1.2462 2.0136 7.20% 9.74%
Oil Recovery for weak water-wet
ANN 0.7425 18.6878 25.2042 55.06% 64.70%
k-NN 0.9875 3.4529 6.0695 10.17% 15.58%
SVM 0.665 16.8976 30.7061 49.79% 78.83%
RF 0.9767 5.9246 8.8212 17.46% 22.64%
SGB 0.9875 3.4529 6.0695 10.17% 15.58%
Dimensionless Time for weak water-wet
ANN 0.9847 65.2591 133.8567 13.27% 17.69%
k-NN 0.9725 67.9595 178.3904 13.82% 23.57%
SVM 0.9986 10.4821 40.0731 2.13% 5.30%
RF 0.9561 91.5358 240.5619 18.61% 31.79%
SGB 0.9989 8.0802 35.1254 1.64% 4.64%
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Figure 2: SGB predicted oil recovery and dimensionless time against actual scaling-law ones at for
intermediate water-wet

4.4 Discussion
In this work, selected ML techniques have been used to predict the dimensionless time and

oil recovery. So, several machine learning techniques are developed to predict the dimensionless
time and oil recovery against the scaling-law (actual) ones for strong/weak/intermediate water-
wet cases. When comparing the SGB algorithm with other techniques (Tab. 4), it achieved better
performance than the ANN, k-NN, SVM, and RF regarding the correlation coefficient R and
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Figure 3: SGB predicted oil recovery and dimensionless time against actual scaling-law ones at for

the RMS error. It is clear from this table that the RMS error of the SGB technique is smaller
than those of other methods. Regarding the computational aspect, the SGB model requires a
comparable complexity for the prediction compared to that of the ANN, SVM, and RF models.
Unbiased tests can be used to evaluate the prediction performance of the used ML method. To
test the accuracy of predictions, we quantify standard metrics such as coefficient of correlation
(R) and error between the real and expected values. The experimental results have shown that the
SGB technique can accurately evaluate the dimensionless time and oil recovery since it achieved a
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Figure 4: SGB predicted oil recovery and dimensionless time against actual scaling-law ones for
weak water–wet

high value of R and low error. These models’ error and R assign the higher positive relationship
between the expected and real oil recovery values. The results indicate increased performance in
terms of correlation coefficient and MAE and rose ultimately with RMSE, RAE, and RRSE.

If one compares the performances of the machine learning techniques for the predicted
dimensionless time and oil recovery against the scaling-law (actual) ones for strong/weak/intermediate
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water-wet cases, the proposed SGB method achieved the best results in all cases. But, ANN, k-NN,
SVM, and RF are also accomplished good performance in some cases. For instance, SGB achieved
R = 0.9869, MAE = 3.4592 and RMSE = 5.6901, k-NN is also achieved similar results with R
= 0.9799, MAE = 3.8663, and RMSE = 6.6369 for oil recovery in the intermediate water-wet
case. SGB achieved R = 0.9906, MAE = 10.3747 and RMSE = 55.1585, SVM is also achieved
similar results with R = 0.9887, MAE = 13.4459 and RMSE = 60.6137 for dimensionless time in
the intermediate water-wet case. SGB achieved R = 0.9958, MAE = 1.8362 and RMSE = 2.9497,
k-NN is also achieved similar results with R = 0.9936, MAE = 2.3153 and RMSE = 3.9147 for
oil recovery in the strong water–wet case. SGB achieved R = 0.9956, MAE = 1.2462 and RMSE
= 2.0136. Random Forest is also achieved similar results with R = 0.9939, MAE = 1.6865, and
RMSE = 2.5251 for the dimensionless time in the strong water-wet case. SGB achieved R =
0.9875, MAE = 3.4529 and RMSE = 6.0695, k-NN is also achieved the same results with R =
0.9875, MAE = 3.4529, and RMSE = 6.0695 for oil recovery in the weak water–wet case. SGB
achieved R = 0.9989, MAE = 8.0802 and RMSE = 35.1254, SVM is also achieved the similar
results with R = 0.9986, MAE = 10.4821 and RMSE = 40.0731 for dimensionless time in the
weak water–wet case. In all cases, the SGB model outperformed the other models. This reveals
that the SGB is a robust model and tackle well noisy conditions. The overall results illustrate that
the SGB technique can effectively handle the expected oil recovery data because of its ability to
produce better performance while ensuring better generalization.

5 Conclusions

As the dimensionless scaled-time law is fundamental to predict oil-recovery using laboratory
data. We examined several ML techniques (k-NN, ANN, SVM, RF, and SBG) to predict the
dimensionless scaling-law based on oil and rock physical properties in the current paper. The SGB
regression was found to be the best ML method for predicting dimensionless scaling-time. The
machine learning techniques’ performance has been compared using R, MAE, RMSE, RAE, and
RRSE. Assessment of the experimental results among the machine learning techniques has shown
that the SGB algorithm has the best prediction performance. Besides, the SGB model achieved
higher prediction accuracy and lowered MAE, RMSE, RAE, and RRSE compared to k-NN,
ANN, SVM, and RF regression models.
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[29] K. Grąbczewski, “Meta-learning in decision tree induction,” in Studies in Computational Intelligence.

vol. 1, Berlin, Germany: Springer, 2014.
[30] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.
[31] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an

application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 23–37, 1995.
[32] L. Breiman, “Using adaptive bagging to debias regressions,” Technical Report 547, Statistics Depart-

ment UCB, 1999.
[33] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of Statistics,

vol. 29, no. 5, pp. 1189–1232, 2001.
[34] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics & Data Analysis, vol. 38, no.

4, pp. 367–378, 2002.
[35] G. Ridgeway, “The state of boosting,” Computing Science and Statistics, vol. 31, pp. 172–181, 1999.
[36] G. G. Moisen, E. A. Freeman, J. A. Blackard, T. S. Frescino, N. E. Zimmermann et al., “Predicting

tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized
additive models, and tree-based methods,” Ecological Modelling, vol. 199, no. 2, pp. 176–187, 2006.

[37] G. Hamon and J. Vidal, “Scaling-up the capillary imbibition process from laboratory experiments on
homogeneous samples,” in Proc. the 1986 SPE European Petroleum Conf., London, pp. 22–25, 1986.

[38] T. Babadagli, “Scaling of capillary imbibition during static thermal and dynamic fracture flow condi-
tions,” Journal of Petroleum Science and Engineering, vol. 33, no. 4, pp. 223–239, 1997.

[39] T. Babadagli, “Scaling of concurrent and countercurrent capillary imbibition for surfactant and
polymer injection in naturally fractured reservoir,” SPE Journal, vol. 6, no. 4, pp. 465–478, 2001.

[40] Z. Tong, X. Xie and R. N., “Morrow Scaling of viscosity ratio and oil recovery by imbibition from
mixed-wet rocks,” in Proc. Int. Symp. of the Society of Core Analysis, Edinburgh, SCA 2001–21, UK,
2001.

[41] Z. Tavassoli, R. W. Zimmerman and M. J. Blunt, “Analytic analysis of oil recovery during countercur-
rent imbibition in strong water–wet system,” Transport in Porous Media, vol. 58, no. 1–2, pp. 173–189,
2005.

[42] K. Li, “Scaling of spontaneous imbibition data with wettability included,” Journal of Contaminant
Hydrology, vol. 89, no. 3–4, pp. 218–230, 2007.

[43] I. Witten, E. Frank and M. Hall, “Data mining: Practical machine learning tools and techniques,” in
The Morgan Kaufmann Series in Data Management Systems, 3rd ed. Burlington: Kaufmann, 2011.

[44] S. O. Olatunji, A. Selamat and A. Abdulraheem, “A hybrid model through the fusion of type-2 fuzzy
logic systems and extreme learning machines for modelling permeability prediction,” Information Fusion,
vol. 16, pp. 29–45, 2014.

[45] S. Cankurt and A. Subasi, “Tourism demand modelling and forecasting using data mining techniques in
multivariate time series: A case study in Turkey,” Turkish Journal of Electrical Engineering and Computer
Sciences, vol. 24, no. 5, pp. 3388–3404, 2016.

[46] V. Ülke, A. Sahin and A. Subasi, “A comparison of time series and machine learning models for
inflation forecasting: Empirical evidence from the USA,” Neural Computing and Applications, vol. 30,
no. 5, pp. 1519–1527, 2018.


