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Abstract: The research on Unmanned Aerial Vehicles (UAV) has intensified
considerably thanks to the recent growth in the fields of advanced automatic
control, artificial intelligence, and miniaturization. In this paper, a Grey Wolf
Optimization (GWO) algorithm is proposed and successfully applied to tune
all effective parameters of Fast Terminal Sliding Mode (FTSM) controllers
for a quadrotor UAV. A full control scheme is first established to deal with the
coupled and underactuated dynamics of the drone. Controllers for altitude,
attitude, and position dynamics become separately designed and tuned. To
work around the repetitive and time-consuming trial-error-based procedures,
all FTSM controllers’ parameters for only altitude and attitude dynamics
are systematically tuned thanks to the proposed GWO metaheuristic. Such
a hard and complex tuning task is formulated as a nonlinear optimization
problem under operational constraints. The performance and robustness of
the GWO-based control strategy are compared to those based on homolo-
gous metaheuristics and standard terminal sliding mode approaches. Numer-
ical simulations are carried out to show the effectiveness and superiority
of the proposed GWO-tuned FTSM controllers for the altitude and atti-
tude dynamics’ stabilization and tracking. Nonparametric statistical analyses
revealed that the GWO algorithm is more competitive with high performance
in terms of fastness, non-premature convergence, and research exploration/
exploitation capabilities.

Keywords: Quadrotor; cascade control; fast terminal sliding mode control;
grey wolf optimizer; nonparametric Friedman analysis

1 Introduction

The quadrotor is one of the most popular architectures of UAV which is widely used in
large areas of engineering and civilian applications [1,2]. Such an aerial robot can perform various
missions with autonomous and/or half-autonomous modes as the prevention of forest fires, an
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inspection of borders and dams, spying and read the war maps, and so on [3,4]. Given the com-
plexity of these aerial vehicles, i.e., underactuated and nonlinear dynamics, external disturbances,
and model uncertainties, the design and tuning of robust flight controllers with a systematic and
low time-consuming procedure become an increased need and obsessive concern.

Recently, advanced nonlinear control strategies have been especially proposed for quadrotors
UAV. The Terminal Sliding Mode Control (TSMC) and Fast Terminal Sliding Mode Control
(FTSMC) approaches are the most powerful and robust used ones [5–7]. In [8], a TSMC approach
has been proposed for a quadrotor aircraft to reduce and eliminate the undesirable chattering
phenomenon on altitude and attitude dynamics caused by the switching control action. Authors
in [9] have proposed a global fast dynamic terminal sliding mode control-based technique for
performing the finite-time position and attitude tracking of a small quadrotor UAV. The stability
of the controlled system is demonstrated by the Lyapunov theory in the presence of external
disturbances. In [10], a modified nonsingular FTSM guidance law has been computed to solve
the problem of ground moving target tracking but for a fixed-wing UAV. The singularity in
such a control law is avoided by using a modified saturation function. Demonstrative results are
performed with three different motion states in comparison with the conventional sliding mode
control method. Robust nonsingular terminal control is proposed to solve the strong coupling
and underactuated problems. The works investigate the position and attitude tracking control
problem. Compared with conventional sliding mode methods with sign functions, the chattering
phenomenon is well attenuated and control performances are improved. In [11], the authors pro-
posed a finite-time FTSM-based fault-tolerant control scheme for quadrotor UAV under actuator
partial loss-of-effectiveness.

All the above described TSM and FTSM control methods have shown high performance and
robustness improvements in the quadrotors’ stabilization and tracking framework. Unfortunately,
they claim the selection and tuning of a large-scale of effective control parameters, i.e., the
coefficients of manifolds and sign functions of switching control laws, which make the difficult,
non-systematic, and time-consuming procedure of the controllers’ design. Indeed, these effective
control parameters are often selected by repetitive trials-errors based methods. To overcome this
drawback, various attempts have been proposed in the literature. In [12], a neural network-
based terminal sliding mode control scheme has been designed for robotic manipulators including
actuator dynamics. The nonlinear functions of the TSM manifold are approximated thanks to
the proposed RBF neural network. In [13], the authors proposed an improved TSM-based time
delay control strategy for an underwater vehicle-manipulator system. Fuzzy rules have been used
to adaptively tuning the main parameters of the sliding mode controllers. In [14], a TSM control
approach with a self-tuning gains algorithm has been proposed for the synchronization of the
coronary artery system under model uncertainties. The introduced self-tuning mechanism further
achieves better robustness and adaptation against unmodeled dynamics and external disturbances.
A high-order TSM controller with adaptive laws for its manifold’s coefficients’ selection has been
proposed and successfully applied for robotic manipulators with Backlash hysteresis [15]. In [16],
a tuning method based on a fuzzy gains-scheduling supervisor has been proposed for the integral
sliding mode control of a quadrotor UAV. All coefficients of the manifolds and switching laws
have been adaptively updated as time-varying gains. Other recent and interesting optimization-
based methods of TSM controllers tuning have been investigated. In [17], the parameters of the
TSM controllers for a class of nonholonomic systems, i.e., wheeled mobile robot, have been tuned
using various evolutionary algorithms such as differential evolution, bat optimization, cuckoo
optimization, and bacterial foraging optimization. The tracking error reaches zero in a short
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and finite time and the chattering phenomenon is significantly reduced. In [18], the authors
proposed a kidney-inspired algorithm to tune the TSM controller’s parameters for an active
suspension system.

Tuning the effective parameters of the TSM control approach through optimization methods
seems a promising solution for complex and large-scale systems. The metaheuristics theory gives
a variety of global optimization algorithms and can be used to solve such a design and tuning
problem [19]. Recently, several metaheuristics have been proposed in the literature and received
much interest in dealing with hard optimization problems. Initially proposed by Mirjalili et al. [20],
the Grey Wolf Optimizer (GWO) is one of the powerful and interesting metaheuristics compared
to other ones [21,22]. Such a stochastic and free-parameters algorithm, which has been inspired
by the social leadership hierarchy and intelligent behavior of grey wolves, is used in this work
to deal with the FTSM parameters tuning problem for a quadrotor UAV. In this framework, the
wolf position in the pack while encircling, hunting, and attacking the prey presents a potential
solution to the optimization problem in the sense of the cost function. So, the selection and tuning
of all effective FTSM parameters are formulated as an optimization problem under time-domain
operational constraints for a quadrotor UAV. The hard and large-scale optimization problem is
efficiently solved thanks to a stochastic GWO algorithm. Several performance criteria such as
Integral Absolute Error (IAE), Integral Time-weighted Absolute Error (ITAE), Integral Square
Error (ISE), Integral Time-weighted Square Error (ITSE) and Mean Square Error (MSE) are used
as cost functions for the formulated hard and non-convex problem. The main contributions of
this work are summarized as follows: 1) A full control scheme for a quadrotor UAV has been
given to deal with the underactuated and coupled flight dynamics. 2) A systematic and intelligent
tuning method of all effective parameters of altitude and attitude controllers has been proposed
and successfully applied. 3) A free-parameters GWO metaheuristic has been investigated to deal
with the tedious and time-consuming trials-errors based methods of tuning that often lead to local
solutions for the problem. 4) A nonparametric statistical analysis method has been proposed to
compare all reported solvers for the complex tuning problem.

The remainder of this paper is organized as follows. In Section 2, the problem of FTSM
parameters’ tuning is stated and then formulated as a constrained optimization problem. A non-
linear dynamical model of the studied quadrotor is established and a full control scheme (attitude,
altitude, and position) is given to deal with the coupled and underactuated drone’s dynamics. In
Section 3, the proposed GWO algorithm is described and a pseudo-code for its implementation is
given. Section 4 presents all simulations and demonstrative results for the proposed GWO-based
sliding mode control strategy. Nonparametric statistical analysis based on Friedman and post-
hoc tests is investigated to show the superiority and effectiveness of the proposed free-parameters
GWO metaheuristic vs. other reported algorithms. Conclusions and perspectives of further works
are drawn in Section 5.

2 Control Problem Formulation

2.1 Quadrotor Dynamic Model
A quadrotor is an unmanned aerial vehicle that has four motors and detailed with their body-

frame RB
(
O,xb,yb, zb

)
and earth-frame RE

(
o, ex, ey, ez

)
as depicted in Fig. 1. Let us consider m

and l the mass and the distance from each motor to the center, respectively. The drone is presented
with its translational ζ = (x,y, z) and rotational η = (φ, θ ,ψ) coordinates where −π/2≤ φ ≤ π/2,
−π/2≤ θ ≤ π/2, and −π ≤ψ ≤ π are the Euler roll, pitch, and yaw angles, respectively.
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Figure 1: Mechanical structure and frames of the quadrotor UAV

Let a vector ϑ = (p,q, r) denotes the angular velocity of the drone in the body-frame RB and
defined in the fixed-frame by the following transformation:

ϑ =

⎛
⎜⎜⎜⎝
1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
φ̇

θ̇

ψ̇

⎞
⎟⎟⎟⎠ (1)

By using the Newton–Euler formalism [23,24], nonlinear models for translational and rota-
tional sub-systems are obtained respectively as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ= 1
m (cosφ cosψ sin θ + sinφ sinψ)u1− κ1

m ẋ

ÿ= 1
m (cosφ sinψ sin θ − sinφ cosψ)u1− κ2

m ẏ

z̈= 1
m cosφ cos θu1− g− κ3

m ż

(2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṗ= qrJy−JzJx
− Jr

Jx
ωrq− κ4

Jx
p+ 1

Jx
u2

q̇= prJz−JxJy
+ Jr

Jy
ωrp− κ5

Jy
q+ 1

Jy
u3

ṙ= pqJx−JyJz
− κ6

Jz
r+ 1

Jz
u4

(3)

where κ1,2,...,6 denote the drag and aerodynamic friction coefficients, Jr is the z-axis inertia of the
propellers and Jx, Jy, and Jz are the body inertias, ωr is the overall residual rotor angular speed,
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and u1, u2, u3, and u4 are the control inputs of the drone given as:
⎛
⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

μ μ μ μ

0 −lμ 0 lμ

−lμ 0 lμ 0

χ −χ χ −χ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω2
1

ω2
2

ω2
3

ω2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where ω1,2,3,4 are the angular speeds of motors, μ and χ are the lift and drag
coefficients, respectively.

2.2 Problem Statement
Based on the established nonlinear model (2)–(3), one can see that the hovering dynamics are

nonlinear, underactuated, and strongly coupled. Face to such a model complexity, our proposed
control approach aims firstly to decouple the rotational variables from the translational ones.
Such difficulty in the controllers’ design is circumvented using the proposed full control scheme
of Fig. 2.

Figure 2: Block diagram of the proposed controllers’ design

Two cascade control loops are investigated to independently drive all flight dynamics of the
drone, i.e., an inner control loop to ensure the attitude and heading’s stabilization and/or tracking,
and outer loops for the positions (x,y) and altitude z. The desired trajectories for the attitude
variables φd and θd are generated from Eqs. (5) and (6) shown as virtual control laws for the
translational dynamics [25]:

ux = (cosφ cosψ sin θ + sinφ sinψ) (5)

uy= (cosφ sinψ sin θ − sinφ cosψ) (6)

Solving Eqs. (5) and (6) for a given yaw angle ψ leads to the desired roll and pitch angles’
formula respectively given as follows:

φd = arctan

⎛
⎜⎜⎝ ux sinψ − uy cosψ√(

1− u2x sin
2ψ + 2uxuy cosψ sinψ + u2y sin

2ψ − u2y
)

⎞
⎟⎟⎠ (7)
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θd = arcsin

⎛
⎜⎜⎝ ux cosψ + uy sinψ√(

1− u2x sin
2ψ + 2uxuy cosψ sinψ + u2y sin

2ψ − u2y
)

⎞
⎟⎟⎠ (8)

In Eqs. (7) and (8), the given virtual control laws ux and uy can be derived using any feedback
control technique from the literature, i.e., PID, SMC, TSMC, or Integral Backstepping method
as shown for a similar aerial vehicle in our previous work [25]. Since the proposed full control
scheme of Fig. 2 makes computing and tuning separately of each flight control loop, only the
dynamics of altitude and attitude are retained in this work to be controlled based on an improved
FTSM control approach.

In the FTSM control framework, let consider the following model of a given uncertain
second-order nonlinear system [11,26]:⎧⎨
⎩
ξ̇1 = ξ2
ξ̇2 =Φ (ξ)+Ψ (ξ)u+ d (ξ)

(9)

where ξ = (ξ1, ξ2)T ∈ R
2 is the system state vector, Φ (ξ) and Ψ (ξ) �= 0 are two smooth non-

linear functions of ξ , u is the control input and d (ξ) represents the uncertainties and external
disturbances that satisfied ‖d (ξ)‖ ≤Δ where Δ> 0 is a constant.

Since the task of FTSM control is to design a control law u (t) to stabilize system (9) and
improve the convergence speed of the sliding mode, a sliding manifold can be selected in the form:

s (ξ , t)= ξ2+αξ1 +βξ v/w1 (10)

where α > 0 and β > 0 are two design parameters, v and w are positive odd integers 1<w/v< 2.

Such a choice of the sliding manifold leads to the following control law of the uncertain
system (9):

u=− 1
Ψ (ξ)

(
Φ (ξ)+αξ2+β vwξ2ξ1

v/w−1 +λs+ γ sv/w
)

(11)

where λ> 0 and γ > 0 are two design constants and Ψ (ξ) �= 0.

While considering the altitude and attitude dynamics’ models of Eqs. (2)–(3), the related
fast sliding mode control laws of the quadrotor, with the same form of Eq. (11), are designed
respectively as follows:

u1 = m
cosφ cos θ

(
g+αzż+βz vzwz żz

vz/wz−1+λzsz+ γzsvz/wzz

)
(12)

u2 = Jx

(
Jy− Jz
Jx

qr+αφφ̇+βφ vφwφ φ̇φ
vφ/wφ−1 +λφsφ + γφsvφ/wφφ

)
(13)

u3 = Jy

(
Jz− Jx
Jy

pr+αθ θ̇ +βθ vθwθ θ̇θ
vθ /wθ−1+λθ sθ + γθ svθ /wθθ

)
(14)

u4 = Jz

(
Jx− Jy
Jz

pq+αψψ̇ +βψ vψwψ ψ̇ψ
vψ/wψ−1+λψ sψ + γψ svψ/wψψ

)
(15)
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where (αi,βi,λi,γi) ∈ R
+,∀i ∈ {z,φ, θ ,ψ} are the effective design parameters of the fast terminal

sliding mode controllers (12)–(15) of the drone attitude dynamics.

2.3 Tuning Problem Formulation
As depicted in Eqs. (12)–(15), the design of FTSM controllers involves the tuning of a set

of unknown parameters
(
αi,β i,λi,γ i

) ∈ R
+ as shown in Fig. 3. The selection of these effective

parameters is a hard and time-consuming problem. Since the iterative trials-errors procedures
become ineffective, such a tuning problem is formulated as a constrained optimization program
as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Minimize fi (x, t)

x= (
αi,β i,λi,γ i

)T ∈S ⊆R
16+ , i ∈ {z,φ, θ ,ψ}

Subject to :

g1 (x, t)= δz− δmax
z ≤ 0;g2 (x, t)= δφ − δmax

φ ≤ 0;g3 (x, t)= δθ − δmax
θ ≤ 0;g4 (x, t)= δψ − δmax

ψ ≤ 0

(16)

where x ∈ S ⊆ R
16+ are the decision variables, S = {

x ∈R
16+ ,xlow ≤ x≤ xup

}
denotes the bounded

search space, fi : R
16 →R, i ∈ {z,φ, θ ,ψ} are the cost functions to be minimized under operational

constraints gj (.) , j= 1, 2, . . . , 4 on the responses overshoots δz, δφ , δθ and δψ .

Figure 3: Optimization-based tuning of the FTSM controller for the quadrotor

Cost functions of the problem (16) are chosen as IAE, IATE, ISE, ISTE, and MSE per-
formance criteria [23,27]. To handle the nonlinear constraints, a static penalty function used
as follows:

Θi (x, t)= fi (x, t)+
4∑

q=1

Λqmax
{
0,gq (x, t)

}2 (17)

where Λq are the prescribed scaling penalty parameters.
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3 Grey Wolf Optimization Algorithm

The social hierarchy of the grey wolves is defined by four types of agents such as alpha (α),
beta (β), delta (δ), and omega (ω) that guide the hunting process [20–22]. In a d-dimensional

search space, each wolf in the pack is characterized by its position xik =
(
xik,1,x

i
k,2, . . . ,x

i
k,d

)
. The

prey position is denoted as xpk =
(
xpk,1,x

p
k,2, . . . ,x

p
k,d

)
. In terms of optimization, the fittest solution

is the position of α wolf in the search space. The second and third best solutions are β and
δ, respectively. Other wolves, including ω ones, update their positions randomly around the prey.
Since the best search agents α, β and δ have better knowledge about the potential location of

prey as the problem optimum, the first three best solutions, i.e., xbest,1k , xbest,2k and xbest,3k , are saved
to oblige the other search agents, including the ω wolves, to update their positions according to
the following motion equations:

xik+1 =
xbest,1k +xbest,2k +xbest,3k

3
, i �= α,β, δ (18)

where xbest,1k = xαk −Δαkϑ1,k, x
best,2
k = xβk −Δ

β

kϑ2,k and xbest,3k = xδk−Δδkϑ3,k. The vectors ϑ1,k, ϑ2,k

and ϑ3,k as well as the terms Δαk , Δ
β

k , and Δδk are computed as follows:
⎧⎨
⎩

ϑ1,k = 2υ1,kU (0, 1)−υ1,k;ϑ2,k = 2υ2,kU (0, 1)−υ2,k;ϑ3,k = 2υ3,kU (0, 1)−υ3,k

Δαk =
∣∣λ1,kxαk −xik

∣∣ ;Δβk =
∣∣∣λ2,kxβk −xik

∣∣∣ ;Δδk =
∣∣λ3,kxδk−xik

∣∣ (19)

where υ j,k, j ∈ {1, 2, 3}, are linearly decreased from 2 to 0 over the course of iterations and λij,k are

random numbers between 2 and 0, U {0, 1} is a uniformly random number in the interval [0, 1].

Finally, the steps of the basic GWO pseudo-code are summarized as follows [20,21]:

• Step 1: Randomly initialize the grey wolves population xi0, i= 1, 2, . . . ,npop.

• Step 2: Initialize ϑ j,0, υ j,0, and λij,0.

• Step 3: Calculate the fitness of each search agent and select xα0 , x
β

0 , and xδ0.• Step 4: Update the position of the current search agent by Eqs. (18)–(19).
• Step 5: Update ϑ j,k, υ j,k, and λij,k then calculate the fitness of all search agents.

• Step 6: Update the positions xαk , x
β

k , and xδk.• Step 7: Check the termination criterion and repeat iterations. Return xαk as the best solution.

4 Results and Discussion

In this section, the proposed GWO is applied to solve the formulated tuning problem (16).
The physical parameters of the studied quadrotor used are given in our previous works [23,24].
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4.1 Algorithms Execution and Optimization Results
All reported algorithms are independently run 20 times on a PC with i7 Core 2 Duo-2.67

GHz CPU and 6.00 GB RAM. The termination criterion is set as a maximum number of iteration
reached nGen = 100 for a population size of npop = 30. The control parameters of all optimizers
are set in Tab. 1.

Tab. 2 gives the optimization results attained by all algorithms for the problem (16). It can be
clearly observed that the proposed GWO produces very competitive solutions with the reported
algorithms especially in terms of solutions quality and convergence fastness, i.e., the standard
deviation STD and the elapsed time ET are always minimal in the case of the GWO metaheuristic.

Table 1: Control parameters of the reported optimizers

Optimizers Parameters

ABC [28] Limit of abandonments 32
CSA [29] Awareness probability 0.2, flight length 1.
HSA [30] Pitch rate 0.1, fret width damping ratio 0.995.
WCA [31] Number of rivers 4, maximum distance 1e−16.
SFLA [32] Memeplex size 10, number of off-springs 3, step size 2.
PSO-In [33] Max and min inertia factors (0.9; 0.4), social and cognitive coefficients (0.5; 0.3)
FA [34] Light absorption and attraction 1, mutation coefficient 0.2, dumping ratio 0.98.

Fig. 4 shows the convergence histories related to the IAE, ITAE, ISE, ITSE, and MSE test
problems. It is shown that the proposed GWO often outperforms the other reported methods in
terms of fastness and non-premature convergences. Efficient exploration of the search space is
guaranteed and the algorithm is able to escape from stagnation in local solutions. During the last
iterations, the exploitation capabilities are better than the other methods which further improve
the quality of the found global solutions.

The time-domain performances of the controlled dynamics are shown in Fig. 5. The aim is
to show the difference between the classical tuning methods and the GWO-tuned ones. Referring
to these curves, the GWO-tuned FTSM controller indicates high performance in comparison with
the other reported methods. The transient responses are further damped, and the steady-state is
quickly reached. Fig. 6 shows the control signals for GWO-tuned FTSMC, standard TSMC, and
FTSMC methods.

From these demonstrative results, one can observe the superiority of the proposed control
approach to reduce the undesirable chattering phenomenon in comparison with the standard
TSMC approach. The control amplitude of each flight dynamic is moderated and further reduced.
Large transient oscillations and amplitudes are recorded for the reported FTSMC and TSMC
cases.

Tabs. 3–6 give a quantitative comparison of all designed methods based on several time-
domain indexes for a unit step response, i.e., rise time (s), settling time (s), steady-state error, and
first overshoot (%). It can be shown that the performances of the GWO-tuned controllers often
outperform the other reported methods.
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Table 2: Optimization results of the problem (16)

WCA HSA SFLA CSA GWO PSO-In FA ABC

IAE Best 2.521 2.398 2.383 12.919 2.3406 2.5472 2.487 2.245
Mean 2.587 2.635 2.630 23.651 2.4135 2.6726 2.520 2.392
Worst 4.974 12.700 7.907 129.35 3.3795 5.65 2.832 4.532
STD 0.279 1.069 0.954 33.413 0.1473 0.481 0.063 0.402
ET (s) 625.32 745.29 312.38 387.37 157.35 428.37 453.26 394.54

ITAE Best 2.045 1.838 1.922 5.3609 1.7545 2.6187 2.177 1.752
Mean 2.069 2.067 2.482 35.34 1.9772 3.3831 2.291 2.330
Worst 2.501 3.673 8.170 173.13 14.442 19.591 6.131 14.380
STD 0.077 0.450 1.364 54.709 1.2732 2.5627 0.431 1.420
ET (s) 829.19 766.26 315.27 482.26 199.36 613.26 511.45 514.32

ISE Best 4.221 4.147 4.227 4.7521 4.0882 4.2623 4.158 4.179
Mean 4.240 4.232 4.686 36.178 4.1861 4.8124 4.170 4.469
Worst 4.598 4.345 15.71 3147.3 5.6978 16.243 4.410 13.040
STD 0.055 0.062 1.993 314.25 0.2231 2.2454 0.033 1.239
ET (s) 543.64 528.36 392.26 298.48 150.35 407.36 349.36 455.34

ITSE Best 1.011 0.935 1.074 1.7898 0.9302 1.0054 0.951 0.983
Mean 1.035 0.973 1.097 308.01 0.9791 0.9837 1.059 1.160
Worst 1.772 1.352 1.368 4274.9 2.3031 3.3248 4.582 2.617
STD 0.082 0.093 0.050 1.094 0.1647 0.4928 0.535 0.326
ET (s) 973.33 892.21 391.27 367.32 230.16 688.35 426.39 584.51

MSE Best 0.097 0.093 0.097 1.666 0.0939 0.1449 0.109 0.096
Mean 0.099 0.103 0.102 12.646 0.1072 0.1617 0.113 0.110
Worst 0.145 0.186 0.143 66.782 1.0132 0.2564 0.148 0.255
STD 0.005 0.018 0.012 22.666 0.0923 0.0293 0.006 0.027
ET (s) 984.52 994.11 587.68 723.53 383.28 847.73 635.21 613.85

Figs. 7 and 8 show respectively the robustness and tracking performance of the proposed
GWO-tuned FTSMC strategy in comparison with standard TSMC and Non-singular variant
(NTSMC) [5,8,11]. External disturbances on flight dynamics are well rejected and the defined
circular 3D trajectory is well tracked with the fastness and damped response of the GWO-TSMC
controller. In terms of tracking performance analysis, a circular trajectory is investigated in a 3D
flight space as shown in Fig. 8. Such a desired path is planned as xd (t)= 2 sin (t), yd (t)= 2 cos (t),
and zd (t) = 5. The quadrotor is initially located at the origin, i.e., ζ 0 = (0, 0, 0). Fig. 8 shows
that the drone’s trajectories converge to the reference path without deviations or changes of
direction for both NTSMC and GWO-FTSMC approaches. As shown in Fig. 8, the response of
the proposed GWO-tuned FTSMC technique (dashed red line) first reaches the reference trajectory
in comparison with that of NTSMC one (solid blue line). The transient behavior of the GWO-
based FTSM controller, i.e., a small change of direction against the NTSMC curve, has the aim
to reach as quickly as possible the desired trajectory. This further proves the superiority of such
an optimized variant of TSMC in terms of fastness and tracking precision. The GWO-based
controlled UAV follows the desired circular path closely and manages to accurately track the flight
reference with fast and accurate responses.
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Figure 4: Algorithms performances comparison for the problem (16): (a) IAE criterion case,
(b) ITAE criterion case, (c) ISE criterion case, (d) ITSE criterion case, (e) MSE criterion case
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Figure 5: Step responses comparison of the controlled dynamics

 

 

Figure 6: Control signals variations for the altitude and attitude dynamics
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Table 3: Time-domain performance of the controlled altitude dynamics

Algorithms Unit step response

Rise time Settling time Overshoot (%) Steady-state error

WCA 0.5833 0.8622 0.0039 0.0378
HSA 0.5689 1.2805 1.3994 0.0043
SFLA 0.5569 1.4924 3.4234 0.0068
CSA 0.9529 1.5413 0.0053 0.0229
GWO 0.5591 1.4418 4.8454 0.0122
PSO-In 0.5533 7.7761 10.1420 0.0368
FA 0.5473 1.2895 6.3926 0.0014
ABC 0.5377 1.3256 6.1483 0.0052

Table 4: Time-domain performance of the controlled roll dynamics

Algorithms Unit step response

Rise time Settling time Overshoot (%) Steady-state error

WCA 0.3355 9.0926 28.7371 0.0014
HSA 0.2826 1.4277 67.5484 1.242e−04
SFLA 0.3754 1.3220 26.5182 6.781e−04
CSA 0.2164 9.8061 4.4428 0.0032
GWO 0.3126 2.9209 4.6088 5.997e−04
PSO-In 0.2347 9.4247 11.9934 5.179e−04
FA 0.3161 9.9768 15.2130 9.929e−04
ABC 0.4603 1.2503 38.1779 0.0126

Table 5: Time-domain performance of the controlled pitch dynamics

Algorithms Unit step response

Rise time Settling time Overshoot (%) Steady-state error

WCA 0.6517 9.9878 20.3243 0.0105
HSA 0.6183 1.3882 26.3044 8.184e−04
SFLA 0.7027 1.4033 14.8132 4.276e−05
CSA 0.6044 8.3874 5.3774 0.0138
GWO 0.7006 9.9751 2.0786 0.0057
PSO-In 0.5035 1.9252 40.2486 5.029e−05
FA 0.3962 1.4412 59.9361 0.0039
ABC 0.5636 9.8719 33.4547 0.0056

4.2 Statistical Analysis and Comparisons
Nonparametric statistical comparison of the proposed metaheuristics is carried out based on

the Friedman and pair-wise post hoc tests within the mean optimization case [35]. All algorithms
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are ranked and summarized in Tabs. 7 and 8. In Friedman ranking, the algorithm attains the
best mean value ranks the lowest, while the one that has the worst mean value is given the high-
est rank. Roughly, the GWO has worthily attained the lowest average ranks compared to the
remaining algorithms.

Table 6: Time-domain performance of the controlled yaw dynamics

Algorithms Unit step response

Rise time Settling time Overshoot (%) Steady-state error

WCA 0.8242 1.1367 0.5399 0.0027
HSA 0.6537 0.9046 1.0184 8.184e−04
SFLA 0.7092 1.0367 1.3303 0.0049
CSA 0.7176 0.9570 0.7762 0.0011
GWO 0.5075 1.5670 1.1222 1.856e−04
PSO-In 0.4868 0.6403 1.4360 2.019e−04
FA 0.5527 0.7370 1.6817 0.0037
ABC 0.5969 1.1032 0.3840 0.0017

Figure 7: External disturbances’ rejection of the proposed GWO-tuned FTSMC approach

Based on the results of Tab. 8, the Friedman test for eight algorithms and five test problems
provides the F-score of 7.200. Using a table of the F distribution with a level of significance
of 99%, the F-statistics value is about 3.360. Since the computed F-score is greater than the
F-statistics value, the null hypothesis is rejected and it can be deduced that the performances of
the algorithms are statistically different. Hence, post hoc paired comparisons should be performed
to express such a difference. Tab. 9 gives the absolute differences of the individual rank’s sum-
mation. Underlined values indicate that the metaheuristics are different. The computed critical
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difference in the summation ranks at 99% of the significance level is 14.299 for a t0.995 = 2.763
value of the t-distribution with 28 degrees of freedom.

Figure 8: Flight tracking performance of the proposed GWO-tuned FTSMC approach

Table 7: Friedman ranking of algorithms for means performances

IAE ITAE ISE ITSE MSE

Score Rank Score Rank Score Rank Score Rank Score Rank

WCA 2.587 4 2.069 3 4.240 4 1.035 4 0.099 1
HSA 2.635 6 2.067 2 4.232 3 0.973 1 0.103 3
SFLA 2.630 5 2.482 5 4.686 6 1.097 6 0.102 2
CSA 23.651 8 35.340 8 36.178 8 308.01 8 12.646 8
GWO 2.413 2 1.977 1 4.186 2 0.979 2 0.107 4
PSO-In 2.672 7 3.383 7 4.812 7 0.983 3 0.161 7
FA 2.520 3 2.291 4 4.170 1 1.059 5 0.113 6
ABC 2.392 1 2.330 6 4.469 5 1.160 7 0.110 5

From these results, it can be clearly deduced that the GWO metaheuristic has the same
performance in solving the optimization problem (16) as other WCA, HSA, SFLA, FA, and
ABC methods. The performance of the proposed GWO algorithm is clearly superior to the
CSA and PSO-In ones. This verdict further justifies the use of this global metaheuristic for the
efficient and less complex tuning of the designed fast terminal sliding mode controllers for drone
dynamics stabilization.
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Table 8: Nonparametric statistics test computation

WCA HSA SFLA CSA GWO PSO-In FA ABC

Average rank 3.2 3 4.8 8 2.2 6.2 3.8 4.8
Summation 16 15 25 40 11 31 19 24
Squared rank sum. 58 59 126 320 29 205 87 136
F-score 7.200
F-statistics at 99% 3.36

Table 9: Paired comparisons of the proposed metaheuristics

Absolute difference of the rank’s summation HSA SFLA CSA GWO PSO-In FA ABC

WCA 1 9 24 5 15 3 8
HSA – 10 25 4 16 4 9
SFLA – – 15 4 6 6 1
CSA – – – 29 9 21 16
GWO – – – – 20 8 13
PSO-In – – – – – 12 7
FA – – – – – – 5

5 Conclusions

In this work, a systematic and intelligent tuning method of all effective parameters of fast
sliding mode controllers is proposed and successfully applied for a quadrotor UAV. The gains of
sliding manifolds and switching functions of the FTSM control laws are selected thanks to the
proposed free-parameters GWO algorithm. For such a hard and large-scale tuning problem, the
tedious and time-consuming trials-errors based methods are no longer used, and the design time
is further reduced. A full control scheme for the studied quadrotor UAV is first given to deal
with the underactuated and coupled flight dynamics. Only the dynamics of altitude and attitude
are considered for the optimization-based tuning process using the proposed GWO algorithm
compared to other homologous methods. Demonstrative results in terms of optimization capa-
bilities and time-domain performance are carried out to show the effectiveness of the proposed
GWO-based tuning method. In comparison with the reported optimizers, the mean values of STD
and elapsed time obtained for the proposed GWO algorithm are minimal and equal to 0.38012
and 224.1 s, respectively. This finding further encourages the use of such a free-parameters meta-
heuristic in real-world and online optimization scenarios. Regarding the chattering attenuation,
the proposed GWO-tuned controllers succeeded to damp and cancel severe oscillations on control
signals with the amplitude of 1.6 N/m for the no optimized FTSMC technique and 0.8 N/m for
the classical TSMC approach. The performance metrics in terms of rising and settling times as
well as the first overshoots are further improved by a reduction to 50% of their values in the
cases without GWO-based tuning, i.e., classical TSMC, FTSMC, and NTSMC approaches. The
superiority of the proposed GWO-tuned FTSMC in terms of stabilization and tracking is clearly
shown. Nonparametric statistical analyses, i.e., using the Friedman and post-hoc tests, show that
the proposed free-parameters GWO metaheuristic outperforms the reported algorithms retained
as comparison tools.
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