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Abstract: In this work, a steady, incompressible Williamson fluid model is
investigated in a porous wavy channel. This situation arises in the reabsorption
of useful substances from the glomerular filtrate in the kidney. After 80%
reabsorption, urine is left, which behaves like a thinning fluid. The laws of
conservation of mass and momentum are used to model the physical prob-
lem. The analytical solution of the problem in terms of stream function is
obtained by a regular perturbation expansion method. The asymptotic inte-
gration method for small wave amplitudes and the RK-Fehlberg method for
pressure distribution has been used inside the channel. It is demonstrated
that the forward flow becomes fast in the narrow region (at x= 0.75), which
dominates the upward flow inside the channel. To study the impact of model
parameters on outputs, we applied normalized local sensitivity analysis and
noticed that themost influential parameter for the longitudinal velocity profile
is the dimensionless wave amplitude. The reabsorption parameter is sensitive
for transverse velocity in the narrow region, and the Weissenberg number has
a strong effect on the pressure inside the channel. Further, the least sensitive
parameters for the velocity components and pressure have been identified.

Keywords: Sensitivity analysis; Williamson fluid; regular perturbation
method; asymptotic approximation; RK-Fehlberg method; kidney flow

1 Introduction

Hydrodynamic in porous ducts (channel/tube) has been receiving the attention of many
researchers in recent years because of its significant applications in several biological systems,
particularly reabsorption of useful substances in the kidney. The kidney is an organ responsible
for maintaining fluid, filtering minerals and regulating the blood pressure inside the several living
bodies. The overall fluid inside the bodies is maintained in the functional unit of the kidney
known as nephrons. Blood is filtered from glomerular collieries and enters the Bowman’s capsule
called glomerular filtrate (GF). This filtrate contains substances, like water, about 95%, and
other constituents like sodium (1.17 g/L), potassium (0.750 g/L), and chloride (1.87 g/L) [1].
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In normal (healthy) conditions, these substances are reabsorbed inside the body, and with the
passage of time, GF reaches the end of the tubule behaving as a thin fluid called urine. The GF
is considered the same as plasma of the blood without containing blood cells, but it comprises
glucose, creatinine, proteins, urea, uric acid, and various ions. Water is assumed to be a Newtonian
fluid in nature, obeying Newton’s law of viscosity [2]. While blood, saliva, glomerular filtrate, and
excreta are biological fluids behaving as a non-Newtonian fluid [3].

In the literature, the flow of glomerular filtrate in the kidney has been discussed by several
researchers. The pioneering work done by Macey [4] has been extended by several researchers
assuming that GF behaves like a steady, creeping, incompressible and non-isothermal Newtonian
fluid, while the geometry (shape) of the renal tubule is approximated with a straight or wavy
channels/tubes [5–10]. In the last few years, Muthu et al. [11–14] studied the hydrodynamics
of Newtonian fluid in a wavy channel. They obtained the series solution by assuming a large
wavelength and discussed the importance of slope factor on fluid properties. Recently, his work
has been extended by Javaria et al. [15], Farooq et al. [16] with assuming slip and magnetic field
effects. In previous articles, there is a lack of information regarding the non-Newtonian nature of
the GF, and only the Newtonian fluid model was taken into account.

The flow of GF inside the kidney is complex, and there are various non-Newtonian fluid
models that are accepted as biological fluids. Williamson’s model is one in which the apparent
viscosity varies gradually [17]. This model is characterized by shear thinning property, and several
researchers have studied this model in peristalsis flow. Peristalsis flow of the Williamson model
in the symmetric or asymmetric channel was studied by Nadeem et al. [18], and they reported
that for small Williamson parameters, flow behaves like a Newtonian fluid. Later on, Akbar
et al. [19] also studied the peristaltic flow of a Williamson fluid in an inclined asymmetric
channel with partial slip. They found that with the rise in the Williamson parameter, the pressure
decreases inside the channel. His work was extended by Nadeem et al. [20] with partial slip and
heat transfer. They found that temperature decreases with increasing the Williamson parameter.
Vajravelu et al. [21] studied the peristaltic flow of a Williamson fluid in asymmetric channels with
leaky walls. They noted that the size of the trapped bolus decreases and its symmetry disappears
for large values of the permeability parameter. Williamson fluid flow model is also analyzed by
Akbar et al. [22,23] in stenosed arteries with porous walls. They also discussed the chemical
reaction and heat transfer rate of Williamson fluid through a tapered artery with stenosis.

Within this work, a steady, incompressible Williamson fluid model in a porous wavy channel
is investigated/developed, and normalized sensitivity analysis is performed. In a normalized local
sensitivity analysis, the impact of a single model parameter is studied at a time on all output
variables. Several researchers used this analysis in different biological engineering problems [24–28].
As mentioned in the previous paragraphs, that flow of GF inside the kidney is complex, and after
the reabsorption of useful substances, its nature becomes thin to make the urine. Also, involved
parameters in the model intended to simulate the uncertainty in the output. The main objective
of this study is to investigate hydrodynamics and the impact of influential parameters on shear-
thinning fluid (Williamson fluid) flow in a porous wavy channel having relevance with the flow
of urine in the kidney. It is believed that this work is not published so far, and it will provide
a good foundation and specialist knowledge in the field of analyzing the flow characteristics in
the kidneys.

This paper is arranged as follows: Basic equations governing the flow of incompressible
Williamson fluid inside the wavy porous walled channel are given in Section 2. Approximate
solutions are obtained by using the Perturbation method in Section 3. Also, pressure distribution
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inside the channel is obtained by both asymptotic approximation of integration technique and
numerically by the Runge-Kutta-Fehlberg method using MatLab. In Section 4, the effects of
involved parameters are briefly discussed with the help of graphs and streamlines. A sensitivity
analysis is performed in Section 5. Finally, the conclusion of the present study is presented in the
last section.

2 Mathematical Formulation

Let us consider the flow of incompressible Williamson fluid in a porous walled wavy channel,
with entrance flow rate Q0 and entrance pressure P0. The flow rate decays exponentially along the
channel. The geometry of the problem is described in Fig. 1. The wall profile is defined as

h (x)= d+ ε sin
(
2πx
λ

)
, (1)

in which d is half-height of the channel at the entrance region, ε is the is amplitude and λ is the
wavelength. It is noticed that for ε = d in one wavelength (λ= 1) can show narrow (blockage) at
x= 1/4.

Figure 1: Geometry of the problem

The equations governing the flow of a Williamson fluid in the wavy channel are

divV= 0, (2)

ρ
DV
Dt

= divS+ρf (3)

where V is the velocity vector, ρ is the density,
D
Dt

represents the material derivative, S is the

Cauchy stress tensor, f represents the body force and the extra stress tensor S for the Williamson
fluid is defined as

S=−pI+ τ, (4)

τ=
[
μ∞+ (μ0+μ∞) (1−� |γ̇ |)−1

]
γ̇ , (5)
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in which −pI is the spherical part of the stress due to constraint of incompressibility, τ is the
extra stress tensor, μ0 is the zero shear rate viscosity, μ∞ is the infinite shear rate viscosity, � is
the time constant and |γ̇ | is defined as

|γ̇ | =
√
1
2
� (6)

Here � is the second invariant strain tensor. In Eq. (5), we consider the case for which
μ∞ = 0 and �|γ̇ |< 1, therefore,

τ= [μ0 (1+� |γ̇ |) γ̇ ] (7)

If � = 0, the Newtonian fluid model can be recovered. For the two dimensional flow in the
wavy channel, the Eqs. (1) and (2) in components form can be written as

∂u
∂x

+ ∂v
∂y

= 0, (8)

ρ

[
u
∂u
∂x

+ v
∂u
∂y

]
=−∂p

∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
, (9)

ρ

[
u
∂v
∂x

+ v
∂v
∂y

]
=−∂p

∂y
+ ∂τ yx

∂x
+ ∂τ yy

∂y
. (10)

where u and v are the velocity components, p is hydrodynamics pressure and τxx, τxy, τ yx, τ yy
are the stress components. The boundary conditions of the problem are

u+ dh (x)
dx

v= 0 at y= h (x) , (11)

∂u
∂y

= 0 at y= 0, (12)

Q (x)= 2w
∫ h(x)

0
udy=Q0e

−αx, (13)

p=P0 at x= 0. (14)

Eq. (11) shows the tangential velocity at the walls, while Eq. (13) shows the flow rate inside
the channel, Q0 is the flow rate at x = 0, w is the width of the channel, and α is reabsorption
parameter [4]. To solve the model, Eqs. (8)–(14), let us introduce the non-dimensional variables
defined by

x∗ = x
λ
, y∗ = y

d
, u∗ = dλu

Q0
, v∗ = λ2v

Q0
,

δ= d
λ
, p∗ = d3p

μQ0
, ψ∗ = λψ

Q0

(15)
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and considering u∗ = ∂ψ∗

∂x∗
and v∗ =−∂ψ

∗

∂y∗
, Eqs. (9) and (10) in terms of stream function ψ∗ after

dropping the asterisk sign (∗) become

δRe

[
∂ψ

∂y
∂2ψ

∂x∂y
− ∂ψ

∂x
∂2ψ

∂y2

]
=−∂p

∂x
+ δ2 ∂τxx

∂x
+ ∂τxy

∂y
(16)

− δ3Re
[
∂ψ

∂y
∂2ψ

∂x2
− ∂ψ

∂x
∂2ψ

∂x∂y

]
=−∂p

∂y
+ δ2 ∂τyx

∂x
+ δ ∂τyy

∂y
. (17)

where the stress and strain tensors are defined by

τxx = 2 [1+Weγ̇ ]
∂2ψ

∂x∂y
, (18)

τxy= [1+Weγ̇ ]

(
∂2ψ

∂y2
− δ2 ∂

2ψ

∂x2

)
, (19)

τyy= 2δ [1+Weγ̇ ]
∂2ψ

∂x∂y
. (20)

|γ̇ | =
⎡
⎣4δ2

(
∂2ψ

∂x∂y

)2

+
(
∂2ψ

∂y2
− δ2 ∂

2ψ

∂x2

)2
⎤
⎦
1/2

. (21)

The boundary conditions are

∂ψ

∂y
− δ (1+ ε cos (2πx)) ∂ψ

∂x
= 0 ψ = γ e−αx at y= η, (22)

∂2ψ

∂y2
= 0 ψ = 0 at y= 0, (23)

p=P0 at x= 0, (24)

where, η= 1+ ε sin (2πx) .

where Re = Q0

νλ
is Reynolds number, We= Q0�

λd2
is Weissenberg numbers, γ = λ

2w
is ratio of length

to width, η= h (x)
d

is dimensionless wall profile, P0= μQ0P0

d3
is dimensionless entrance pressure,

and ε = k
d

is dimensionless amplitude, respectively. Using the assumptions of low Reynolds

number and long wavelength and neglecting the terms of order δ and higher, Eqs. (15) and (16)
take the form

0=−∂p
∂x

+ ∂

∂y

[
1+We

∂2ψ

∂y2

]
∂2ψ

∂y2
, (25)



3882 CMC, 2021, vol.68, no.3

0=−∂p
∂y

. (26)

From Eq. (25), it is noticed that pressure depends on x only. Eliminating the pressure term
from Eqs. (24) and (25), yield

0= ∂2

∂y2

[
1+We

∂2ψ

∂y2

]
∂2ψ

∂y2
, (27)

and the boundary conditions are

∂ψ

∂y
= 0 ψ = γ e−αx at y= η, (28)

∂2ψ

∂y2
= 0 ψ = 0 at y= 0, (29)

p=P0 at x= 0. (30)

where α = αλ is reabsorption parameter which controls the reabsorption across the walls.
Eq. (26) along with boundary conditions (27)–(29) show the physical model showing the flow
of Williamson fluid flow in the wavy channel. The solution of the developed model is solved
by the perturbation method [29,30]. The solutions to the modeled problem are explained in the
next section.

3 Solution of the Problem

Since Eq. (26) is a nonlinear partial differential equation, its exact solution is not possible;
therefore, we chose the standard power series of the forms

ψ =ψ0+Weψ1 +O (We)2 . . . , (31)

p= p0+Wep1 +O (We)2 . . . , (32)

where the coefficient functions ψ0 and ψ1 are independent of We. Substituting the above
expressions in Eqs. (24) and (26) and boundary conditions (27) to (29), we get.

3.1 System of Order We0

The coefficients of zeroth order are equated on both sides of Eq. (26) to get

∂4ψ0

∂y4
= 0, (33)

dp0
dx

= ∂3ψ0

∂y3
, (34)

and the boundary conditions

∂ψ0

∂y
= 0 ψ0 = γ e−αx at y= η, (35)

∂2ψ0

∂y2
= 0 ψ0 = 0 at y= 0. (36)
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The solution of Eqs. (31)–(33) is obtained as

ψ0 =−1
2

Q (x)y
(−3η2+ y2

)
η3

. (37)

Using Eq. (36) in Eq. (33), we find

dp0
dx

=−3
γ e−αx

η3
=−3

Q (x)
η3

. (38)

Eqs. (36) and (37) contains the effects of flow rate Q (x)= γ e−αx.
3.2 System of Order We1

The first-order problem is obtained by equating the power of We1, we get

∂4ψ

∂y4
+ ∂2

∂y2

(
∂2ψ0

∂y2

)2

= 0, (39)

dp1
dx

= ∂3ψ1

∂y3
+ 2

(
∂2ψ0

∂y2

)2
∂3ψ0

∂y3
., (40)

with boundary conditions

∂ψ1

∂y
= 0 ψ1 = 0 at y= η, (41)

∂2ψ1

∂y2
= 0 ψ1 = 0 at y= 0. (42)

The solution of the Eq. (35) with boundary conditions (36), (37) is

ψ1 =−3
8

(Q (x))2 y
(
η3− 3y2η+ 2y3

)
η6

. (43)

using Eqs. (36) and (42) in Eq. (39), we get

dp1
dx

= 27 (Q (x))2

4η5
. (44)

Using Eqs. (36) and (42) in Eq. (30), the expression for stream function becomes

ψ =−1
2

Q (x)
(−3η2+ y2

)
y

η3
− 3We

8

(Q (x))2
(
η3 − 3y2η+ 2y3

)
y

η6
+ . . . (45)

The zeroth-order solution of Muthu et al. [11] can be retrieved when We→ 0. Using Eqs. (37)
and (43) in Eq. (31), we get the pressure gradient in the following form

dp
dx

=−3
Q (x)
η3

+ 27We
(Q (x))2

4η5
+ . . . (46)
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To get the expression for pressure with boundary condition,

p=P0 at x= 0, (47)

an exact solution for pressure cannot be obtained. Approximate solutions of Eq. (45) with
boundary condition (46) are obtained by asymptotic approximation of integration technique for
ε→ 0, [29,30], and numerically by Runge-Kutta-Fehlberg method using MATLAB software.

The expression for pressure in term of elementary functions, using an asymptotic approxima-
tion of integration technique for ε→ 0 is

p (x)= 135
Weγ 2ε (cos (2πx)π +α sin (2πx)) e−2αx

8α2+ 8π2

− 3
γ e−αx

(
3α2ε sin (2πx)+ 6παε cos (2πx)−α2− 4π2

)
(
α2+ 4π2

)
α

− 27γ 2
(
e−αx

)2We

8α
+C1, (48)

where,

C1 =P0− 135γ 2Weεπ
8α2+ 8π2 + 27γ 2We

8α
+ 18

γ επ

α2+ 4π2 − 3
γ

α
. (49)

which depends upon ε, We and α.

4 Result and Discussion

Graphical behavior of velocity components, pressure distribution, and stream function are
observed for different Weissenberg numbers We, reabsorption parameter α, and wave amplitude ε.
In this study x = 0, and x = 1 indicate the entrance, and exit regions of the rectangular cross-
section of the wavy channel, respectively.

In Figs. 2 and 3, the effects of We on both the components of velocity, i.e., longitudinal and
transverse are studied at the entrance x= 0 and exit x= 1 of the channel. Fig. 2a indicates that
at the centerline, longitudinal velocity decreases by increasing the magnitude of We, while due to
the wall friction, the opposite nature of fluid flow is noticed near the walls. Similarly, transverse
velocity increases by increasing We near the wall while near the centerline, it decreases due to the
rise in pressure drop, see Fig. 2b.

At the exit region, both components of velocity have the same nature as that of the entrance
region, see Figs. 2 and 5. It is observed that the dimensionless velocity at the entrance (x= 0) is
higher as compared to the exit region of the channel.

Figs. 4 and 5 illustrate the variations of the reabsorption parameter α on components of
velocity at the entrance and exit regions of the channel. Fig. 4a depicts that no effect of α
is observed on the longitudinal velocity at the entrance region, while transverse velocity shows
significant effects. Transverse velocity first increases from the centerline; then, it shows a downfall
towards the walls of the channel. Also, increasing α its profile increases due to the seepage of the
fluid across the wall of the channel and then decreases at the channel wall, Fig. 4b.

The variation of α on longitudinal and transverse velocities inside the channel at the exit
regions is displayed in Figs. 5a and 5b. It is noticed that near the center of the channel, flow
is maximum due to the pressure gradient, and near the walls, the fluid flow becomes stationary
due to wall friction and fluid viscosity. With increasing α longitudinal velocity decreases, while
opposite behavior transverse velocity is controlled by α, see Fig. 5b. For higher α, transverse
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velocity upturns with no reversal of fluid. At the exit region, longitudinal velocity shows low
profile behavior due to an increase in α. While transverse velocity near the wall shows a higher
velocity profile.

Figure 2: Variation of We on (a) longitudinal velocity (b) transverse velocity inside the channel at
the entrance, when γ = 1, α= 0.5 and ε= 0.2

Figure 3: Variation of We on (a) longitudinal velocity (b) transverse velocity inside the channel at
the exit, when γ = 1, α = 0.5 and ε= 0.2



3886 CMC, 2021, vol.68, no.3

Figure 4: Variation of α on (a) longitudinal velocity (b) transverse velocity inside the channel at
the entrance, when γ = 1, We= 0.05 and ε= 0.2

Figure 5: Variation of α on (a) longitudinal velocity (b) transverse velocity inside the channel at
the exit region, when γ = 1, We= 0.05 and ε= 0.2

The variation of ε on longitudinal and transverse velocities inside the channel at the entrance
and exit regions is presented in Figs. 6 and 7. It is important to note that no appreciable effect of
ε on the longitudinal velocity at the entrance and exit regions of the channel, see Figs. 6a and 7a.
However, due to higher values of ε, transverse velocity indicates reverse flow due to the narrowing
of the walls 2. At the exit of the channel, the same behavior of fluid flow is noticed as that in
the entrance region, see Figs. 6b and 7b. The velocity profile at the entrance (x= 0) is observed
higher as compared to the exit region due to the fluid seepage across the walls of the channel.
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Figure 6: Variation of ε on (a) longitudinal velocity (b) transverse velocity inside the channel at
the entrance region, when γ = 1, We= 0.05 and α= 0.5

Figure 7: Variation of (a) longitudinal velocity, and (b) transverse velocity with ε inside the
channel at the exit region, when γ = 1, We= 0.05 and α= 0.5

Figs. 8a–8c illustrate the variation of We, α and ε on the pressure inside the channel. It is
observed that pressure decreases from the entrance to the exit of the channel. With increasing
We, α and ε pressure increases due to the leakage of the fluid across the channel walls. Further,
the asymptotic solution of the complicated integral validates the numeric results.

Finally, Figs. 9–11 are plotted to examine the influence of the pertinent parameters such as
We, α and ε on the streamline pattern inside the wavy channel. The streamlines represent a path
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followed by a fluid particle during its motion. In Fig. 9, with increasing We, maximum fluid for
fixed values of α and ε goes outside from the exit region of the channel. While for the fixed values
of We and ε, fluid leakage increases with increasing α across the walls, see Fig. 10. The geometry
is controlled by ε, see Fig. 11 and with increasing ε fluid before entering a narrow region shows
significant changes.

Figure 8: Variation of pressure inside the channel with (a) We when α = 0.5, ε = 0.2, (b) α when
We= 0.05, ε= 0.2 and (c) ε when α = 0.5, We= 0.05 for γ = 1

(a) (b)

Figure 9: Streamline pattern inside the channel for (a) We = 0.01 and (b) We = 0.05 with fixed
α= 0.5, γ = 1 and ε= 0.2

The foregoing discussion reveals that the parameters We, α, δ and ε affect the velocity
components and pressure inside the channel. As mentioned earlier, that sensitivity analysis is
necessary to examine the impact of input parameters We, α, δ and ε on outputs like velocity
components (u, v) and pressure p. This analysis will be helpful for the researcher during the
experimental validation of GF in the kidney.



CMC, 2021, vol.68, no.3 3889

(a) (b)

Figure 10: Streamline pattern inside the channel for (a) α = 0.5 and (b) α = 1 with fixed ε = 0.2,
γ = 1 and We= 0.05

(a) (b)

Figure 11: Streamline pattern inside the channel for (a) ε= 0.5 and (b) ε= 0.8 with fixed α = 0.5,
γ = 1 and We= 0.05

5 Sensitivity Analysis (SA)

Sensitivity analysis is the method in which we study the impact of model parameters (input
quantities of interest, QoI) on output variables (output quantities of interest, QoI). In this study,
the input QoI are We, α, ε and δ, while output QoI are the velocity components (u, v) and
pressure p. All input parameters are perturbed 0.2%, 1% and 2% from their nominal values one
by one, and their impacts are quantified on output QoI. For the sake of simplicity, here we
only presented the impact of 2% change of each input QoI on output QoI using the following
relationship:

Sij = ∂θ

∂X
∼= θ (X +�X)− θ (X)

�X
,

N = 1
n

∑
Sij
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Table 1: Sensitivity analysis of crucial parameters in the narrow region of the channel

y SA of W

S=
∣∣∣∣uold − unew
2/100We

∣∣∣∣
SA of α

S=
∣∣∣∣uold − unew

2/100α

∣∣∣∣
SA of ε

S=
∣∣∣∣uold − unew

2/100ε

∣∣∣∣
SA of δ

S=
∣∣∣∣uold − unew

2/100δ

∣∣∣∣
uold unew S uold unew S uold unew S uold unew S

0 1.27 1.29 131.47 1.27 1.80 426.82 1.27 1.03 478.30 1.27 0.64 482.79
0.1 1.25 1.27 115.04 1.25 1.78 421.73 1.25 1.02 462.07 1.25 0.63 476.00
0.2 1.20 1.21 73.95 1.20 1.71 405.54 1.20 0.99 411.85 1.20 0.06 455.21
0.3 1.10 1.11 20.54 1.10 1.58 376.91 1.10 0.94 325.28 1.10 0.06 419.75
0.4 0.97 0.97 32.87 0.97 1.39 334.50 0.97 0.87 200.02 0.97 0.05 69.00
0.5 0.80 0.79 73.95 0.80 1.14 276.95 0.80 0.78 33.74 0.80 0.04 302.29
0.6 0.58 0.56 90.38 0.58 0.83 202.91 0.80 0.66 175.91 0.58 0.03 218.99
0.7 0.31 0.30 69.84 0.31 0.45 111.05 0.31 0.53 431.27 0.31 0.02 118.44
N 76.0 319.5 406.6 355.2

(a) (b)

(c)

Figure 12: Sensitivity analysis results of (a) longitudinal velocity, (b) transverse velocity in the
narrow region, and (c) pressure inside the channel

where Sij is the sensitivity indices for ith model outputs with respect to jth input parameters, n is
the mesh size and N is the magnitude of sensitivity. Tab. 1 shows the results of the sensitivity
of longitudinal velocity for the fixed values of α, δ and ε, while a 2% change in We, α, ε and δ
is considered. It is noticed that ε is the most influential parameter for the longitudinal velocity
at the narrow region of the channel, while, We is the least critical parameter in this region.
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For comparison, Fig. 12a shows that δ is even more important than We and α. Also, the major
impact of ε is found on the channel wall. In Fig. 12b, it is observed that α is the most influential
parameter for the transverse components of velocity in the narrow region and We has no effects
in this region. Again the significant impact of α is noticed at the wall of the channel. The effects
of input parameters on the pressure inside the channel is also analyzed and displayed in Fig. 12c.
It is observed that We becomes the most crucial parameter as compared to α, ε and δ.

6 Conclusions

A mathematical model has been developed for the flow and sensitivity analysis of Williamson
fluid in a porous wavy channel. The nonlinear PDEs are reduced by using the stream function
and are solved by a regular perturbation method. An asymptotic integral method for small wave
amplitude has been used to get the pressure in terms of elementary function. In contrast, the
RK-Fehlberg method is used to get the numerical solution for the pressure in the channel. The
sensitivity analysis is used to quantify the effects of input parameters on model outputs, such as
velocity components and pressure inside the channel. The essential conclusions of this study are
summarized below:

1. The flow becomes fast in the narrow region, which dominates the upward flow.
2. The pressure decays along the channel.
3. The velocity profile is higher at the entrance as compared to the exit region of the channel.
4. For longitudinal velocity in the narrow region, the dimensionless amplitude is the most

influential parameter, and the Weissenberg number is the least essential parameter.
5. The reabsorption parameter is sensitive to the transverse velocity at the narrow region of

the channel.
6. In case of pressure, the Weissenberg number is the most influential parameter, while the

reabsorption parameter shows less sensitivity.
7. The significant impact of velocity components is found at the wall of the channel.
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