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Abstract: It is eminent that partial differential equations are extensively
meaningful in physics, mathematics and engineering. Natural phenomena are
formulated with partial differential equations and are solved analytically or
numerically to interrogate the system’s dynamical behavior. In the present
research, mathematical modeling is extended and the modeling solutions
Helmholtz equations are discussed in the fractional view of derivatives. First,
the Helmholtz equations are presented in Caputo’s fractional derivative. Then
Natural transformation, along with the decomposition method, is used to
attain the series form solutions of the suggested problems. For justification
of the proposed technique, it is applied to several numerical examples. The
graphical representation of the solutions shows that the suggested technique
is an accurate and effective technique with a high convergence rate than other
methods. The less calculation and higher rate of convergence have confirmed
the present technique’s reliability and applicability to solve partial differential
equations and their systems in a fractional framework.

Keywords: Fractional-order Helmholtz equations; fractional calculus;
natural transform decomposition method; analytic solution

1 Introduction

The research area of mathematics interrogating the non-integer properties of derivatives and
integrals is called fractional calculus. Fractional calculus has become popular in recent years
due to its application in a real-world problem. However, its history is as ancient as ordinary
derivative [1,2] and is developed by Leibniz, Liouville, Heaviside, Riemann, Fourier, Lagrange,
Abel, Euler [3] etc. Recently, it becomes prevalent and had several real-life applications; moreover,
it has been proved that the system developed from natural phenomena can be expressed more
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accurately through fractional derivative than the ordinary derivative. The applications of fractional
calculus occur in control theory, viscoelasticity, electrical networks, diffusive transport akin to
diffusion, fluid flow, rheology, optics and signals processing, dynamical processes in the porous
structure, probability and statistics, electrochemistry of corrosion and many other branches of
economics, physics, engineering and mathematics [4–6].

Hermann Von Helmholtz introduced the concept of the following equation

∇2ϕ(x,y, z)+χ2ϕ(x,y, z)= 0, (1)

which demonstrates the time-independent structure of diffusion or wave equation achieved during
the implementation of the separable variables technique and make the solution procedure much
easier. The Helmholtz equation of dimensional two arises in engineering applications and physical
phenomena [7–9] such as water wave propagation, acoustic radiation, heat conduction and even
in biology. The importance of the fractional derivative cannot be ignored because it estimates the
geodesic seafood properties, acoustic propagation in shallow water as well as at low frequencies.
Fractional derivatives provide more accurate results and conceptualize different phenomena in a
better way in the form of mathematical model [10–17].

It is well known that the problems in pattern formation animal coating [18] in electro-
magnetics are also solved through Helmholtz equation, where its two-dimensional structure
becomes more applicable in different areas. Several numerical methods have been utilized to
solve the above Eq. (1), in which the integral surface method and the Ritz–Galerkin method [19]
consume a large unit of time by computing the problem numerically. In contrast, the finite element
method [20] produces inaccurate results during computation of the problem. Therefore, we use
NTDM to reduce these inaccuracies and to lessen the computational time for our problem. Here,
we represent the Helmholtz equations with x and y− space in the following manner⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ϑV(x,y)
∂xϑ

+ ∂2V(x,y)
∂y2

+ ηV(x,y)=φ(x,y),

∂ϑV(x,y)
∂yϑ

+ ∂2V(x,y)
∂x2

+ ηV(x,y)=φ(x,y),

(2)

with proper initial conditions given by

V (0,y)= ϕy, and V (x, 0)= ϕx,

where ϑ is the fractional-order which lesson the memory requirements. In the above (2) both x
and y have the choices to change the fractional order.

The Natural transform decomposition method is developed by using the two powerful meth-
ods that are Adomian decomposition and Natural transform, which solve many PDEs and
FPDEs arises from physical phenomena. Specifically, numerous non-linear PDEs [21,22], non-
linear ODEs [23] and fractional-order models and equations [24–26] are solved by NTDM. It has
been shown that the convergence rate of the NTDM are higher than MHPM and HPM and are
more accurate than the MHPM and HPM.

In the present article, NTDM is implemented in a very simple and sophesticated manner
to analyse the solutions of fractional-order Helmholtz equations. Three numerical examples were
considered for analytical treatment. The successful NTDM schemes or algorithms are derived for
both fractional and integer orders of the problems. First, the natural transformation is applied
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to reduce the given problems into simpler forms and then Adomian decomposition method is
used to investigate the final solutions of the problems. The derived results are then plotted and
have shown that the present solutions are in best contact with the solutions of LADM [16]
and FRDTM [17]. The fractional solutions graphs are plotted and the convergence phenomenan
of fractional-orders solutions towards integer-order solutions is observed. Beside these it is also
analysed that NTDM is very simple and straightforward with no need of discritization and
required very less computational work. In the view of the above novelty, the present work can be
extended to solve other nonlinear FPDEs and their systems.

The article is structured as: The fractional-order Helmholtz equations are represented with
x-space and y-space in Section 1. In Section 2 of the article, we present the elementary theory
of fractional calculus and Natural Transform Decomposition Method. The general idea of the
NTDM is introduced and applied to the proposed fractional Helmholtz equations in Section 3.
In Section 4, the proposed concept of the NTDM is applied to several numerical examples to
understand the procedure of the proposed method; moreover, numerous numerical simulations are
used to show the graphical results of the fractional-order problem. Finally, the overall conclusion
of the article is presented in Section 5.

2 Rudimentary Theory

In this section of the article, we represent Caputo’s fractional operator to inspect our
proposed problem. In addition to this, we will give the basic concept of natural transform,
inverse natural transform and the natural transform of n-th derivative for further analysis and
investigation.

2.1 Definition [3,27]
Assume a function h in a manner that h ∈ Ct1 then the fractional derivative of h through

Caputo’s operator of order ϑ is given by

Dϑh(x)= ∂ϑh(x)

∂tϑ1
= In−ϑ

(
∂ϑh(x)

∂tϑ1

)
, if n− 1 < ϑ≤ n, n ∈N

= ∂ϑh(x)

∂tϑ1
.

(3)

where n ∈N, x> 0, t1 ≥−1.

2.2 Definition [3,27]
Let ϑ > 0 and q ∈ C then the Mittag-Leffler function is symbolized by Eϑ(q) and is given by the

below-mentioned series

Eϑ (q)=
∞∑
n=0

qn

Γ (ϑn+ 1)
, ϑ > 0.
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2.3 Definition [28,29]
For a given function h, the natural transform is given by

N+ [h (t1)]=Q (s, v)= 1
v

∫ ∞

0
e
−st1
v h (t1)dt1,

in which s and v indicate the transform variables and are positive.

2.4 Definition [28,29]
For a given function h, the inverse natural transform is given by the following mentioned

definition

N− [Q (s, v)]= h (t1)= 1
2π i

∫ p+i∞

p−i∞
e
st1
v Q (s, v)ds,

in which p is a real number, s and vindicates Natural transform variables, and the integral in the
plane s= x+ iy is taken along s= p.

2.5 Definition [28,29]
Let h be a function then the natural transform of n-th derivative is defined by the following

manner

N [
hn (t1)

]=Qn (s, v)= sn

vn
Q (s, v)−

n−1∑
k=0

sn−(k+1)

vn−k
hk (0) ,

where n≥ 1 in this definition.

2.6 Theorem [28,29]
Let the transform functions of H(s,u) and L(s,u) are given by h(t1) and l(t1), then we have

the following

N [h ∗ l]= uH (s,u)L (s,u) ,

where the convolution of the h mentioned above and l is indicated by h ∗ l.
2.7 Definition [28,29]

Let h be a given function then R-L fractional integral is given as

Iϑ
x h (x)= h (x) if ϑ= 0

1
Γ (ϑ)

∫ x

0
(x− v)ϑ−1 h (v)dv if ϑ > 0,

in which Γ indicates the gamma function, and is given by

Γ (	)=
∫ ∞

0
e−xx	−1dx 	 ∈C.

In the next section of the article, we will give a general concept of fractional NTDM for the
solution of Helmholtz equations.



CMC, 2021, vol.68, no.3 3189

3 Conceptualization of Fractional NTDM [21,22]

Here, we will study the standard concept and procedure of fractional Natural transform
decomposition method to solve Helmholtz equations. First, we take the Helmholtz equation in
fractional framework with x-space as

∂ϑV(x,y)
∂xϑ

+ ∂2V(x,y)
∂y2

+ κV(x,y)= φ(x,y), (4)

with the following suitable initial condition

V (0,y)= ϕy,

and y-space

∂ϑV(x,y)
∂yϑ

+ ∂2V(x,y)
∂x2

+ κV(x,y)= φ(x,y), (5)

with the below mentioned initial condition

V (x, 0)= ϕx.

Utilizing the Natural transform decomposition method to (4), we have

N+
(

∂ϑV (x,y)
∂xϑ

)
+N+

(
∂2V (x,y)

∂y2
+ κV (x,y)

)
=N+ [φ (x,y)] ,

and applying the differentiation property of Natural transform decomposition, the following is
obtained

N+ [V(x,y)]= V(0,y))
s

+ vϑ

sϑ
N+ [φ(x,y)]− vϑ

sϑ
N+

(
∂2V(x,y)

∂y2
+ κV(x,y)

)
. (6)

After that, the Natural transform decomposition method solution V(x,y) is given by the below-
mentioned series

V (x,y)=
∞∑
j=0

Vj,

moreover, the following series of Adomian polynomials define the nonlinear term of the problem

N (V (x,y))=
∞∑
j=0

Dj,

Dj = 1
j!

⎛
⎝ dj

dλj

⎛
⎝N ∞∑

j=0

(
λjvj

)⎞⎠
⎞
⎠

λ=0

,
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using Natural transform decomposition method solution in (6), the following is obtained

N+ [V (x,y)]= V (0,y)
s

+ vϑ

sϑ
N+ (φ (x,y)]− vϑ

sϑ
N+

⎛
⎝ ∂2

∂y2

∞∑
j=0

Vj + κ

∞∑
j=0

Vj

⎞
⎠ .

Using the linearity of the Natural transform, we have

N+ [V0 (x,y)]= V (0,y)
s

+ vϑ

sϑ
N+ [φ (x,y)] ,

N+
⎡
⎣ ∞∑
j=1

Vj

⎤
⎦=−vϑ

sϑ
N+

⎛
⎝ ∂2

∂y2

∞∑
j=0

Vj+ η

∞∑
j=0

Vj

⎞
⎠ .

Now, utilizing the inverse of Natural transform, we can compute Vj(j ≥ 0).

V0 (x,y)=V (0,y)+N−
(
vϑ

sϑ
N+ [φ (x,y))

)
,

∞∑
j=1

Vj =−N−
⎛
⎝−vϑ

sϑ
N+

⎛
⎝ ∂2

∂y2

∞∑
j=0

Vj+ η

∞∑
j=0

Vj

⎞
⎠
⎞
⎠ .

4 Applications and Numerical Simulations

In this section of the article, the method NTDM will be applied to some examples to
understand the procedure of the proposed method. In the end, some numerical simulations are
carried out to visualize family of Helmholtz equations through Natural transform decomposition
method.

Example 1

Let us take the Helmholtz equation in fractional framework with x-space in the following
form [30,31]

∂ϑV(x,y)
∂xϑ

+ ∂2V(x,y)
∂y2

−V(x,y)= 0, 1< ϑ ≤ 2 (7)

with the below mentioned initial value

V(0,y)= y. (8)

First of all, take the Natural transform of (7), we obtain the following

N+
(

∂ϑV (x,y)
∂xϑ

)
=N+

(
V (x,y)− ∂2V (x,y)

∂y2

)
,

sϑ

vϑ
N+ (V (x,y))− sϑ−1

vϑ
V (0,y)=N+

(
V (x,y)− ∂2V (x,y)

∂y2

)
.
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In the next step, we use the Natural inverse transform and get

V (x,y)=N−1

(
V (0,y)

s
+ vϑ

sϑ
N+

(
V (x,y)− ∂2V (x,y)

∂y2

))
.

Then, applying the procedure of NTDM, the following is obtained

V0(x,y)=N−1
(
V(0,y)

s

)
=N−1

(y
s

)
(9)

Vj+1 =N−1

(
vϑ

sϑ
N+

(
Vj− ∂2

∂y2
Vj

))
, j= 0, 1, 2, . . . .

For j= 0, we have

V1 =N−1

(
vϑ

sϑ
N+

(
V0− ∂2

∂y2
V0

))
,

V1(x,y)=N−1
(
yvϑ

sϑ+1

)
= y

xϑ

Γ(ϑ + 1)
.

(10)

The subsequent terms are

V2(x,y)=N−1

(
vϑ

sϑ
N+

(
V1− ∂2

∂y2
V1

))
= y

x2ϑ

Γ(2ϑ + 1)
,

V3(x,y)=N−1

(
vϑ

sϑ
N+

(
V2− ∂2

∂y2
V2

))
= y

x3ϑ

Γ(3ϑ + 1)
,

V4(x,y)=N−1

(
vϑ

sϑ
N+

(
V3− ∂2

∂y2
V3

))
= y

x4ϑ

Γ(4ϑ + 1)
,

..

..

Vj+1 =N−1

(
vϑ

sϑ
N+

(
Vj− ∂2

∂y2
Vj

))
= y

xjϑ

Γ(jϑ + 1)
.

(11)

Thus the solution of (4) through NTDM is

V (x,y)=V0 (x,y)+V1 (x,y)+V2 (x,y)+V3 (x,y)+V4 (x,y)+ . . .

V (x,y)= y

(
1+ xϑ

Γ (ϑ + 1)
+ x2ϑ

Γ (2ϑ + 1)
+ x3ϑ

Γ (3ϑ + 1)
+ x4ϑ

Γ (4ϑ + 1)
+ . . .

)
,

in the case when ϑ = 2, then the solution of the problem through NTDM is

V (x,y)= y coshx.
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In the same way, the solution of y-space can be determined through NTDM as:

∂ϑV(x,y)
∂yϑ

+ ∂2V(x,y)
∂x2

−V(x,y)= 0, (12)

with the proper initial value

V(x, 0)= x. (13)

Thus the solution of the above (12) is given by

V (x,y)= x

(
1+ yϑ

Γ (ϑ + 1)
+ y2ϑ

Γ (2ϑ + 1)
+ y3ϑ

Γ (3ϑ + 1)
+ y4ϑ

Γ (4ϑ + 1)
+ . . .

)
,

in the case when ϑ = 2, then the solution through NTDM is

V(x,y)= x coshy. (14)

Figure 1: Illustration of solution pathways: (Left) The red figure represent the solution of Example
1 through NTDM for fractional-order ϑ = 1 and (Right) The green figure represent the solution
of Example 1 through NTDM for fractional-order ϑ = 0.8

Example 2

Let us take homogeneous Helmholtz equation in fractional framework with x-space and η = 5
as follows [30,31]

∂ϑV(x,y)
∂xϑ

+ ∂2V(x,y)
∂y2

+ 5v(x,y)= 0, 1< ϑ ≤ 2 (15)

with initial values given by

V(0,y)= y. (16)
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Here, taking the natural transform of (15), we have

N+
(

∂ϑV (x,y)
∂xϑ

)
=−N+

(
5V (x,y)+ ∂2V (x,y)

∂y2

)
,

sϑ

vϑ
N+

(
V (x,y)− sϑ−1

vϑ
V (0,y)

)
=−N+

(
5V (x,y)+ ∂2V (x,y)

∂y2

)
.

Figure 2: Illustration of solution pathways: (Left) The black figure represent the solution of
Example 1 through NTDM for fractional-order ϑ = 0.6 and (Right) The blue figure represents
the solution of Example 1 through NTDM for fractional-order ϑ = 0.4

Figure 3: The solution v(x,y, t1) of our proposed Example 1 through the proposed NTDM with
varies values of fractional order ϑ
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After that, we apply inverse Nature transform to our problem and get

V (x,y)=N−1

(
V (0,y)

s
− vϑ

sϑ
N+

(
5V (x,y)+ ∂2V (x,y)

∂y2

))
,

Applying the ADM procedure, we have the following

V0 (x,y)=N−1
(
V0 (0,y)

s

)
=N−1

(y
s

)
,

Vj+1 =N−1

(
−vϑ

sϑ
N+

(
∂2

∂y2
Vj+ 5Vj

])
,

for j= 0, 1, 2, . . . . In the case when j= 0, we have

V1(x,y)=N−1

(
−vϑ

sϑ
N+

(
∂2

∂y2
V0+ 5V0

))
,

V1(x,y)=N−1
(−5yvϑ

sϑ+1

)
=−5y

xϑ

Γ(ϑ + 1)
,

V2(x,y)=N−1

(
− vϑ

sϑ
N+

(
∂2

∂y2
V1+ 5V1

))
= 25y

x2ϑ

Γ(2+ 1)
,

V3(x,y)=N−1

[
−uβ

sβ
N+

[
∂2

∂y2
U2 + 5U2

]]
=−125y

x3β

Γ(3β + 1)
,

V4(x,y)=N−1

[
−uβ

sβ
N+

[
∂2

∂y2
U3 + 5U3

]]
= 625y

x4β

Γ(4β + 1)
,

.

.

Vj+1 =N−1

(
−vϑ

sϑ
N+

(
∂2

∂y2
Vj+ 5Vj

))
= (−5)jy

xjϑ

Γ(jϑ + 1)
.

(17)

The solution of the above problem (15) through NTDM is given by

V (x,y)=V0 (x,y)+V1 (x,y)+V2 (x,y)+V3 (x,y)+V4 (x,y)+ . . .

V (x,y)= y

(
1− 5xϑ

Γ (ϑ + 1)
+ 25x2ϑ

Γ (2ϑ + 1)
− 125x3ϑ

Γ (3ϑ + 1)
+ 625x4ϑ

Γ (4ϑ + 1)
+ . . .

)
,

in the case when ϑ = 2, then the solution through NTDM is given by

V (x,y)= y cos
√
5x.
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In the same way, we apply NTDM to y-space

∂ϑV(x,y)
∂yϑ

+ ∂2V(x,y)
∂x2

+ 5V(x,y)= 0, (18)

with the initial value given by

V (x, 0)= x.

having the following solution (18) through NTDM is

V (x,y)= x

(
1− 5yϑ

Γ (ϑ + 1)
+ 25y2ϑ

Γ (2ϑ + 1)
− 125y3ϑ

Γ (3ϑ + 1)
+ 625y4ϑ

Γ (4ϑ + 1)
+ . . .

]
,

in the case when ϑ = 2, the NTDM solution is given by

V(x,y)= x cos
√
5y. (19)

Figure 4: Illustration of solution pathways: (Left) The red figure represent the solution of Example
2 through NTDM for fractional-order ϑ = 1 and (Right) The green figure represents the solution
of Example 2 through NTDM for fractional-order ϑ = 0.8

Example 3

Assume the Helmholtz equation with x-space and η =−2 in the fractional framework [30,31]

∂ϑV(x,y)
∂xϑ

+ ∂2V(x,y)
∂y2

− 2v(x,y)= (12x2− 3x4) siny,

0≤ y≤ 2π and 1< ϑ ≤ 2,
(20)
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Figure 5: Illustration of solution pathways: (Left) The black figure represent the solution of
Example 2 through NTDM for fractional-order ϑ = 0.6 and (Right) The blue figure represent the
solution of Example 2 through NTDM for fractional-order ϑ = 0.4

Figure 6: The solution v(x,y, t) of our proposed Example 1 through the proposed NTDM with
varies values of fractional order ϑ

with initial value given by

V(0,y)= 0, and Vx(0,y)= 0. (21)
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First of all, take the Nature transform of the above mentioned (20), we have the following

N+
(

∂ϑV (x,y)
∂xϑ

)
=N+

((
12x2− 3x4

)
siny

)
−N+

(
∂2V (x,y)

∂y2
− 2V (x,y)

)
.

Then, the NTDM leads to the below mention

V0(x,y)=N−1
((

24
s5

− 72
s7

)
siny

)
=
(
x4− x6

10

)
siny, (22)

Vj+1 =N−1

(
−vϑ

sϑ
N+

(
∂2

∂y2
Vj− 2Vj

))
, j= 0, 1, 2 . . .

then, we have the following

V1(x,y)=N−1

[
−vϑ

sϑ
N+

[
∂2

∂y2
V0− 2V0

]]
,

V1(x,y)=N−1
[(

72
sϑ+5

− 216
sϑ+7

)
siny

]
=
(

72xϑ+4

Γ(ϑ + 5)
− 216xϑ+6

Γ(ϑ + 7)

)
siny,

V2(x,y)=N−1

[
− vϑ

sϑ N+
[

∂2

∂y2
V1− 2V1

]]
=
(
216x2ϑ+4

Γ(2ϑ + 5)
− 648x2ϑ+6

Γ(2ϑ + 7)

)
siny,

V3(x,y)=N−1

[
−vϑ

sϑ
N+

[
∂2

∂y2
V2− 2V2

]]
=
(
648x3ϑ+4

Γ(3ϑ + 5)
− 1944x3ϑ+6

Γ(3ϑ + 7)

)
siny,

V4(x,y)=N−1

[
−vϑ

sϑ
N+

[
∂2

∂y2
V3− 2V3

]]
=
(
1944x4ϑ+4

Γ(4ϑ + 5)
− 5832x2ϑ+6

Γ(2ϑ + 7)

)
siny,

(23)

The NTDM solution of Example (3.3)

V (x,y)=V0 (x,y)+V1 (x,y)+V2 (x,y)+V3 (x,y)+V4 (x,y)+ . . .

V(x,y)=
(
x4 − x6

10

)
siny+

(
72xϑ+4

Γ(ϑ + 5)
siny− 216xϑ+6

Γ(ϑ + 7)

)
siny

+
(
216x2ϑ+4

Γ(2ϑ + 5)
− 648x2ϑ+6

Γ(2ϑ + 7)

)
siny+

(
648x3ϑ+4

Γ(3ϑ + 5)
− 1944x3ϑ+6

Γ(3ϑ + 7)

)
siny

+
(
1944x4ϑ+4

Γ(4ϑ + 5)
− 5832x2ϑ+6

Γ(2ϑ + 7)

)
siny+ . . . ,

(24)

when ϑ = 2, then NTDM solution is

U(x,y)= x4 siny. (25)
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Figure 7: Illustration of solution pathways: (Left) The red figure represent the solution of Example
3 through NTDM for fractional-order ϑ = 1 and (Right) The green figure represent the solution
of Example 3 through NTDM for fractional-order ϑ = 0.8

Figure 8: Illustration of solution pathways: (Left) The first figure represent the solution of Exam-
ple 3 through NTDM for fractional-order ϑ = 0.6 and (Right) The second figure represents the
solution of Example 3 through NTDM for fractional-order ϑ = 0.4

5 Results Discussion

Fig. 1, represents the solution-graphs of example 1 at fractional-orders δ = 1 and 0.8, which
are represented by left and right sub-graphs of Fig. 1, respectively. Fig. 2 is plotted to show the
fractional-order solutions of example 1 at fractional-orders δ = 0.6 and 0.4 by the left and right
sub-graphs, respectively. In Fig. 3, the combined graph of fractional-order solutions of example 1
is presented and confirmed various dynamical behaviours of the physical phenomenon, which is
modelled by the equation given in example 1. In Fig. 4, two subgraphs left and right represented
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the solution of example 2 at fractional-order ϑ = 1 and 0.8, respectively. In Fig. 5, the solutions
of example 2 at fractional-order δ = 0.6 and 0.4 are discussed. In Fig. 6, the combined graph
of fractional-orders solutions at δ = 1, 0.8, 0.6 and 0.4 is displaced and the systematic behaviour
of the solution is observed. Similarly, in Figs. 6 and 7, the fractional solutions of example 3 are
presented at 1, 0.8 and ϑ = 0.6, 0.4 respectively. Also, the combined graph, Fig. 8, represent the
solution of example 3 at ϑ = 1, 0.8, 0.6 and 0.4 collectively. Moreover, in Fig. 9, the combined
graphs of fractional-order solutions are represented by two subgraphs, given in Fig. 9 in two and
three-dimensional graphs. In both cases, we observed the correct behaviour of the solutions, which
confirmed the validity of the suggested method.

Figure 9: Illustration of the solution of Example 3 through NTDM with varies values of
fractional order ϑ

6 Conclusion

In this paper, a new combination of the Adomian decomposition method with Natural trans-
formation is made to find the analytical solutions of fractional-order partial differential equations.
It is of worth interest that the implementation of the present technique is very straightforward
for the solutions Helmholtz equations in its Caputo fractional-view analysis. Three numerical
examples were considered for its analytical solutions by using the proposed techniques. The
corresponding solutions-graphs are plotted for both fractional and integer order of the problems.
The solutions revealed that the suggested method is very commited and in strong agreement
with the solutions of other existing techniques. It is noted that NTDM is an easily computable,
precious, accurate technique with a high rate of convergence than the other analytical methods.
It is suggested that Natural transform decomposition method is the most reliable technique
for solving partial differential equations in fractional framework, specifically, for fractional-order
Helmholtz family of equations. The solutions of the fractional-order PDEs through NTDM are
more accurate and less time consuming as compare to the ADM, VIM and DTM.
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