
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.016021

Article

Numerical Solution of a Problem of Thermal Stresses of a
Magnetothermoelastic Cylinder with Rotation by Finite-Difference Method

F. S. Bayones1, A. M. Abd-Alla2 and A. M. Farhan3,4,*

1Department of Mathematics and Statistics, College of Science, Taif University, Taif, 21944, Saudi Arabia
2Department of Mathematics, Faculty of Science, Sohag University, Egypt

3Physics Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
4Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
*Corresponding Author: A. M. Farhan. Email: afarhan_afarhan@yahoo.com

Received: 19 December 2020; Accepted: 22 January 2021

Abstract: The present article deals with the investigation thermal stress of a
magnetothermoelastic cylinder subjected to rotation, open or closed circuit,
thermal and mechanical boundary conditions. The outer and inner surfaces
of the cylinder are subjected to both mechanical and thermal boundary con-
ditions. A The transient coupled thermoelasticity in an infinite cylinder with
its base abruptly exposed to a heat flux of a decaying exponential function
of time is devised solve by the finite-difference method. The fundamental
equations’ system is solved by utilizing an implicit finite-difference method.
This current method is a second-order accurate in time and space; it is also
unconditionally stable. To illustrate the present model’s efficiency, we con-
sider a suitable material and acquire the numerical solution of temperature,
displacement components, and the components of stresses with time t and
through the radial of an infinite cylinder. The results indicate that the effect
of coupled thermoelasticity, magnetic field, and rotation on the temperature,
stresses, and displacement is quite pronounced. In order to illustrate and verify
the analytical developments, the numerical solution of partial differential
equations, stress components, displacement components and temperature is
carried out and computer simulated results are presented graphically. This
study is helpful in the development of piezoelectric devices.

Keywords: Thermoelasticity; thermal stress; finite-difference method;
non-homogeneous material; rotation; magnetic field

1 Introduction

Thermoelasticity’s dynamic problem has received quite the attention in literature through the
past decade. Recently, numerous thermoelastic structures interact among strain and temperature
harnessed the attention of many researchers due to extensive uses in diving-related fields, i.e.,
geophysics for to better understand Earth’s magnetic field effect on seismic waves, acoustic waves
being dampened in magnetic fields, electromagnetic radiation emissions from nuclear devices,
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development of highly sensitive superconducting magnetometer, optics, electrical power engineer-
ing, etc. Bagri et al. [1] studied the unified generalized thermoelasticity, offering a solution for
spheres and cylinders. Aziz et al. [2] gave further foundation to various concepts and applications
of thermal stresses in a hollow cylinder subjected to convective boundary conditions. Propagation
of Rayleigh waves in an elastic medum of orthotropic body was discussed by Abd-Alla [3].
Cherechukin et al. [4] analyzed the shape memory effect due to magnetic field-induced thermoe-
lastic martensitic transformation in a polycrystalline. The problem of the rotational effect on the
propagation of surface waves in magneto-thermoelastic materials with voids was discussed by
Farhan et al. [5]. Ding et al. [6] Found the solution of the inhomogeneity orthotropic cylindrical
shell for an axisymmetric plane strain. Abd-Elaziz et al. [7] discovered the effect of the Thomson
parameter and inclined loads in an electro-magneto-thermoelastic solid with voids. Bayones
et al. [8] discussed the eigenvalue approaches to coupled magneto-thermoelasticity structures in
a rotating isotropic material. Bayones et al. [9] presented an analytical method for obtaining the
wave propagation of a thermoelastic in a medium of a homogeneous isotropic material with
effect of rotation and initial stress. Sheriff et al. [10] investigated propagation characteristics of
discontinuities in electro-magneto generalized thermoelasticity in a cylindrical region. Abd-Elsalam
et al. [11] found the numerical solution of the magneto-thermoelastic medium in an inhomogeneity
isotropic cylinder via the finite-difference model. Othman et al. [12] considered the effect of
magnetic field on a piezothermoelastic half-space with three theories. Othman et al. [13] studied
the magnetic field, gravity field and rotation effects on a fiber-reinforced thermoelastic under three
theories. Higuchi et al. [14] established the magneto-thermoelastic stresses induced by a magnetic
field in a conducting solid cylinder. Abo-Dahab et al. [15] considered the effect of thermal stresses
and magnetic fields in a thermoelastic medium without energy dissipation. Khader et al. [16]
studied the uniform laser pulse for a solid cylinder via utilizing various theories of magneto-
thermoelasticity. Said [17] investigated the influence of mechanical load on a magneto-micropolar
thermoelastic half-space. Said et al. [18] studied the two-temperature rotating-micropolar ther-
moelastic medium while being affected by a magnetic field. Mukhopadhyay et al.[19] found the
solution to the problem of generalized thermoelasticity of a cylinder with inhomogeneity material
characteristics a finite-difference model. Wang et al. [20] investigated the magneto-mechanical
stress and change of magnetic field vectors in an inhomogeneity thermoelastic cylinder. Ahire
et al. [21] considered the behavior of thermoelastic a thin and a hollow cylinder using an internal
moving heat source. From the extensive literature on the topic, we can mention some interesting
investigations in [22–32].

The present paper aims to study the behaviors of thermal stresses. Another attempt is made
to describe certain physical properties theoretically and graphically. This paper focuses on the
thermal stresses in an inhomogeneity generalized thermoelastic cylinder under a magnetic field.
The magnetic field plays a big role in studying the thermal stresses in an isotropic medium. The
problem is treated in the finite-difference model of the governing equations of thermal stresses
of a magnetothermoelastic cylinder are transformed into a system of differential equations and
the numerical solution for the field variables inside the cylinder for Cobalt material are obtained
directly in the space-time domain. The variations of temperature, displacement, and stresses we
reacquired numerically and analyzed graphically.
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2 Formulations of the Problem

Let us consider a cylindrical coordinate system (r, θ, z), with the z-axis coinciding with
the cylinder’s axis. To consider the strains’ symmetry about the z-axis, we have only the radial
displacement ur= u, uθ = 0, uz = 0, which are independent of θ and z.

The Maxwell equations [20]
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Here,
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And the equation of motion is
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The nonzero stress components are
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where σrr and σθθ are the mechanical stress,
→
u is the mechanical displacement vector, ρ is the

density, c11, c12, c22 are elastic constants, T ′ is the temperature, � is the uniform angular velocity,
T0 is the reference temperature solid, k is the thermal conductivity of the material, and γ =
(β11+ 2β12). We define the quantities, c11, c12, c22 and ρ of the inhomogeneous body by

c11 = β11r
2m, c12 = β12r

2m, c22 = β22r
2m, ρ = ρ0r

2m, γ = γ0r
2m and μe =μ0r

2m. (6)
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where β11, β12, β22, ρ0, and μ0 are constants (values c11, c12 c22, ρ and μe are inhomogeneous
matter). Upon introducing the Eq. (6) in the Eq. (5), we obtain

σrr= r2m
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Now using Eq. (7) in the Eq. (3), we get
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The following non-dimensional scheme is a convenience to be considered:

b (U , R)= (u, r) , t′ = b
μ0

t, T ′ =T0T , (9)

where T0 is a reference temperature, v is the dimension of velocity. Introduced Eq. (9) in Eq. (2)
and (8), we have:
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Stress–displacement and temperature relations in the non-dimensional variables are given as
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3 Boundary Conditions

The initial conditions as follows:

T = 0 at t= 0, (14)

U = 0,
∂U
∂t

= 0. at t= 0. (15)

For the cylindrical problem, the boundary conditions as follows:

∂U
∂R

= 0, T = 1, at R= a
b
, (16)

U = 0,
∂U
∂R

= 0. at R= 1. (17)

4 Solution of the Problem

The governing equations obtained in the last section are partial differential equations that
will be solved by an implicit finite-difference method described by Mukhopadhyay et al. [18]. The
solution domain a≤R≤ b, 0≤ t≤ τ is replaced by a grid illustrated by the node points (Ri, tn),

in which Ri = 1+ ih, i= 0, 1, 2, . . . , N and tn = nk, n= 0, 1, 2, . . . , K. Therefore, h= b− a
N

is taken

as a mesh width and Δt = τ

K
is assumed to be the time step. We use the notation uni instead

of u (Ri, tn).

The functions T(R, t) and U(R, t) may be at any nodal location:
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By Applying an implicit finite-difference technique, finite-difference equations corresponding
to Eqs. (10) and (11) are as follows:
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where Un
i , T

n
i is the approximate U(1+ ih, nΔt) and T(1+ ih, nΔt), respectively, and
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The finite-difference form of the initial conditions (14) and (15) are
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The finite-difference form of the boundary conditions (16) and (17) are
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5 Numerical Results and Discussion

The material chosen for the purpose of numerical calculation is Cobalt material, which is
isotropic material. The physical data for Cobalt material is given [6]

T0 = 2000◦C, M = 2, τ = 0.02, β11 = 17.075 GPa, β22 = 6.757 GPa, β12 = 7.289 GPa,

k= 1.14 cal/s2, ρ0 = 8.93 g/cm3.

Results are presented for a = 0.1 and b = 1. The variations are shown in Figs. 1–
10, respectively.

We assessed the non-homogeneous scenario by considering that m = 0.5. We illustrated the
numerical outcomes via graphs.

Fig. 1 demonstrates temperature T variation for various times t in the non-homogeneous
case (m= 0.5), temperature diminishes along side the surging R in all three modes, fulfilling the
boundary conditions for the cylinder problem.

Fig. 2 demonstrates radial displacement U compared to R different values of magnetic field
H0 and time t in the non-homogeneous case (m= 0.5); displacement diminishes with surging R
and it accumulates with increasing t.

Fig. 3 illustrates the variations of the radial stress σRR according to R across various values
of time t and the magnetic field in the non-homogeneous case (m= 0.5); radial stress surges with
the increase of magnetic field in the range 0.1≤R≤ 0.5, while it diminishes with the increase of
time. Also, it decreases with the increase of the magnetic field in the interval 0.5≤R≤ 1, while it
surges with the increase of time in the same interval, increasing with the increase of R-the axis
with the increase of time t.
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Figure 1: Variations of temperature with distance 0≤R≤ 1 for varying values of time t at m= 0.5,
�= 0.5, H0 = 0.5
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Figure 2: Variations of radial displacement with distance 0 ≤ R ≤ 1 for varying values of the
magnetic field and time at m= 0.5, �= 0.5 . . . H0 = .2× 102, _ _ _H0 = 0.5× 102, —–H0 = .8× 102

Fig. 4 demonstrates tangential stress σθθ variations according to R across various values of
magnetic field and time t in the non-homogeneous case (m= 0.5); radial stress surges with the
increase of magnetic field in the interval 0.1 ≤ R ≤ 0.9 while it diminishes with the increase of
time and surges with the increase of R-the axis.

Fig. 5 represents radial displacement variations according to R across various values of mag-
netic field and time t in the homogeneous case (m= 0). It is observed that the radial displacement
increases with the increase of the magnetic field, while it decreases with the increase of time and
it decreases and increases with the increase of R-the axis.
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Figure 3: Variations of radial stress with distance 0 ≤ R ≤ 1 for varying values of the magnetic
field and time at m= 0.5, �= 0.5, . . . , H0 = .2× 102, _ _ _H0 = .5× 102, —–H0 = .8× 102
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Figure 4: Variations of tangential stress with distance 0≤R≤ 1 for varying values of the magnetic
field and time at m= 0.5, �= 0.5 . . . H0 = .2× 102, _ _ _H0 = .5× 102, —–H0 = .8× 102

Figs. 6 and 7 represent radial displacement variations according to R across various values of
magnetic field and time t in the homogeneous case (m= 0); radial stress surges with the increase
of the magnetic field while it diminishes with the increase of time.

Fig. 8 illustrates radial displacement variations according to R across various values of rota-
tion � and time t in the non-homogeneous case m = 0.5; radial displacement surges with the
increase of rotation and time while it increases and decreases with the increase of R-axis.
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Figure 5: Variations of radial displacement with distance 0 ≤ R ≤ 1 for varying values of the
magnetic field and time at m= 0, �= 0.5 . . . H0 = .2× 102, _ _ _H0 = .5× 102, —–H0 = .8× 102
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Figure 6: Variations of radial stress with distance 0 ≤ R ≤ 1 for varying values of the magnetic
field and time at m= 0, �= 0.5 . . . H0 = .2× 102, _ _ _H0 = .5× 102, —–H0 = 0.8× 102

Fig. 9 exhibits radial stress variations according to R for various values of rotation � and
time t in the non-homogeneous case m= 0.5. It was evident that the radial stress surged with the
increase of rotation and time in the interval 0.1≤ R ≤ 0.5 while it diminished with the increase
of rotation and time in the interval 0.1≤ R≤ 0.5 and decreased and increased with the increase
of R-axis.
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Figure 7: Variations of tangential stress with distance 0≤R≤ 1 for varying values of the magnetic
field and time at m= 0, �= 0.5, . . . , H0 = .2× 102, _ _ _H0 = .5× 102, H0 = .8× 102
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Figure 8: Variations of radial displacement with distance 0≤R≤ 1 for varying values of rotation
� and time t at m= 0.5, H0 = .2× 102

Fig. 10 illustrates the tangential stress variations according to R across different values of
rotation � and time t in the non-homogeneous case m = 0.5. It was evident that the tangential
stress surged with the increase of time while diminishing with the increase of rotation. Also, it
decreased and increased with the increase of R-the axis.
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Figure 9: Variations of radial stress with distance 0≤R≤ 1 for varying values of rotation � and
time t at m= 0.5, H0 = .2× 102
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Figure 10: Variations of tangential stress with distance 0≤R≤ 1 for varying values of rotation �

and time t at m= 0.5, H0 = .2× 102

From the graphical results, the following is surmised:

1) Propagate of heat wave with a finite velocity in the body through space and time.
2) This does not entail of thermoelasticity theory, propagation of heat wave with an infinite

velocity is inherent.
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3) Therefore, generalized heat mechanism, essentially, drastically vary from the classic theory.
In the thermoelasticity theory, propagates of heat wave with finite velocity rather than the
infinite speed in the body.

4) The results are given to the problem considered, but other problems may have different
direction because of the dependence of the results on the properties of the material.

5) The quantities of temperature, displacement, and stresses change due to the effect of
rotation and magnetic field.

6 Conclusions

The analysis of graphs yields the following conclusions:

• The medium deforms due to thermal point source with magnetic field and rotation.,
which turns out the coupled effects of the magneto-thermoelastic with radial R on physi-
cal domain.

• The magnetic field and rotation play an influential role in the physical quantities.
• The outcomes should incite investigations focusing on thermoelastic medium as a new class

of applications as thermoelastic solids. The method in the article is widely applicable to
different problems in thermodynamics and thermoelasticity.
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