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Abstract: Drone applications in 5th generation (5G) networks mainly focus
on services and use cases such as providing connectivity during crowded
events, human-instigated disasters, unmanned aerial vehicle traffic manage-
ment, internet of things in the sky, and situation awareness. 4G and 5G cellular
networks face various challenges to ensure dynamic control and safe mobility
of the drone when it is tasked with delivering these services. The drone can fly
in three-dimensional space. The drone connectivity can suffer from increased
handover cost due to several reasons, including variations in the received signal
strength indicator, co-channel interference offered to the drone by neighboring
cells, and abrupt drop in lobe edge signals due to antenna nulls. The baseline
greedy handover algorithm only ensures the strongest connection between the
drone and small cells so that the drone may experience several handovers.
Intended for fast environment learning, machine learning techniques such as
Q-learning help the drone fly with minimum handover cost along with robust
connectivity. In this study, we propose a Q-learning-based approach evaluated
in three different scenarios. The handover decision is optimized gradually
using Q-learning to provide efficient mobility support with high data rate
in time-sensitive applications, tactile internet, and haptics communication.
Simulation results demonstrate that the proposed algorithm can effectively
minimize the handover cost in a learning environment. This work presents a
notable contribution to determine the optimal route of drones for researchers
who are exploring UAV use cases in cellular networks where a large testing site
comprised of several cells with multiple UAVs is under consideration.

Keywords: 5G dense network; small cells; mobility management;
reinforcement learning; performance evaluation; handover management

1 Introduction

In 5th generation (5G) wireless networks, drone technology has a significant impact due
to its wide range of applications. Large companies and entrepreneurs worldwide carry out
numerous tasks using drones, and thus the popularity of these flying mini robots is increas-
ing rapidly [1]. Drones play roles in education, defense, healthcare, disaster relief, surveillance,
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telecommunications, space, journalism, food services, and emergency response applications [2,3].
Since the deployment of 5G, drone applications have gradually increased with the reshaping of
use cases and technology. Over the last decade, the growth of unmanned aerial vehicles (UAVs)
has been magnificent, and low altitude commercial drone endeavors have led to a sufficiently
high air traffic. With this increased air traffic, the safe flight operation while maintaining reliable
connectivity to the network has been the most critical issue in drone mobility faced by the cellular
operators [4,5]. For safe and secure flight, some critical use case applications require milliseconds
end—end latency, e.g., in medical operations and emergency response teams. Moreover, cyber con-
frontations, confidentiality and privacy concerns, and public protection are also leading challenges.
Time-sensitive drone applications required seamless connectivity via cellular infrastructure with
ultra-reliable low-latency communications [6].

5G empowers a new era of the internet of everything. A user will facilitate high data rate
internet speed with ultra-reliable low latency communications (URLLC) services. The enhanced
mobile broadband (eMBB) services will enable high-speed internet connectivity for several use
cases, such as public transportation, large-scale events, and smart office. In contrast, low-power,
wide area technologies include narrow-band internet of everything for massive machine-type
communications (mMTC) [7,8]. Cellular technologies such as the 5G new radio spectrum provide
abundant higher data throughput rates, and ultra-dense networks offer additional capacity using
offloading. The inclusion of higher-order modulation and coding schemes, such as millimeter-
wave in 5G new radio, can enable data rates beyond 10 Gbps while using less bandwidth.
Moreover, massive multiple-input multiple-output with beam-steering offers energy efficiency and
user tracking services. The ultra-lean design of 5G new radio architecture promises to reduce
energy consumption and interference by combining multiple subchannels within a single channel.
Furthermore, the transmit power of the base station (BS) can be focused in a particular direction
to increase the coverage range of the cell [9]. 5G also enables traffic management of unmanned
aircrafts at a commercial level. New drone applications will be entertained beyond visual line
of sight flights, where low-altitude operations such as those below 400 ft/120 m are allowed
worldwide. Sensor data transmission will be used for live broadcasting data transmission [10].
Although 5G NR ensures seamless and ubiquitous connectivity for low-mobility users, there
remain some key challenges to be addressed in case of the high-mobility users, particularly for the
UAV-based communication. A UAV may carry different apparatuses up to hundreds of kilograms
depending on weight, route interval, and battery capacity.

Moreover, in contrast to terrestrial vehicles, UAVs suffer from several key limitations such
as inadequate communication links, limited energy sources, variation in the network topology,
and Doppler effect due to high air mobility. Machine learning (ML) techniques are anticipated
to deliver improved network performance solutions, channel modeling, resource management,
positioning, interference from the terrestrial node, and path-loss in drone handover, all with
minimum computation. ML algorithms have been proposed as key enablers for decisions making
in UAV-based communications, e.g., in the UAV swarm scenario, numerous drones share network
resources in an optimal manner [11].

These technologies support many UAV services, and as a result, the drone will obtain more
than 500 km/h high-speed mobility with a maximum latency of 5 ms. There are also some mobility
challenges in modern technologies with respect to drones in a 5G cellular network [12]. First, rapid
changes in reference signals such as the received signal strength indicator (RSSI) fluctuate due to
flying within a 3D space at high speed. Therefore, the RSSI will rise and fall suddenly, and the
drone will face situations where the handover decision is challenging. Second, high constructive
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and destructive interference of uplink (UL) and downlink (DL) channels from neighbor cells due
to drone line of sight propagation conditions also results in handover. Third, the main lobe of BS
antennas covers a large portion of the cell with height limitations due to their tilt settings, thus
focusing only on ground users or the users inside the buildings. This height limitation results in
availability of only the side lobes of BS antennas for UAV connectivity. Since the drone frequently
flies along the side lobes of BS antennas, the signals at the antenna lobe edges may drop abruptly,
which causes handover [13]. The drone might also fly on the strongest signals from far away BS
antennas rather than the closest one with a significantly weaker signal. Since the side lobes of the
antenna have limited gain, they can only ensure connectivity over a small area when compared to
the main lobe of the BS. This results in unnecessary handover from the main lobe of the serving
BS to side lobe of a neighboring BS, and hence the drone’s flight may face dis-connectivity [14].
Thus, frequent handover occurs due to the split coverage area provided by BS side lobes and
to maintain the best reference signal received power (RSRP) value [15,16]. As mentioned above,
unnecessary ping-pong handover will turn into high signaling costs, dis-connectivity, and radio
link failure. Hence, ultra-reliable low latency communication between the drone and BS requires
an efficient handover mechanism for drone mobility management in the ultra-dense network.

The remainder of this article is organized as follows. Section 2 presents the related work.
The problem statement, motivation, and the proposed solution are presented in Section 3. In
Section 4, the handover scenario under consideration for UAV mobility along with the reinforce-
ment learning-based solutions to optimize the mobility are discussed. In Section 5, we show a
Q-learning-based optimized handover scheme. In Section 6, experimental results and a discussion
are presented, and we conclude the paper in Section 7.

2 Related Work

The 3rd generation partnership project (3GPP) specifications of Release-15 and the 5G Infras-
tructure Public Private Partnership (5G PPP) reports (D1.2-5, D2.1) for drone-based vertical
applications in the ultra-dense 5G network were studied in Refs. [17,18]. These studies found
that drone mobility is one of the main concerns in existing 5G networks to provide reliable
connectivity in ultra-dense scenarios. The simulation results in [19] were acquired under different
UAV environments and with UAVs flying at different heights and velocities. The results showed
that a UAV may have depreciated communications performance compared to ground UEs since
they fly on lobe edges; furthermore, DL interference may cause low throughput and low SINR.
In [20], the authors discussed the solutions to mitigate the interference in both the uplink and
downlink to maintain an optimal performance. Additionally, mobility scenarios were considered
to ensure that the UAVs remained connected to the serving BS despite the increase in altitude and
situations where the neighbor BS transmitted signals at full power. In [21], the authors discussed
the impact of change in cell association on the SINR of the UAV flying at different altitudes.
They also compared performance gains for the 3D beamforming technique and fixed array pattern
in existing LTE through simulations. The trajectory design, millimeter-wave cellular-connected
UAVs, and cellular-connected UAV swarm are still open issues to accomplish high data rate and
ultra-reliable low latency for robust connectivity in 5G drone use cases.

In [22], the authors discussed challenges such as low power, high reliability, and low latency
connectivity for mission-critical machine-type communication (mc-MTC). To meet these mc-MTC
applications’ requirements, the authors considered drone-assisted and device-to-device (D2D) links
as alternative forms of connectivity and achieved 40 percent link availability and reliability. In
D2D and drone-assisted links, the handover ratio is maximized; however, reliability is still an
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open issue when dealing with > 500 km/h mobility. Simulation results in [23] showed successful
handover in a 4D short and flyable trajectory using multiple-input-multiple-output ultrawideband
antenna that considers kinematic and dynamic constraints. However, the authors did not address
the issue of accuracy in following the 4D planned trajectory with the drone at low altitude, result-
ing in several unnecessary handovers while completing a trajectory. In [24], the authors proposed
an analytical model using stochastic geometry to illustrate the cell association possibilities between
the UAV and BS by considering the handover rates in a 3D n-tier downlink network. However, the
proposed model did not result in cost-efficient handover in drone flights with a constant altitude.
In [25], the authors proposed interference mitigation techniques for uplinks and downlinks to
ensure that the UAV remains in LTE coverage despite increased altitude or worst-case situations
in which the neighbor BS transmits a signal at full power. With their proposed technique, a strong
target cell for handover could be identified to maintain drone connectivity, but the unneeded
handover increased the handover cost.

In [26], the authors proposed a UAV and network-based solutions for UAV performance. The
authors considered coverage probability, achievable throughput, and area spectral efficiency as per-
formance metrics. They concluded that as the UAV’s altitude rises, the coverage and performance
decline; accordingly, drone antenna tilting/configuration can increase the drone’s coverage and
throughput. For reliable connectivity, the proposed solution enhances the coverage area, channel
capacity, and spectral efficiency. However, this solution is not cost-efficient as a fast-moving
drone may face number of handovers wherever it meets the strongest BS signal. Meanwhile,
in [27], the authors proposed a framework to support URLLC in UAV communication systems,
and a modified distributed antenna system was introduced. The link range between the UAV
and BS was increased by optimizing the altitude of the UAV and the antenna configuration;
additionally, increasing the antenna’s range also improved the reliability of drone connectivity.
Making decisions using ML will surely reduce the handover frequency rate and achieve the
required latency and reliability for URLLC applications in the 5G drone system. In [28], the
authors detailed drone handover measurements and cell selection in a suburban environment.
Experimental analysis showed that handover rate increases with an increase in drone altitude;
however, these results only focused on drone altitude. Drones may face several cell selection points
in a fast-moving trajectory where an intelligent algorithm is needed for cost-efficient decision-
making. In [29], the authors proposed a fuzzy inference method in an IoT environment where
the handover decision depends on the drone’s characteristics, i.e., the RSS, altitude, and speed
of the drone. Perceptive fuzzy inference rules consider the rational cell associations that rely on
the handover decision parameters. Simultaneously, an algorithm that can learn an environment
can make a better decision about whether a handover is needed. In [30], the authors proposed a
handover algorithm for the drone in 3D space. Their technique is cost-efficient because it avoids
recurrent handovers.

Furthermore, Ref. [30] evaluated the optimal coverage decision algorithm based on the prob-
ability of seamless handover success rate and the false handover initiation. Their algorithm
focused on maximum reward gain by minimizing handover costs. Still, the trajectory was not the
optimal route for drone flight. To address this drawback, ML tools can be applied to learn the
environment and provide the optimal route. In [31], the authors evaluated the handover rate and
sojourn time for a network of drone-based stations. Another factor to consider is that the drone’s
speed variations at different altitudes introduce Doppler shifts, cause intercarrier interference,
and increase the handover rate. In [32], the authors proposed a scheme to avoid unnecessary
handovers using handover trigger parameters that are dynamically adjusted. The proposed system
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enhanced the reliability of drone connectivity as well as minimized the handover cost. Regardless,
the complete trajectory was not cost-efficient because the proposed technique did not employ any
learning model such as reinforcement learning, and therefore the drone cannot decide which path
is most cost-efficient in terms of handover.

3 Problem Statement

In an ultra-dense small-cell scenario, the coverage areca among cells is small, and drones
may observe frequent handover due to their fast movement. Furthermore, channel fading and
shadowing cause of ping-pongs. According to 3GPP, user equipment and drones are focused on
strengthening RSRP, as illustrated in Fig. 1. A and B8 values are used to overcome the unnecessary
handover. An A3 event is triggered when the RSRP of the neighboring cell becomes higher than
the RSRP of the serving cell, resulting in a handover. This is a continuous process, and whenever
a drone finds a stronger signal, handover occurs. Thus, these unacceptable handovers are mainly
caused by delay and loss of packets, and the link remains unreliable, particularly in the case of
mission-critical drone use cases.
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Figure 1: Illustration of the handover mechanism in a cellular network [33]

3.1 Motivation

In 5G dense small-cell deployment, drones face frequent handovers due to the short range
of cells. This results in a high signaling cost, cell-drone link reliability issues, and bad user
experience, particularly in time-sensitive drone use cases. In real-time scenarios, 5G can meet
the requirements of several use cases; however, optimized handover remains an open issue. The
baseline handover mechanism in 5G requires critical improvements to ensure seamless connectivity
while maintaining a lower handover cost. Hence, a reinforcement learning-based solution will
optimize the existing solution since we will compromise the signal strength at some points. By
taking the signaling overhead to account, the optimized tradeoff between RSRP of serving cells
and handover occurrence will efficiently lower the handover cost.



3812 CMC, 2021, vol.68, no.3

3.2 Proposed Solution

This study optimizes the handover procedure for a cellular-connected UAV drone that ensures
robust wireless connectivity. The drone handover decisions for providing efficient mobility sup-
port are optimized with Q-learning algorithms, which are reinforcement learning techniques. The
proposed framework considers handover rules from the received signal strength indicator (RSSI)
and UAV trajectory information to improve mobility management. Handover signaling overhead
is minimized using the Q-learning algorithm, within which the UAV needs to decide whether
handover is required, and which handover is the most efficient path. The proposed algorithm
depends on RSRP, which aids in the efficient handover decision and minimizes the handover cost.
Moreover, the tradeoff between RSRP of serving cells and handover occurrence clearly shows that
our Q-learning technique helps optimize this tradeoff and achieve minimum cost for the UAV
route, all while considering the handover signaling overhead.

4 System Model

As shown in Fig. 2, the UAV is served by a cellular network within which several BS actively
participate. We assume that UAVs fly at a fixed altitude with a two-dimensional (2D) trajectory
path, and all information regarding UAV is known to the connected network. The UAV needs to
connect to different BSs and perform more than one handover along its route to accomplish the
trajectory path with reliable connectivity.

W Start Position

W End Position

A

Small Cell - 6

Figure 2: Illustration of the network model

Handover continuously changes the association between the UAV and BS until the UAV
reaches its destination. Our study assumes predefined positions along the trajectory wherever the
UAV needs to change its association to the next BS or for better connectivity. At every location,
the UAV needs to decide whether to do a handover. The steps and signal measurement report
involved in handover commands/procedure and admission control are shown in Fig. 3. The BS
distribution, UAV speed and trajectory path, RSSI, RSRP (dBm) = RSSI — 10 x log(12 x N),
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and reference signal received quality RSRQ = (N x RSRP/RSSI) govern the result of a complete
handover process.

UAVs are always hunting for more reliable and robust BSs, such as those with a maximum
RSRP value; however, this behavior may be disadvantageous for signaling overhead and reliable
connectivity. For instance, every time upon receiving an RSRP value from a neighboring cell
BS that is higher that the RSRP value of the serving cell BS, the UAV will trigger handover
along its trajectory path, which is costly. This baseline approach introduces ping—pong handover
with connectivity failures, such as hasty shifting in RSRP. This expensive solution leads us to
construct an efficient UAV handover mechanism in a cellular network that ensures robust wireless
connectivity with minimum cost.
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Figure 3: Illustration of the handover process

In this study, we propose a framework for the handover decisions based on the Q-learning
technique, which ensures robust connectivity while considering the handover signaling cost. Our
proposed Q-learning-based framework will view measurement reports (RSSI, RSRP, and RSRQ)
and handover cost as key characteristics for handover decisions. The proposed framework also
considers the tradeoff between RSRP values (required maximum) and several handovers (required
minimum). Moreover, in the handover decisions, we consider Xy and Xgsgrp as weights to adjust
the tradeoff between RSRP of the serving cell and the number of handovers. We consider RSRP
a substitution for the robust connectivity and number of handovers as a signaling overhead along
the whole trajectory. Inherently, our proposed Q-learning-based framework will maintain a good
RSRP value with a minimum number of handovers throughout the trip.

4.1 Background of Q-Learning

Reinforcement learning is part of the broad area of ML. It is all about what to do and how
to map situations to an action, where an agent takes appropriate action to maximize the reward
in a particular state. As shown in Fig. 4, first, the RL agent observes state St and then takes an
action A, at time 7. In response to the action, the agent receives feedback about that action (i.e.,
reward R;), and to increase the anticipated action’s reward accumulated over time, the agent must
choose the appropriate actions. This continues until the algorithm obtains the maximum reward
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value. RL, an ethical framework described by the Markov decision process (MDP), depends on
its problem statement. MDP can be represented as a tuple (S, A, {Py}, A, R), where S denotes the
number of states, 4 is the set of actions taken by the agent, and Py, provides probability of state
transitions for state belongs to the set of states and set of actions. The discount factor is denoted
by A €[0,1], and R is the reward obtained by R:S x A— R. MDP always aims to obtain the
optimum policy, which depends upon the action taken at each state while looking forward to the
maximized reward.

i Agent
> gen
State Reward Action
5? :Rf A ¢
Environment <

Figure 4: Illustration of Q-learning

Q-learning [34] is an off-policy, model-free, and values-based reinforcement learning algorithm.
The objective is to maximize the reward and learn the optimum policy for the given Markov
decision process. Let us assume the Q-value QT (s,a) that anticipated the maximized reward for
policy 7 when the Q-learning agent takes an action « in state s and then selects an action
regarding policy w. After some learning episodes, the agent will ultimately learn optimal Q-values
O* (s,a), and the highest Q-value for each state establishes an optimal policy. In this study, we
donate the Q-value as Q; (s,a) at time ¢ throughout the process; after receiving the updated reward
R, for the current state s, the learning agent takes action 4, to get a transition to next state s’
with reward R,;|. Evaluation of the updated Q-value can be performed using

Qi1 (5,@) (1 =) Oy (s, @)+ | R +A%Qt (+.a)]. (1)

In Eq. (1) Q41 1s the next state value, A is the discount factor, and « is the learning rate.
After performing 250 computations, the Q-learning algorithm learns the optimal Q-values for all
states using successive approximation.

4.2 Q-Learning-Based Drone Mobility Framework

This section will briefly describe the state, action, and reward to decide whether the handover
is needed along a trajectory path. Moreover, we propose a Q-learning-based algorithm for making
the optimal handover decision for the given trajectory path. The main parameters used for the
proposed Q-learning-based algorithm for handover optimization are listed in Tab. 1.

4.2.1 Definitions

State: In Fig. 5a, we considered three parameters: the drone’s position, represented by Py, :
(xso, ysa); the drone’s movement direction 6s,, where 6 could be {kn/4,k=0,...,7}; and the
currently connected cell, represented by C;, € C (set of all neighbor cells). In our proposed
algorithm, we detail the trajectory’s initial (‘7,) and final (7,,) positions. The drone’s selected path
is the shortest trajectory from the initial to the final position, and the drone always connects
to the next predefined BS along the optimized trajectory. In our proposed model, the complete
trajectory is not necessarily a straight line because of the fixed number of possible movement
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directions. Reinforcement learning algorithms are commonly used in drone trajectory path plan-
ning. Compared to conventional techniques, the proposed methodology considers the optimized
trajectory computed by Q-learning, rather than by adopting a fixed predefined trajectory.

Algorithm 1: O-value iteration for drone handover scheme using Q-learning
1: Initialize input parameters:

Drone trajectory 7 ={Pi|41=0,1,...]—1};

Set Q < 0/py; HOSO,S/ <~ Oyyy;

Set XHo, ZRSRP, €, A, A;

Cy, <V strongest cells at starting waypoint 7o;

2: for 4 in length (R)—1 do
3: Cy, <k strongest cells at waypoint ;1 1;
4: RSRPy, <— RSRP values for cells in Cy;
5: Vye [v, set Q[’i,:,/y] <, ERSRP'RSRPVS/;
6: Binary matrix HOy, y < Cy, # Cyy;
7: Qli,,: ]« Qli,:,: ] — Xpo x HO;, ¢;
8: Cy, < Cyy;
9: end for
10: Reward matrix R < Q;
11: While training step < » do
12: 7=0;
e-greedy algorithm:
13: for 4 in length (R)—1 do
14: If € > uniform random value on interval, [0, 1] then
argmax
15: fnew ’ngE IV Q[/La% /M];
16: else
17: Fnew < Dick a random number from Iy;
18: end if
Update Q—values:
19: Q = Oli.f.duol:
20: Q=(l-a) Qo R[if fua] + ek Qlit LGyl
21: Qffen] =
22: end for
23: 7 = 7 news
24: end while
25: return Q

Action: Selection of the next serving cell for the next state s’ depends on the drone’s action
Ay, at the current state s,. For instance, as shown in , the drone shifts to the serving cell
Cy=4if A,, =4 at state 5.
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Table 1: Definitions in our model related to RL

Label Definition

C(HO) Handover cost

YHO Weight for handover cost

Y RSRP Weight for serving cell RSRP

R Reward defined as a weighted combination of handover cost and RSRP
So State defined as[x,, y,,0,, o]

(X0, ¥0) Position coordinate at state S =35,

0s, Movement direction at state S =y,

Cs, Serving cell at state S=y,

S’ Next state of S,

A, Action performed at state .S,

A’ Actioned performed at state S’

9 (S,,a,) Q-value of taking action g, at state S,
o Learning rate

y Discount factor

€ Exploration rate

n Number of training episodes

Reward: In our optimized drone’s handover mechanism, we aim to decrease the number
of handovers by maintaining reliable connectivity, as shown in Fig. 5c. The drone should also
connect to the lower RSRP cell in the trajectory path, and frequent handover can be avoided. Our
proposed model considers handover cost weight X0 and the serving cell RSRP weight Tzsgp at
a future state in the reward function given by

R=—Xpgo+C(HO)+ Zrsrp X RSRPy. (2)

These weights in Eq. (2) with the indicator function C (HO) balance our two contradictory
goals. The handover cost C(HO) will be “1” if the serving cells at state s and s’ are different;
otherwise, the cost will be “0”.

4.2.2 Q-learning-based Algorithm for Handover Optimization

In our proposed model, at every single state, action space A4 is constrained to the strongest V
candidate cells denoted by a set Iy ={0,1,...,V —1}. Q-table Q € R*V*V is updated according
to Eq. (1) for a drone trajectory path. The complexity of Algorithm 1 is given by O (cn), where
“n” denotes the number of training episodes, and “c” is a constant value equivalent to the total route
length “I”. Steps 2-9 produce the preliminary Q-table for the given drone’s path, and a binary

square matrix (size V) is generated in step 6.

Furthermore, if the p-th strongest cell at state s is different from the ¢ — 4 strongest cell in
state 5" in (p, q) —th entity of matrix, then the entity is “1”; else, it is “0”. Steps 11-24 execute and
update each training episode’s Q-value; for example, the greedy exploration runs in steps 14-18,
and the Q-value is updated in the table at step 20. Finally, the Q-table contains values that can
be chosen for different actions, and the highest value indicates the optimal choice. Consequently,
for an efficient mechanism, the handover decisions can be attained from the maximum Q-value
at each state along the given trajectory. The block diagram for the proposed model is shown in
Fig. 6.
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Figure 5: Illustration of the proposed Q-learning-based framework. (a) Illustration of current and
next state; (b) illustration of action; (c) example of handover decisions during a trip
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5 Simulation and Results

This section will evaluate the proposed Q-learning-based handover scheme with the 3GPP
access-beam-based method (greedy handover algorithm), where drones are always connected to the
strongest cell. We calculate the handover ratio as a performance metric for every drone trajectory.
In the baseline scenario, the drone is always connected to the strongest cell, and the handover
ratio will be constant at 1. The performance evaluation for diverse weight combinations of Xgo
and Xgsgrp in the reward function represents the tradeoff between upcoming RSRP values and
the number of handovers. The handover ratio approaches zero and the number of handovers

decreases when the ratio Ei’;gp increases. Meanwhile, the proposed Q-learning-based handover and

baseline algorithm will show similar results in a special scenario where there is no handover cost
C (HO), that is, when no handover occurs.

Extensive simulations are conducted to evaluate the performance based on the number of
episodes and accumulated reward gained in each episode. The proposed algorithm is evaluated by
varying the parameters («,€,y) of Q-learning to find the optimal results. The results show that
the proposed algorithm converges on the maximum reward for each randomly generated route.
As shown in Tab. 2, parameters are set based on exploration and exploitation with a greedy
algorithm: « =0.1,0.5,0.9, € =0.1,0.5,0.9, and y =0.1,0.5,0.9. The variations in «,€,andy show
the optimized results for the drone’s trajectory.

Table 2: Parameters in each scenario

Scenario 1 Scenario 2 Scenario 3

% e o o e y % o e

0.9 0.5 0.1 0.3 0.5 0.1 0.9 0.3 0.1
0.5 0.5 0.5
0.9 0.9 0.9

In Fig. 7, we show the accumulated reward when the learning rate («) varies in the range of
0.1—0.9; meanwhile, the values for epsilon (¢) and discount factor (y) are 0.5 and 0.9, respectively.
After 7 initial episodes, the best-accumulated reward of the proposed algorithm is at learning rate
a=0.9. For « =0.5, the accumulated reward stays higher than « =0.1 from episode 7 to 70 but
degrades afterward up to episode 250. The best parameters are « =0.9,¢ =0.5,andy =0.9. Since
the proposed Q-learning-based algorithm reduces the ping-pong handovers, RSRP is also reduced.

In Fig. 8, we show the accumulated reward as the discount factor (y) varies in the range of
0.1 —0.9; meanwhile, the values for learning rate («) and epsilon (¢) are 0.3 and 0.5, respectively.
After 70 initial episodes, the best-accumulated reward of the proposed algorithm is at y = 0.5.
For y =0.9, the accumulated reward stays higher than y =0.1and0.5, from episode 20 to 70 but
degrades afterward up to episode 250. Meanwhile, y = 0.1 yields the worst accumulated reward.
As shown in the results, the best parameters are o = 0.3,¢ = 0.5,andy = 0.5. There will be no
handover when the proposed scheme is equivalent to the baseline scheme.

In Fig. 9, we show the accumulated reward when epsilon (¢) varies in the range of 0.1 —0.9;
meanwhile, the values for o and y are 0.3 and 0.9, respectively. After 18 initial episodes, the
best-accumulated reward of the proposed algorithm is at € =0.9. For € = 0.1, the accumulated
reward stays higher than ¢ = 0.1, from episode 1 to 31 but degrades afterward up to episode 250.
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As shown in the results, the best parameters are @« =0.3,¢ =0.9,andy = 0.9. To avoid unnecessary

handovers, we need to decrease the ratio 221::;1?[” and then the cost of handover also decreases.
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Figure 7: Accumulated reward at y =0.9, ¢ =0.5, and « =0.1-0.9
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Figure 8: Accumulated reward at « =0.3, ¢ =0.5, and y =0.1-0.9

In Fig. 10, we show the accumulated rewards of the proposed algorithm in each scenario (¢ =
0.9, y =0.5, and € =0.9). The simulation results show that the right parameters will affect drone

performance throughout the learning phase and also enhance the learning curve. The proposed
technique demonstrates that the learning process is the best way to optimize drone mobility in

dense scenarios.
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6 Conclusions and Future Work

In this work, we proposed a machine learning-based algorithm to accomplish strong drone
connectivity with less handover cost such that the drone will not always connect to the strongest
cell in a trajectory. We suggested a robust and flexible way to make handover decisions using a
Q-learning framework. The proposed scheme reduces the total number of handovers, and we can
observe a tradeoff between received signal strength and the number of handovers while always
connecting the drone to the strongest cell. This tradeoff can be adjusted by changing the weights
in the reward function. There are many potential directions for future works such as exploring
which additional parameters may further enhance reliability during handover decision-making.
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This work presents a notable contribution to determine the optimal route of drones for researchers
who are exploring UAV use cases in cellular networks where a large testing site comprised of
several cells with multiple UAVs is under consideration. Finally, the proposed framework studies
2D drone mobility; a 3D mobility model would introduce more parameters to aid efficient
handover decision.
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