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Abstract: The technology for image-to-image style transfer (a prevalent image
processing task) has developed rapidly. The purpose of style transfer is to
extract a texture from the source image domain and transfer it to the target
image domain using a deep neural network. However, the existing methods
typically have a large computational cost. To achieve efficient style transfer,
we introduce a novel Ghost module into the GANILLA architecture to pro-
duce more feature maps from cheap operations. Then we utilize an attention
mechanism to transform images with various styles. We optimize the original
generative adversarial network (GAN) by using more efficient calculation
methods for image-to-illustration translation. The experimental results show
that our proposed method is similar to human vision and still maintains the
quality of the image. Moreover, our proposed method overcomes the high
computational cost and high computational resource consumption for style
transfer. By comparing the results of subjective and objective evaluation indi-
cators, our proposed method has shown superior performance over existing
methods.

Keywords: Style transfer; generative adversarial networks; ghost module;
attention mechanism; human visual habits

1 Introduction

Deep learning has shown excellent performance in various image processing tasks, e.g., image
generation [1], object detection [2] and tracking [3], image classification [4], scene text recogni-
tion [5], and style transfer. Generally, the goal of style transfer is to learn and extract the styles
of the source image, and then apply the extracted styles to the target image. In early style transfer
research, a supervised learning strategy was mainly adopted to complete the style transfer. The
style transfer based on supervised learning needs to acquire the paired training data, i.e., the
source image and corresponding target image with the same image content and the different
image styles. However, obtaining a large amount of paired data is a time-consuming and costly
operation. Hence, semi-supervised or unsupervised learning-based methods have been proposed by
researchers for style transfer to solve the above problems.
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Figure 1: Sample with different styles obtained by our proposed method

Zhu et al. [6] proposed a cycle-consistent adversarial network (CycleGAN) for cross-domain
image style transfer. It breaks the strict requirement that supervised learning-based methods
require paired training data. CycleGAN can use unpaired training data to complete the style
transfer, and the image contents do not need to be the same. Since unpaired data can be used
in style transfer, time is saved when obtaining data. A number of methods based on unpaired
data have been proposed. For instance, the dual generative adversarial network (DualGAN) [7]
was proposed to achieve style transfer based on unpaired training data. Chen et al. [8] proposed
a novel framework named CartoonGAN, based on the GAN, for the cartoonization of photos
using unpaired training data. Unlike the CycleGAN, CartoonGAN introduced a semantic content
loss and an edge-promoting adversarial loss for coping with the abundant style variation within
photos and cartoons and preserving clear edges, respectively. Both CycleGAN and DualGAN
can effectively transfer the different styles of images. However, they cannot transfer the style and
content of the image simultaneously. To address this problem, Hicsonmez et al. [9] proposed a
GAN architecture (named GANILLA) for image-to-illustration translation. However, the above
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methods have a common shortcoming: a large computational cost. Besides the computational
cost problem, the generated image’s quality, the number of parameters, and the number of
floating-point operations (FLOPS) also need to be considered.

To achieve efficient style transfer by using unpaired training data, we utilized the GANILLA,
which uses low-level features to retain content while transforming styles. Then, we made the fol-
lowing improvements. 1) We redesigned the convolutional module of Residual Neural Network-18
(ResNet-18) [10], where a cheap linear model transformation (i.e., the convolution operation of
GhostNet [11]) was used to build a lightweight network architecture. This improvement can reduce
the number of parameters and FLOPs. 2) The attention mechanism was introduced into our
proposed network. By adding an attention layer from the second layer to the fourth layer in our
proposed network, we enhanced the useful features and suppressed the less useful features. Current
style transfer was mainly employed to compare oil painting style results. In this paper, we present
several different styles of generated images. e.g., seasonal style transfer, stick figure style transfer,
and cartoon style transfer; these are shown in Fig. 1. The rest of this paper is organized as
follows. In Section 2, related work is described, and in Section 3, we introduce the ghost module,
attention mechanism, network architecture of our proposed method, and the loss function used.
In Section 4, the complexity analysis and implementation details are described, and the results
of various generated different styles images are demonstrated, and, in Section 5, we adopt two
evaluation indicators, i.e., subjective evaluation and objective evaluation, to evaluate the results of
our method and comparison method. Finally, in Section 6 conclusions are presented and future
research discussed.

2 Related Work

In recent years, the GAN [12] has been widely employed in the field of deep learning [13],
and it consists of a generator and a discriminator. The purpose of the generator is to learn the
feature distribution of the training data. The discriminator is employed as a classifier to classify
the data, i.e., whether the data is generated by the generator or real samples. Hence, the training
process of the GAN can be regarded as an adversarial game. The adversarial training process is
complete once the generator can output the data the distribution of which is the same as that
of real data. i.e., the discriminator cannot distinguish between the correctly generated data and
real data. Benefiting from its strong generating ability, the GAN has also been employed in style
transfer [14].

Style transfer is a hot topic in computer vision. The existing methods can be divided into
two strategies according to the training data used: paired training data or unpaired training data.
Style transfer based on supervised learning method needs to use paired training data directly.
For example, Isola et al. [15] explored a GAN suitable for image-to-image translation tasks; their
method is called Pix2Pix. Pix2Pix is different from prior works in its generator and discrimina-
tor architectures. The U-Net and PatchGAN classifiers are employed as the generator and the
discriminator of Pix2Pix, respectively. To solve the unstable training and the generated image
quality being unsatisfactory faced by Pix2Pix, Wang et al. [16] proposed Pix2PixHD. They used a
coarse-to-fine generator and a multi-scale discriminator architecture, and modified the adversarial
loss to achieve style transfer. Experimental results indicated that Pix2PixHD could effectively
generate high-resolution images. Although the above methods can effectively transfer different
styles, obtaining paired data is very difficult, time-consuming, and laborious. Compared with
paired data, unpaired data is easier to obtain. Hence, researchers have proposed many methods
based on unpaired data.
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CycleGAN is a pioneering method that uses unpaired image style transfer based on the
idea of unsupervised learning. Besides the adversarial loss of the original GAN, CycleGAN
also utilizes the cycle consistency loss, which consists of the forward cycle consistency and the
backward cycle consistency. By combining adversarial loss and cycle consistency loss, Cycle-
GAN has achieved good performance on several tasks, e.g., the collection style transfer, photo
enhancement, season transfer, and object transfiguration. However, the CycleGAN faces prob-
lems with poor quality, mapping ambiguity, and model sensitivity. Li et al. [17] proposed an
asymmetric GAN (AsymGAN) to solve these problems. AsymGAN uses an auxiliary variable,
which can provide more information when transferring images from an information-rich domain
to an information-poor domain. AsymGAN can generate better quality images and mitigate the
sensitivity convergence problem. After the CycleGAN was proposed, several style transfer methods
based on the GAN and using unpaired data were proposed. For instance, CartoonGAN made
the GAN’s architecture simpler and more effective. Moreover, two novel loss functions were
designed, i.e., the semantic content loss and marginal promotion loss. The CartoonGAN can
train the photos and cartoon images directly, and hence is simple to use. This method not only
constructs sparse regularization in the VGG network [18] and realizes the conversion between
photos and cartoons, but it also makes the photos clearer. Later, a unified quality-aware GAN
(QGAN) [19] was designed to solve the data underrepresentation problem. The QGAN uses a
multi-precision quantization based on the expectation-maximization algorithm, which provides
the optimal number of bits configuration with the quality loss. Emami et al. [20] proposed a
spatial attention GAN (SPAGAN) model that introduced the attention mechanism to the GAN
architecture. SPAGAN used the attention mechanism to assist the generator in paying attention
to the most discriminative regions between the source and target domains.

Although the above style transfer methods show significant progress, they still cannot solve the
complex trade-off between image style and content. CycleGAN is very successful in transferring
style, but it is not as successful in transferring content; CartoonGAN is successful in preserving
image content, but it has shortcomings in delivering style. To this end, Hicsonmez et al. developed
GANILLA, which can produce obvious styles but still retain content. By migrating the style of a
given illustration, the transition from natural images to painting style illustrations can be achieved.
Furthermore, the low-level and high-level features are merged by using skip connections and up-
sampling. Overall, GANILLA is a relatively successful example of the style transfer methods using
unpaired data. It overcomes the shortcomings of earlier methods and can maintain content while
transferring the style. However, the style transfer process of GANILLA needs a large number of
parameters and FLOPs. Therefore, we employed the Ghost module to construct a lightweight style
transfer network that can reduce the number of parameters and FLOPs.

3 Proposed Method

3.1 Ghost Module for More Features
A well-trained convolutional neural network (CNN) usually includes rich feature maps to

ensure a superior semantic understanding of the input data. We referenced the convolution
operation in GhostNet to generate more feature maps with fewer parameters, as shown in Fig. 2.
The number of ordinary convolution layers needs to be strictly controlled. We used a series
of simple linear operations to produce more feature maps according to the inherent feature
map of the ordinary convolution layers. The linear operation is a depthwise convolution [11].
Unlike the ordinary convolution operation, depthwise convolution performs its operation on each
channel separately. Hence, the number of filters is the same as the number of channels. However,
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in the ordinary convolution operation, each filter operates in each channel of the input image
simultaneously. The new channels’ feature maps are obtained after completing the convolution
operation in each channel. Then we perform a standard 1×1 cross-channel convolution operation
on the new batch of channel feature maps. Utilizing the depthwise convolution can effectively
reduce the number of parameters and computational complexities without changing the size of
the output feature maps.

Figure 2: An illustration of the Ghost module

Let X ∈ Rc×h×w be the input feature maps, where c denotes its number of input channels,
and h and w denote the maps’ height and width, respectively. The following formula is adopted
to illustrate that the convolution generates n feature maps:

Y =X ∗ f + b, (1)

where Y ∈Rn×h′×w′
represents the output feature maps with n channels, and f ∈Rc×k×k×n refers

to the convolution filters of the current layer, b is a bias term, and ∗ represents a convolution
operation. Additionally, the width and height of the output feature maps are represented by h′
and w′, respectively, while k × k stands for the kernel size of the convolution filter. In such a
convolution process, the number of FLOPs is described as n× h′ ×w′ × c× k× k. The number of
FLOPs is usually prodigious in that the number of filters n and the number of channels c are
typically immense.

As indicated by the above formula, it can be clearly established that the number of parameters
(in f and b) is actually dominated by the dimension of the input and output feature maps. There
is usually significant redundancy in the output feature maps, which would lead to a decrease in
computational efficiency. After some cheap transformations, the output feature maps are similar to
those produced by the Ghost model of intrinsic feature mapping. The mapping of these intrinsic
features is mostly generated by ordinary convolution filters, and thus they are relatively small.
Specifically, the primary convolution generates m intrinsic feature maps Y ′ ∈Rm×h′×w′

:

Y ′ =X ∗ f ′, (2)

where f ′ ∈ Rc×k×k×m is the filter used, m ≤ n, and the bias terms are omitted for simplicity.
To keep the spatial size of the output feature maps consistent, the hyper-parameters (e.g., filter
kernel size, stride, and padding) are similar to those in the ordinary convolution during the
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convolution process. To acquire the required n feature maps, we employ cheap linear operations
on each intrinsic feature in Y ′ to obtain s Ghost feature maps:

yij =�i, j

(
y
′
i

)
, ∀ i= 1, . . . m, j= 1, . . . , s, (3)

where y
′
i represents the i-th intrinsic feature maps in Y ′, and Φi, j is the j-th (except the last)

linear operation to generate the j-th Ghost feature maps yij. In other words, there can be one
or more Ghost feature maps {yij}sj=1. The last Φi, s denotes the identity maps used to hold the

intrinsic feature maps, as shown in Fig. 2. From Eq. (3), we can obtain n= m× s feature maps
Y = [y11, y12, . . . , yms] as the output of the Ghost module; this is also shown in Fig. 2. Note that
the cost of performing linear operation Φ on every channel is significantly lower than that of the
ordinary convolution.

3.2 Network Architecture
For the entire generator network, we used the same architecture as GANILLA to merge

low-level features with high-level features while transforming styles. The model consists of two
stages: down-sampling and up-sampling, and the down-sampling stage used a modified ResNet-18
network. However, the parameters and calculations of the ResNet-18 network are extensive.
To address this problem, some approaches have been proposed to compress the deep neural
network (DNN), e.g., network pruning [21,22], low-bit quantization [23,24], and knowledge distil-
lation [25,26]. Redesigning an efficient network architecture is also an effective solution. Recently,
there has been some considerable success on redesigning networks with MobileNet [27,28], Shuf-
fleNet [29], and GhostNet. Inspired by GhostNet, our networks apply the Ghost module to style
transfer, thereby redesigning the convolution module of ResNet-18. In this way, a lightweight
network architecture is built.

As shown in Fig. 3, the down-sampling stage starts with a Ghost module layer, followed by an
instance norm (IN) [30], rectified linear unit (ReLU), and max-pooling layers. Each of these four
layers contains two residual blocks (RBs). In Layer-I, each RB initiates with one Ghost module
layer, followed by the IN and ReLU. Next are a Ghost module and an instance normalization
layer. In Layers-II–IV, a SELayer is added after each RB. Finally, these concatenated feature maps
are fed to the last convolution and ReLU.

Figure 3: The generator architecture network of our proposed method
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Our proposed method first performs down-sampling to extract the structural features, and
then up-sampling to generate the image. Among them, the down-sampling is based on the mod-
ified Resnet-18 network, and the up-sampling combines low-and high-level features through the
skip connections. In each layer of down-sampling, it is necessary to connect the features of the
previous layers to integrate low-level features. The bottom layer can ensure that the output image
contains the input’s content, i.e., morphological features, edges, shapes, and other information. In
the up-sampling stage, the outputs of each layer in the down-sampling are used to feed the lower-
level features to the summation layers. Different from down-sampling, up-sampling is conducted
on the output of Layer-IV by long and skip connections to add lower-level features from the
down-sampling; these connections contribute to the content of the generated image. Finally, the
output of the network is a stylized image with three channels. All filters in the up-sampling have
a 1× 1 kernel. Eventually, the 3-channel translated image is output by a convolution layer with
7×7 kernels. Our method uses a 70×70 PatchGAN [15] as the discriminator, which is comprised
of three blocks. For the first block, the kernel size is set as 64. For each consecutive block, the
kernel size is set as 128.

3.3 Attention Mechanism
We introduced squeeze-and-excitation networks (SENet) [31] to each residual block of the

second, third, and fourth layers in down-sampling. We improved network performance by explicitly
modeling the interdependence between the feature channels. However, explicit modeling does not
result in a novel spatial dimension for the fusion of the feature channels. Hence, we utilized a new
feature recalibration strategy. Through this learning strategy, we can obtain each feature channel
automatically and thus promote useful features and suppress useless features.

Fig. 4 is a schematic diagram of the SE module. Given an input X ∈ RC′×H ′×W ′
, C′ is the

number of feature channels. After general transformations such as convolution (Ftr), the feature
maps U ∈RC×H×W are obtained. The SE module is different from that in the traditional CNN in
that we recalibrate the previously obtained features through three operations. The first operation
is the squeeze. We apply feature compression along the spatial dimensions, and then transform
every two-dimensional feature channel (H ×W ) into a real number. This real number provides a
global receptive field to a certain extent, and its output dimension matches the number of input
feature channels. It describes the global distribution of the feature channel, which is very useful in
style transfer. The second operation is excitation, which is similar to the self-gating operation of
the recurrent neural network (RNN) [32]. The parameter w is applied to each feature channel to
generate weights, and is learned to explicitly model the correlation between the feature channels.
Finally, there is a reweighting procedure. We regarded the weight of the output of excitation as
the importance of every feature channel. The normalized weights for each channel feature are
weighted simultaneously by multiplying the weight coefficients channel by channel to introduce
the attention mechanism.

3.4 Loss Function
We next optimized the generator and discriminator of our proposed method. Our loss func-

tion is similar to that of GANILLA, and consists of two components: adversarial loss and cycle
consistency loss. These losses are first applied in CycleGAN to achieve the transformation between
domain X and domain Y , as shown in Fig. 5.



4058 CMC, 2021, vol.68, no.3

Figure 4: Squeeze and excitation block

(a) (b) (c)

Figure 5: Structure diagram for CycleGAN

1) CycleGAN contains two mapping functions G : X →Y , F : Y →X , and the corresponding
discriminator (DY and DX ). DY excites G to convert X to the target domain Y . Similarly, DX
stimulates F to transform Y into the X domain. CycleGAN introduces cycle consistency loss
to normalize the mapping. Therefore, after the images X and Y are converted from the source
domain to the target domain, they can be returned from the target domain to the source domain.

2) Forward cycle consistency loss: X →G (X)→ F (G (X))≈X

3) Backward cycle consistency loss: Y → F(Y )→G (F (X))≈Y

In CycleGAN, the adversarial loss is used to match the data distribution of the generated
image and the object images. The cycle consistency loss is used to prevent conflict of learning
mappings G and F . In our experiments, we not only used the above-described adversarial loss and
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cycle consistency loss, but also the identity loss and L1 distance function. We aim to minimize
the sum of these four loss functions.

4 Experiment

4.1 Complexity Analysis
To decrease the computation costs, we used the Ghost module to replace the ordinary convo-

lutional layer and thus obtain the same number of feature maps. Hence, the Ghost module can
be combined into current network architectures. This cuts back on memory usage and speeds up

operation, i.e., there is one identity mapping and m× (s− 1) = n
s
× (s− 1) linear operations. The

average kernel size of each linear operation is equivalent to d×d. We use linear operations of the
same size (e.g., 3×3 or 5×5) to ensure the efficient implementation in a single Ghost module. The
speed-up ratio of the upgrading ordinary convolution by the Ghost module is as shown below:

rs= n× h′ ×w′ × c× k× k
n
s × h′ ×w′ × c× k× k+ (s− 1)× n

s × h′ ×w′ × d× d

= c× k× k
1
s × c× k× k+ (s−1)

s × d× d
≈ s× c
s+ c− 1

≈ s

(4)

where d × d has a similar magnitude as k× k, and s≤ c. Similarly, the compression ratio can be
expressed as

rc = n× c× k× k
n
s × c× k× k+ (s− 1)× n

s × d× d
≈ s× c
s+ c− 1

≈ s, (5)

which is equal to that of the speed-up ratio by utilizing the Ghost module.

Table 1: Experimental environment configuration

Designation Information

Operating system Ubuntu 18.04 LTS
System configuration CPU: Intel Core i7-9700K 3.60 GHz, 32 GB RAM

GPU: NVIDIA GeForce RTX 2080Ti 11G
Python library Cuda 10.1

Pytorch 1.3.1
Torchvision 0.4.2
Numpy 1.19.2
Opencv–python 4.4.0

4.2 Implementation Details
We used the content data set and oil painting data set from the CycleGAN training dataset.

The oil painting data set had more than 8000 images and included four artist styles: Monet,
Ukiyoe, Van Gogh, and Cezanne. The cartoon data set was also from CartoonGAN. We collected
stick figure images from the internet and books. In our experiment, we used CartoonGAN,
CycleGAN, and GANILLA as comparison methods. We compared different styles of images
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generated by these three generator models with those generated by our proposed method. The
size of all images for training (i.e., natural images and style images) was set to 256 × 256 pixels.
We trained our models for 200 epochs and employ the Adam optimizer [33]. The learning rate
was set to be 0.0002 for the whole training process. PyTorch [34] was employed to implement our
proposed method. The experimental environment configuration is shown in Tab. 1.

Table 2: Comparison in terms of the number of parameters and FLOPs

CartoonGAN CycleGAN GANILLA Ours

No of params (Mil) 11.1 11.4 7.2 6.6
FLOPs (G) 1105.6 77.1 32.5 31.3

Input

CycleGAN

GANILLA

Ours

Figure 6: Oil painting style results generated by CycleGAN, GANILLA, and our proposed
method
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5 Experimental Results

5.1 Style Transfer Results
To prove the effectiveness of our proposed method, we compared the number of parameters

and the total FLOPs of the generator and discriminator for different generative models. We
compared CartoonGAN, CycleGAN, and GANILLA with our proposed method. As shown in
Tab. 2, our proposed method has the lowest values in both evaluation indexes. This phenomenon
shows that our proposed generative model can efficiently save computational costs. This benefit
is due to the use of the Ghost module as a conversion network to generate more feature maps.
Furthermore, since we utilized the attention mechanism to allow the network to learn more useful
features, the network is efficient and lightweight.

Fig. 6 shows the oil painting style results generated by CycleGAN, GANILLA, and our
proposed method. Fig. 7 shows the generated images of cartoon style for the three methods. We
found that most of the results generated by our proposed method captured content and style
successfully.

Input

CartoonGAN

GANILLA

Ours

Figure 7: Cartoon style results generated by CartoonGAN, GANILLA, and our proposed method

We selected the Cezanne style for testing, and trained for 200 epochs. Fig. 8 shows the image
generated by the proposed model in different training periods. From left to right are the original
images, and then the generated image at 5, 50, 100, 150 and 200 epochs. These experimental results
indicate that this range can achieve the best results between 50 and 100 epochs. This range not
only retains the content information but also transfers the style.
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Original 5 Epoch 50 Epoch 100 Epoch 150 Epoch 200 Epoch

Figure 8: Cezanne style results by our proposed method in different training periods

Based on the above styles transfer results, we carried out a series of experiments on three
additional styles: animation, stick figure, and season. We compare our proposed method with
GANILLA in terms of generated images in Fig. 9.

5.2 Evaluation
We adopted two evaluation indicators in the assessment of style transfer. One is the subjective

evaluation, which determines whether the image is generated well or not by personal cognition
and aesthetics. The other is an objective evaluation, but since there is no clear objective eval-
uation standard for style transfer, most researchers compare their generated results with other
experimental results as an evaluation method; we also adopt this approach.

5.2.1 Subjective Evaluation
The main factors affecting subjective evaluation are personal aesthetics and preferences. To

this end, we designed a questionnaire. The questionnaire was sent to 200 participants, all of whom
were computer graduate students with a foundation in drawing processing. The questionnaire
focused on the point of view of aesthetics and the similarity between the generated image and the
original image. We listed the different images generated by CycleGAN, GANILLA, CartoonGAN,
and our proposed method, and then let the participants choose which one they thought was the
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best. Tabs. 3–5 show that our model was evaluated as producing the best images. However, for
cartoon style transfer, our model is not as good as CartoonGAN in visual aesthetics.

Input Output Input Output

(a) (b)

(c) (d)

Input Output Input Output

Figure 9: Different style results: (a) animation, (b) autumn, (c) winter, and (d) stick figure

5.2.2 Objective Evaluation
So far, there is no clear objective evaluation standard for style transfer because it is difficult

to obtain quantitative data as an evaluation indicator of image style transfer. To evaluate the gen-
erated image more objectively, we apply the peak signal-to-noise ratio (PSNR) value to compare
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the generated image to the original image. The PSNR value is a common index for evaluating
images and can measure the similarity between original images and generated images. Usually, we
need to use the mean square error (MSE) to calculate the PSNR. The MSE can be expressed
as follows:

MSE (X , Y )= 1
mn

m−1∑
i=0

n−1∑
j=0

[Y (i, j)−X (i, j)]2 , (6)

where Y and X denote the generated and the original images with the size m× n, respectively.
X (i, j) and Y (i, j) are the pixel values of X and Y , respectively. The calculation of PSNR is
given as

PSNR (X , Y )= 10 log10

(
MAX2

Y

MSE (X , Y )

)
= 20 log10

(
MAXY√

MSE (X , Y )

)
, (7)

where MAXI represents the maximum pixel value of the images that need to be calculated; smaller
MSE values (i.e., bigger PSNR values) indicate better image quality.

We use the structural similarity (SSIM) [35] as another evaluation index to measure the
similarity of two digital images. Compared with PSNR, SSIM can be more in line with human
judgments of image quality. SSIM is expressed as follows:

SSIM (X , Y )= (2μXμY + c1) (2σXY + c2)(
μ2
X +μ2

Y + c1
) (

σ 2
X + σ 2

Y + c2
) , (8)

where μX and μY are the mean values of X and Y , respectively. σ 2
X and σ 2

Y are the variance
values of X and Y , respectively. σXY denotes the covariance between X and Y . c1 and c2 are two
small constants to ensure stability when the denominator becomes zero.

Table 3: Questionnaire results on oil painting style transfer

Aesthetic (%) Similarity (%)

CycleGAN 31 23
GANILLA 21 31
Ours 48 46

Table 4: Questionnaire results on cartoon style transfer

Aesthetic (%) Similarity (%)

CartoonGAN 40 29
GANILLA 22 21
Ours 38 50
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Table 5: Participants’ voting results for seasonal style transfer and stick figure style transfer

Successful (%) Unsuccessful (%)

Seasonal style transfer 97 89
Stick figure style transfer 3 11

From Tabs. 6 and 7, we can see that our proposed method has the largest SSIM and PSNR
values. Hence, our proposed method is better than the other methods. These results clearly
illustrate that the images generated by our proposed method have lower distortion and better
image quality.

Table 6: Quantitative results for oil painting style transfer

Index Image #1 Image #2 Image #3 Image #4 Image #5 Avg

CycleGAN SSIM 0.74 0.73 0.76 0.76 0.76 0.75
PSNR 14.78 20.53 17.80 20.48 16.26 17.95

GANILLA SSIM 0.79 0.77 0.79 0.79 0.76 0.78
PSNR 18.73 21.76 19.46 20.99 16.52 19.49

Ours SSIM 0.82 0.80 0.82 0.80 0.79 0.81
PSNR 19.55 22.98 21.51 21.50 17.75 20.66

Table 7: Quantitative results for cartoon style transfer

Index Image #1 Image #2 Image #3 Image #4 Image #5 Avg

CartoonGAN SSIM 0.53 0.57 0.59 0.63 0.64 0.59
PSNR 17.88 17.30 16.85 15.19 19.96 17.44

GANILLA SSIM 0.62 0.71 0.72 0.71 0.81 0.71
PSNR 19.66 20.87 19.68 16.81 18.99 19.20

Ours SSIM 0.64 0.80 0.72 0.80 0.81 0.75
PSNR 18.81 21.51 19.68 16.85 19.26 19.22

6 Conclusion

In this paper, we proposed a lightweight style transfer network based on the Ghost module,
which can reduce the number of parameters and FLOPs while ensuring the quality of generated
images. We also introduced an attention mechanism into our proposed model to focus on more
important content during the transfer process. The experimental results show that our proposed
method has a comparable performance to other methods. Moreover, in terms of both efficiency
and accuracy, our proposed method outperforms state-of-the-art lightweight neural architectures.
Therefore, employing our architecture would significantly improve method performance in prac-
tical applications. In the future, we believe that designing a universal and efficient generator
architecture for in image processing is worthy of study.
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