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Abstract: Cross-project defect prediction (CPDP) aims to predict the defects
on target project by using a prediction model built on source projects. The
main problem in CPDP is the huge distribution gap between the source project
and the target project, which prevents the prediction model from performing
well. Most existing methods overlook the class discrimination of the learned
features. Seeking an effective transferable model from the source project to the
target project for CPDP is challenging. In this paper, we propose an unsuper-
vised domain adaptation based on the discriminative subspace learning (DSL)
approach for CPDP. DSL treats the data from two projects as being from two
domains and maps the data into a common feature space. It employs cross-
domain alignment with discriminative information from different projects
to reduce the distribution difference of the data between different projects
and incorporates the class discriminative information. Specifically, DSL first
utilizes subspace learning based domain adaptation to reduce the distribution
gap of data between different projects. Then, it makes full use of the class label
information of the source project and transfers the discrimination ability of
the source project to the target project in the common space. Comprehensive
experiments on five projects verify that DSL can build an effective prediction
model and improve the performance over the related competing methods by
at least 7.10% and 11.08% in terms of G-measure and AUC.

Keywords: Cross-project defect prediction; discriminative subspace learning;
unsupervised domain adaptation

1 Introduction

Software security is important in the software product development process. Defects are
inevitable and damage the high quality of the software. Software defect prediction (SDP) [1–3]
is one of the most important steps in software development and can detect potentially defective
instances before the release of software. Recently, SDP has received much research attention.
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Most SDP methods construct a prediction model based on historical defect data and then
apply it to predict the defects of new instances within the same project, which is called within-
project defect prediction (WPDP) [4–6]. The labeled historical data, however, usually are limited.
New projects have few historical data, and the collection of labels is time-consuming. However,
plenty of data are available from other projects, and cross-project defect prediction (CPDP) [7,8]
has emerged as an alternative solution.

CPDP uses training data from external projects (i.e., source projects) to train the prediction
model, and then predicts defects in the target project [9]. CPDP is challenging because a prediction
model that is trained on one project might not work well on other projects. Huge gaps exist
between different projects because of differences in the programming language used, developer
experience levels, and code standards. Zimmermann et al. [7] performed CPDP on 622 pairs of
projects, and only 21 pairs performed well. In the machine learning literature [10], such works
always require different projects to have similar distribution. In WPDP, this assumption is easy,
but it cannot hold for CPDP. Therefore, the ability to reduce the distribution differences between
different projects is key to increasing the effectiveness of CPDP.

To overcome this distribution difference problem, many methods have been proposed. Some
researchers have used data filtering techniques. For example, Turhan et al. [11] used the nearest
neighbor technique to choose instances from the source project that were similar to instances from
the target project. Some researchers have introduced transfer learning methods into CPDP. For
example, Nam et al. [12] used transfer component analysis to reduce the distribution gaps between
different projects. These works usually have ignored the consideration of conditional distributions
of different projects.

Unsupervised domain adaptation (UDA) [13,14] focuses on knowledge transfer from the
source domain to the target domain, with the aim of decreasing the discrepancy of data distribu-
tion between two domains, which is widely used in various fields, such as computer vision [15], and
natural language processing [14]. The key to UDA is to reduce the domain distribution difference.
Subspace learning is the main category of UDA, which can conduct subspace transformation to
obtain better feature representation. In addition, most existing CPDP methods ignore the effective
exploration of class label information from the source data [11].

In this paper, to reduce the distribution gap across projects and make full use of the class
label information of source project, we propose a discriminative subspace learning (DSL) approach
based on UDA for CPDP. DSL aims to align the source and target projects into a common
space by feature mapping. In addition, DSL incorporates class-discriminative information into
the learning process. We conduct comprehensive experiments on five projects to verify that DSL
can build an effective prediction model and improve the performance over the related competing
methods by at least 7.10% and 11.08% in terms of G-measure and AUC, respectively. Our
contributions are as follows:

1) We propose a discriminative subspace learning approach for CPDP. To reduce the distri-
bution gap of the data between source and target projects, DSL uses subspace learning
based on UDA to learn a projection that can map the data from different projects into the
common space.

2) To fully use the label information and ensure that the model has better discriminative
representation ability, DSL incorporates discriminative feature learning and accurate label
prediction into subspace learning procedure for CPDP.
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3) We conduct extensive experiments on 20 cross-project pairs. The results indicate the
effectiveness and the superiority of DSL compared with related baselines.

The remainder of this paper is organized as follows. The related works are discussed in
Section 2. The details of DSL are introduced in Section 3. The experiment settings are provided
in Section 4. Section 5 gives the experimental results and analysis. Section 6 analyzes the threats
to the validity of our study. The study is concluded in Section 7.

2 Related Work

In this section, we review the related CPDP methods and subspace learning based unsuper-
vised domain adaptation methods.

2.1 Cross-Project Defect Prediction
Over the past several years, CPDP has attached many studies and many new methods have

been proposed. Briand et al. [16] first proposed whether the cross system prediction model can
be investigated. They developed a prediction model on one project and then used it for other
projects. The poor experimental results showed that applying models across projects is not easy.

Some methods focus on designing an effective machine learning model with an improved
learning ability or generalization ability. Xia et al. [8] proposed a hybrid model (HYDRA)
including genetic algorithm and ensemble learning. In the genetic algorithm stage, HYDRA builds
multiple classifiers and assigns weights to different classifiers to output an optimal composite
model. In ensemble learning phase, the weights of instances can be updated by iteration to learn
a composition of the previous classifiers. Wu et al. [17] employed dictionary learning in CPDP
and proposed an improved dictionary learning method CKSDL for addressing class imbalanced
problem and semi-supervised problem. The authors utilize semi-supervised dictionary learning
to improve the feature learning ability of the prediction model. CKSDL combines cost-sensitive
technique and kernel technique to further improve the prediction model. Then, Sun et al. [18]
introduced adversarial learning into CPDP and embedded a triplet sampling strategy into an
adversarial learning framework.

In addition, some methods focus on introducing transfer learning into CPDP. Ma et al. [19]
proposed transfer naive bayes for CPDP. They exploited the transfer information from differ-
ent projects to construct weighted training instances, and then built a prediction model on
these instances. The experiment indicated that useful transfer knowledge would be helpful. Nam
et al. [12] employed transfer component analysis for CPDP, which learns transfer components in
a kernel space to make the data distribution from different projects similar, and an experiment on
two datasets indicated that TCA+ achieves good performance. Li et al. [20] proposed cost-sensitive
transfer kernel canonical correlation analysis (CTKCCA) to mitigate the linear inseparability
problem and class imbalance problem in heterogeneous CPDP. They introduced CCA into hetero-
geneous CPDP and improved the CCA to obtain better performance. Liu et al. [21] proposed a
two-phase method called TPTL based on transfer learning, which can address the instability issue
of traditional transfer learning. TPTL first selects source projects that have high similarity with
target project. Then, TPTL uses TCA+ in the prediction model on the selected source projects.

Hosseini et al. [22] evaluated 30 previous studies, including their data metrics, models, clas-
sifiers and corresponding performance. The authors counted the common settings and concluded
that CPDP is still a challenge and has room for improvement. Zhou et al. [23] compared the
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performance of existing CPDP methods. In addition, they built two unsupervised models—
ManualUp and ManualDown, which only use the size of a module to predict its defect proneness.
They concluded that the module size based models achieve good performance for CPDP.

Existing CPDP methods cannot consider the conditional distribution differences between
different projects and ignore the discriminative information from both source project and target
project. From the above consideration, we propose DSL to improve the performance of CPDP.

2.2 Unsupervised Domain Adaptation
Unsupervised domain adaptation has attracted much attention, and it aims to transfer useful

information from the source to the target domain effectively in unsupervised scenario. Domain
adaptation methods have been applied to various applications, such as computer vision [15] and
natural language processing [14]. Subspace learning based unsupervised domain adaptation aims
to learn a mapping for aligning the subspaces between two projects. Sun et al. [13] proposed
subspaces distribution alignment method for performing subspace alignment to reduce distribution
gaps. Long et al. [24] adapted both marginal distribution and conditional distribution between the
source and target domains to reduce the different distributions simultaneously. Zhang et al. [25]
proposed guided subspace learning to reduce the discrepancy between different domains.

In this paper, we introduce subspace learning based unsupervised domain adaptation into
CPDP, which can effectively reduce the distribution gap between different projects. We also make
full use of the class information from source project and propose a discriminative subspace
learning approach for CPDP.

3 Methodology

In this section, we present the details of DSL. Fig. 1 illustrates the overall framework of the
proposed DSL approach for CPDP.

Source
Project 

Subspace 
Learning

Label 
Prediction

Target 
Project

Construct 
MMD 
Matrix

Iterative Learning

Data
Preprocessing

Figure 1: Framework of our proposed DSL approach for CPDP

3.1 Data Preprocessing
To alleviate the class imbalance problem, we perform SMOTE [26] technique on the source

project, as is one of the most widely used data preprocessing methods in CPDP. Previous
works [27,28] have demonstrated that dealing with the class imbalance problem is helpful for SDP.

3.2 Notation

Given the labeled source project S = {Xs, Ys} =
{
xis, y

i
s
}ns
i=1 and the unlabeled target project

T = {Xt} =
{
xit
}nt
i=1, where Xs and Xt are the data sets and Ys is the label set. ns and nt are the
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numbers of instances from source and target projects, respectively. Here, xis =
{
ai1s ; a

i2
s ; . . . ; aids

}
denotes the ith instance in the source project, and xit =

{
ai1t ; a

i2
t ; . . . ; aidt

}
denotes the ith instance

in target project. yis is the corresponding label of xis. a
ij
s denotes the value of the jth metric in the

ith instance xis in source project. aijt denotes the value of the jth metric in the ith instance xit in
the T source project; and d is the metric dimension of the source or target project. In CPDP, the
labels of the target project Yt =

{
y1t , y

2
t , . . . , yntt

}
are unknown.

3.3 Subspace Learning
To minimize the distribution discrepancy between the projects, we seek an effective transfor-

mation P. We construct a common subspace with the projection P. The mapped representations
with the projection matrix from the source and target projects are represented as zs = PTxs, and
zt =PTxt, respectively.

To effectively reduce the distribution discrepancy between the different projects, we consider
the distances of conditional distributions across the projects. The maximum mean discrepancy
(MMD) criterion [29] has been used widely to measure the difference between two distributions.
We minimize the distance Fmmd (S, T) between the source and target projects as follows:

Fmmd (S, T)= Fmmd (p (ys | xs) , p ( ỹt | xt))

=
C∑
c=1

∥∥∥∥∥∥ 1
ncs

ncs∑
i=1

zcsi−
1
nct

nct∑
j=1

zctj

∥∥∥∥∥∥
2 (1)

where p (ys | xs) and p (yt | xt) denote the conditional distributions from the source and target
projects. C denotes the number of label classes in CPDP. In this paper, the label of an instance
is defective or non-defective, and C = 2. ncs and nct are the numbers of the instances from source
and target projects in class c. Specifically, the label of the target instance is unknown in CPDP.
A feasible method is to use the target pseudo label ỹt, which can be predicted by the source
classifier. We can make full use of the intrinsic discriminative information of the target project
during the training process. In addition, we employ multiple iterations to improve the accuracy of
the predicted labels.

Using matrix tricks, we rewrite Eq. (1) as follows:

Fmmd (S, T)=
C∑
c=1

Tr
(
PTXMcXTP

)
=Tr

(
PTXMmmdX

TP
)

(2)

where X = {Xs, Xt} combines the source project and target project data, and Mmmd =
∑C

c=1Mc.
Mc denotes the conditional MMD matrix with class c, which is computed as
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Mij
c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ncsncs

, if xi, xj ∈ S

1
nct n

c
t
, if xi, xj ∈T

− 1
ncsn

c
t
, if

{
xi ∈ S, xj ∈T
xi ∈ T , xj ∈ S

0, otherwise

(3)

3.4 Discriminative Feature Learning
Minimizing Eq. (1) can align the source data and target data, but it cannot guarantee that

the learned feature representations are sufficiently discriminative. To ensure that the feature repre-
sentations from the same class are closer than those from different classes in the common space,
we design a triplet constraint that minimizes the distance between the intra-class instances and
maximizes the distances between the inter-class instances. This constraint is based on the prior
assumption of consistency. This means that nearby instances are likely to have the same label.

Specifically, we focus on the hardest cases, which are the most dissimilar instances within the
same class and the most similar instances in the different classes. For each instance zis in the source

project, we choose the farthest instance zjs with the same class as a positive matching, and the
nearest instance zks with a different class as a negative matching. Finally, we construct the triplet(
zis, z

j+
s , zk−s

)
for each instance in the source project. Then, we design the following formulation:

Fs=
C∑
c=1

ncs∑
i=1

(
min
zjs

∥∥∥zis− zjs
∥∥∥2−min

zks

∥∥∥zis− zks
∥∥∥2)

=Tr
(
PTXs

(
Mintra

s −Minter
s

)
XT
s P
) (4)

where Mintra
s and Minter

s denote the distance between the instance pairs. Similarly, we define the
triplet for the target instances in the same way and the formulation can be represented as

Ft=
C∑
c=1

nct∑
i=1

(
min
zjt

∥∥∥zit− zjt
∥∥∥2−min

zkt

∥∥∥zit− zkt
∥∥∥2)

=Tr
(
PTXt

(
Mintra

t −Minter
t

)
XT
t P

) (5)

We obtain the whole formula for the source and target projects as

FD= Fs+Ft

=Tr
(
PTX

(
Mintra−Minter)XTP

)
=Tr

(
PTXMDXTP

) (6)
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We formulate the overall equation of the DSL by incorporating Eqs. (2) and (6) as follows:

F = Fmmd +αFD+β ‖P‖2F (7)

where α is a balance factor and β is a regularization term.

The optimization of DSL is represented as follows:

min
P

Tr
(
PTX (Mmmd +αMD)XTP

)
+β ‖P‖2F

s.t. PTXHXTP= I

(8)

where I is an identity matrix and H = I−(1/n)1 denotes a centering matrix similar to that in [24].
The constraint condition ensures that PTX can preserve the inner attributes of the original data.
The optimization problem of Eq. (8) can be solved as a generalized eigendecomposition problem.
To solve Eq. (8), we denote Lagrange multipliers as � = (

�1, �2, . . . , �dl

)
, and then we rewrite

Eq. (8) as

LP =PTX (Mmmd +αMD)XTP+β ‖P‖2F +
(
I −PTXHXTP

)
� (9)

We set the derivative of P to 0, and then we compute the eigenvectors for the generalized
eigenvector problem:(
X (Mmmd +αMD)XT +βI

)
P=XHXTP� (10)

By solving Eq. (10), we can obtain the optimal transformation matrix P. We iteratively update
P and M to benefit the next iteration process in a positive feedback way.

3.5 Label Prediction
To further improve the prediction accuracy of the target data, we design a label prediction

mechanism. Considering that predicting target labels by using a source classifier directly may
lead to overfitting, we utilize the label consistency between different projects and within the same
project to obtain more accurate label prediction results.

In the common subspace, we believe that the classifier will be more accurate when the target
instances are close to the source instances. Moreover, similar instances should have consistent
labels. We assign larger weights to similar target instances that are close to the source instances,
and assign smaller weights to dissimilar target instances that are far from the source instances.

The formula for label prediction can be defined as

min
ft

nt∑
i=1

λi (fs (zti)− ft (zti))
2+

nt∑
i,j=1

wij
(
ft (zti)− ft

(
ztj
))2 (11)

where fs (zti) is the prediction label for zti from the source classifier. ft (zti) is the expected label for
zti. λi is a weight factor for zcti ·wij is a binary matrix that is used to measure the similarity between
different instances from the target project. If the ith instance and jth instance are nearest neighbor,
the value of wij is 1, otherwise the value of wij is 0. λi can be calculated by the following formula:

λi = nt
nct

· 1

1+ exp
(
lci
) (12)
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where nt/nct is used to balance the effects of different classes. lci denotes the distance between the
target instance with pseudo label c predicted by the source classifier and the instance with an
expect label c.

For simplicity, we define fs = {
fs (zt1) , . . . , fs

(
ztnt
)}
, ft =

{
ft (zt1) , . . . , ft

(
ztnt
)}

and � =
diag

(
λ1, . . . , λnt

)
. We introduce the Laplacian matrix L = D − W , where W = ∑nt

i, j=1wij and

Dii =
∑nt

j=1wij. Then, we rewrite Eq. (11) as

min
ft

(ft− fs)
T �(ft− fs)+ f Tt Lft (13)

Then, we obtain the solution of (13) as ŷ = (
Zt (�+L)ZT

t
)−1

Zt�fs. The label of zti is

ft (zti)=
(
ŷ
)T zti. We summarize the DSL approach in Algorithm 1.

Algorithm 1: The proposed DSL approach
Input: Source data set Xsand corresponding label set Ys, target data set Xt.
Output: The prediction label of Xt.
1. Data preprocessing.
2. Construct the initial MMD matrix by Eq. (3).
Repeat

3. Obtain the map matrix P by solving Eq. (10).
4. Obtain feature representation Zs and Zt in the common subspace.
5. Obtain the pseudo labels by the source classifier.
6. Use label prediction to update the pseudo labels of the target data.
7. Update Mmmd and MD.

Until Maximum number of iterations achieved.
8. Obtain predict label by using label prediction.

4 Experiment

4.1 Dataset
We adopt five widely used projects from the AEEEM dataset [30] for CPDP. The AEEEM

dataset is collected by D’Ambros et al. [30] and contains the data about Java projects. The projects
of AEEEM are Equinox (EQ), Eclipse JDT Core (JDT), Apache Lucene (LC), Mylyn (ML) and
Eclipse PDE UI (PDE). Each project consists of 61 metrics including entropy code metrics, source
code metrics, etc. The data is publicly available online: http://bug.inf.usi.ch/. Tab. 1 shows the
detailed information for each project.

4.2 Evaluation Measures
In the experiment, we employ two well-known measures, the G-measure and AUC, to evaluate

the performance of the CPDP model; these have been widely used in previous SDP works [20,31].
The G-measure is a harmonic mean of recall (aka. pd) and specificity, and it is defined in Eq. (14).
Recall is a measure defined as TP/ (TP+FN). Specificity is a statistical measure that is defined

http://bug.inf.usi.ch/
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as TN/ (TN+FP). TP, FN, TN, and FP mean True Positive, False Negative, True Negative and
False Positive, respectively, and they are defined in Tab. 2.

G-measure= 2× recall× specificity
(recall+ specificity)

(14)

The AUC is used to evaluate the performance of the classification model. The ROC curve is
a two-dimensional plane with recall and pf. Pf, i.e., the possibility of false alarm, which is defined
as FP/ (TN +FP). The AUC calculates the area under ROC curve.

The values of the G-measure and AUC range from 0 to 1. A higher value means better
prediction performance. AUC= 0.5 signifies a model that is randomly guessing.

Table 1: Experimental data description

Project # of total instances % of defective instances # of metrics

EQ 324 39.81 61
JDT 997 20.66 61
LC 691 9.26 61
ML 1862 13.16 61
PDE 1497 13.96 61

Table 2: Four kinds of defect prediction results

Predict as defective Predict as non-defective

Defective instance TP FN
Non-defective instance FP TN

4.3 Research Question
In this paper, we answer the following research question:

RQ: Does DSL outperform previous related works?

We compare DSL with defect prediction models including TCA+ [12], CKSDL [17],
CTKCCA [20] and ManualDown [23]. TCA+, CKSDL and CTKCCA are successful CPDP meth-
ods. ManualDown is an unsupervised method that was suggested as the baseline for comparison
in [23] when developing a new CPDP method.

4.4 Experimental Setup
Similar to prior CPDP methods [17,20], we count cross-project pairs to perform CPDP. For

each target project, there are four prediction combinations. For example, when EQ is selected as
the target project, JDT, LC, ML and PDE are separately selected as source project for training.
The prediction combinations are JDT → EQ, LC → EQ, ML → EQ, and PDE → EQ. We can
obtain 20 cross-project pairs for the five projects. In DSL, we set α = 1 and β = 0.1 in Eq. (10)
empirically. We fix the maximum number of iterations to 10 in experiment.
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5 Experimental Results and Analysis

5.1 RQ: Does DSL Outperform Previous Related Works?
Tabs. 3 and 4 show the G-measure and AUC results of DSL and the baselines for each cross-

project pair. The best result of each combination is in boldface. Fig. 2 shows the boxplots of
G-measure and AUC for DSL and the baselines. From Tabs. 3 and 4 and Fig. 2, it is evident
that DSL performs best in most cases compared with the baselines and obtains the best average
result in terms of G-measure and AUC. In terms of the overall performance, DSL improves the
average G-measure values by 7.10%–19.96% and average AUC values by 11.08%–15.21%.

Table 3: Comparison results in terms of G-measure for DSL and baselines. The best values are
in boldface

Source→ target ManualDown TCA+ CKSDL CTKCCA DSL

JDT→EQ 0.703 0.645 0.593 0.552 0.711
LC→EQ 0.703 0.585 0.534 0.550 0.733
ML→EQ 0.693 0.540 0.580 0.551 0.688
PDE→EQ 0.703 0.521 0.634 0.552 0.708
EQ→ JDT 0.605 0.582 0.662 0.549 0.672
LC→ JDT 0.606 0.321 0.630 0.551 0.688
ML→ JDT 0.605 0.611 0.580 0.553 0.656
PDE→ JDT 0.603 0.635 0.685 0.541 0.706
EQ→LC 0.563 0.548 0.588 0.532 0.674
JDT→LC 0.562 0.719 0.564 0.521 0.666
ML→LC 0.567 0.593 0.624 0.545 0.630
PDE→LC 0.567 0.475 0.566 0.543 0.645
EQ→ML 0.554 0.475 0.667 0.536 0.544
JDT→ML 0.553 0.662 0.648 0.546 0.563
LC→ML 0.554 0.574 0.457 0.522 0.576
PDE→ML 0.552 0.510 0.444 0.529 0.605
EQ→ PDE 0.606 0.557 0.496 0.536 0.612
JDT→ PDE 0.606 0.650 0.627 0.536 0.627
LC→ PDE 0.605 0.599 0.622 0.536 0.632
ML→ PDE 0.605 0.578 0.547 0.536 0.639
Average 0.606 0.569 0.587 0.541 0.649
Improvement (%) 7.10 14.00 10.45 19.96 –

DSL obtains good performance may for the following reasons: Compared with TCA+ and
CTKCCA, which reduce the distribution gap based on transfer learning, DSL embeds the dis-
crimination representation into the feature learning process, and obtains discriminative common
feature space that can reduce the distribution gap of data from different projects. Compared
with ManualDown, DSL can utilize the class label information from the source project and
discriminant information from the target project, which then obtain more useful information for
the model training process. Compared with CKSDL, DSL can align the data distributions between
different projects and has strong discriminative ability that can transfer it from the source project
to the target project. Thus, in most cases, DSL outperforms the baselines.
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Table 4: Comparison results in terms of AUC for DSL and baselines. The best values are in
boldface

Source→ target ManualDown TCA+ CKSDL CTKCCA DSL

JDT→EQ 0.710 0.673 0.598 0.641 0.794
LC→ EQ 0.711 0.681 0.534 0.648 0.795
ML→EQ 0.698 0.464 0.585 0.641 0.654
PDE→EQ 0.709 0.760 0.665 0.645 0.768
EQ→ JDT 0.626 0.633 0.662 0.644 0.737
LC→ JDT 0.623 0.262 0.632 0.640 0.752
ML→ JDT 0.622 0.637 0.613 0.644 0.746
PDE→ JDT 0.621 0.710 0.693 0.644 0.787
EQ→LC 0.577 0.545 0.595 0.646 0.781
JDT→LC 0.576 0.794 0.576 0.647 0.676
ML→LC 0.584 0.596 0.649 0.646 0.702
PDE→LC 0.583 0.602 0.575 0.643 0.737
EQ→ML 0.562 0.507 0.667 0.643 0.577
JDT→ML 0.564 0.719 0.653 0.641 0.618
LC→ML 0.566 0.593 0.643 0.643 0.644
PDE→ML 0.562 0.647 0.639 0.639 0.668
EQ→ PDE 0.627 0.578 0.592 0.632 0.670
JDT→ PDE 0.628 0.712 0.643 0.631 0.733
LC→ PDE 0.628 0.713 0.631 0.633 0.688
ML→ PDE 0.630 0.598 0.586 0.639 0.718
Average 0.620 0.621 0.618 0.641 0.712
Improvement (%) 14.84 14.65 15.21 11.08 –

5.2 Statistical Test
We perform the Friedman test [32] with the Nemenyi test on the two measure results to

analyze the statistical difference between DSL and baselines, which has been widely used in
SDP [33,34]. For each evaluation measure, we compute the ranking of comparison methods on
each cross-project pair. We apply Friedman test to determine whether the methods are significantly
different. Then we apply Nemenyi test to compare the difference among each pair of methods.
For a method pair, we compute their difference in rank by using critical difference (CD) value. If
the difference in rank exceeds CD, we consider that the methods have significant difference. CD
is defined as

CD= qα

√
L (L+ 1)

6N
(15)

where qα denotes the critical value at significance level α, N is the number of cross-project pairs,
and L denotes the number of methods.

The Friedman test results on the G-measure and AUC are visualized in Figs. 3 and 4 respec-
tively. A lower rank means better performance. The methods that have significant differences are
divided into different groups. As shown in Figs. 3 and 4, DSL performs better than the baselines
with lower ranks. For the G-measure and AUC, DSL belongs to the top-ranked group without
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other methods, which means that it achieves the best performance, and that DSL has significant
differences when compared with the baselines.

(a) (b)

Figure 2: Boxplots of G-measure and AUC values across all projects for the baselines. (a) Boxplots
of G-measure values. (b) Boxplots of AUC values

Figure 3: The results of statistical test in terms of G-measure for DSL and the other methods

Figure 4: The results of statistical test in terms of AUC for DSL and the other methods
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5.3 Ablation Study
To deeply investigate the impact of different parts of DSL, we conduct an ablation study. We

evaluate DSL and two variants of DSL:

Subspace learning (DSL1): Using subspace learning based on conditional distribution
for CPDP.

Subspace learning and discriminative feature learning (DSL2): Using subspace learning and
discriminative feature learning for CPDP.

The experimental settings are the same as those in Section 4.4 on 20 cross-project combi-
nations. The results are reported in Figs. 5 and 6. From the figures, the results of DSL are
improved on different projects. Clearly, in the mapped feature space, the distribution difference is
reduced. Discriminative learning can help us explore the discrimination between different classes.
The pseudo labels provided by label prediction can facilitates subspace learning and discriminative
feature learning. Thus, discriminative feature learning and label prediction boost each other during
the iteration process. Discriminative feature learning and label prediction play important roles in
exploring discriminative information for CPDP.

Figure 5: G-measure values of DSL and its variants on each project pair

5.4 Effects of Different Parameter Values
We conduct parameter sensitivity studies to verify the impact of parameters α and β on DSL.

The value ranges of α and β are from 0.001 to 10. We report the experimental results in terms
of the G-measure and AUC in Fig. 7.

From Fig. 7, we can observe that DSL achieves good performance under a wide range of
values. When α ∈ [0.5, 5] and β ∈ [0.05, 0.5], DSL performs stably and outperforms the other cases.
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The results are not very sensitive to the parameters, which demonstrates the robustness of DSL.
In the experiments, we set α = 1 and β = 0.1.

Figure 6: AUC values of DSL and its variants on each project pair

Figure 7: The mean G-measure and AUC values with various values of α and β. (a) Parameter α.
(b) Parameter β

6 Threats to Validity

Internal validity mainly relates to the implementation of comparative baselines. For the
baselines whose source codes can be provided by the original authors, we use the original
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implementation code to avoid the inconsistency of re-implementation. For the baselines do not
public codes, we follow their papers and implement the methods carefully.

Construct validity in this work refers to the suitability of the evaluation measures. We employ
two widely used measures and the selected measures are comprehensive indicators for CPDP.

External validity refers to the degree to which the results in this paper can be generalized to
other tasks. We perform a comprehensive experiment on 5 projects in this paper. However, we still
cannot claim that our approach would be suitable for other software projects.

7 Conclusion

In this paper, we propose a new model for CPDP based on unsupervised domain adaptation
called discriminative subspace learning (DSL). DSL first handles the problem of large distribution
gap in the feature mapping process. Furthermore, the discriminative feature learning is embedded
in the feature mapping to make good use of the discriminative information from source project
and target project. Extensive experiments on 5 projects are conducted. The performance of DSL is
evaluated by using two widely used indicators including G-measure and AUC. The comprehensive
experimental results show that DSL has superiority in CPDP. In our future work, we will focus
on collecting more projects to evaluate DSL and predicting the number of defects in each instance
by utilizing the defect count information.
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