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Abstract: A centralized trusted execution environment (TEE) has been exten-
sively studied to provide secure and trusted computing.However, a TEEmight
become a throughput bottleneck if it is used to evaluate data quality when
collecting large-scale data in a crowdsourcing system. It may also have secu-
rity problems compromised by attackers. Here, we propose a scheme, named
dTEE, for building a platform for providing distributed trusted computing by
leveraging TEEs. The platform is used as an infrastructure of trusted com-
putations for blockchain-based crowdsourcing systems, especially to securely
evaluate data quality and manage remuneration: these operations are handled
by a TEE group. First, dTEE uses a public blockchain with smart contracts to
manage TEEs without reliance on any trusted third parties. Second, to update
TEE registration information and rule out zombie TEEs, dTEE uses a report-
ingmechanism. To attract TEEowners to join in and provide service of trusted
computations, it uses a fair monetary incentive mechanism. Third, to account
for malicious attackers, we design a model with Byzantine fault tolerance, not
limited to a crash-failure model. Finally, we conduct an extensive evaluation
of our design on a local cluster. The results show that dTEEfinishes evaluating
10,000 images within one minute and achieves about 65 tps throughput when
evaluating Sudoku solution data with collective signatures both in a group of
120 TEEs.

Keywords: Crowdsourcing; blockchain; distributed trusted execution
environment; Byzantine fault tolerance

1 Introduction

A trusted execution environment (TEE) [1] has been used in many applications [2–4] to
provide secure and trusted computing. It is widely used to be a secure component to address the
performance issues of blockchain-based systems [4–8], in which a common architecture adopted by
the systems is to decouple the TEE from the blockchain to provide off-chain trusted computing.
Its design extends trust from the blockchain to the TEE to improve system performance. The
same concept using the off-chain TEE can be applied to a blockchain-based crowdsourcing
system [9,10], especially to evaluate data quality and manage remuneration securely.
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However, if one or several TEEs under a centralized architecture are used to evaluate data
quality when collecting large-scale data in a crowdsourcing system, the centralized TEE system
might become a throughput bottleneck. It can also suffer single-point failures, causing service
availability problems and even the loss of workers’ data and remuneration. A centralized TEE also
has security problems if attackers attack the TEE specifically. Its security may be compromised
because of implementation vulnerabilities and congenital defects, such as side-channel attacks [5]
and rollback attacks [11]. Therefore, applying a centralized TEE to a blockchain-based system is
a tradeoff between system security and efficiency.

To address those problems, we propose a blockchain-based distributed trusted computing
scheme via TEEs for crowdsourcing applications, named dTEE, aiming at being used to collect
large-scale data with security and high availability. dTEE is designed according to its special
responsibilities in crowdsourcing, especially to evaluate the quality of sourcing data and to manage
remuneration. It has the following properties:

(1) Scalability. The data evaluation and remuneration management of a crowdsourcing task
are handled by a specified TEE group. The more TEEs join in, the more groups exist to
provide services of trusted computations. It uses a group of TEEs rather than a single
one to handle a task, thereby guaranteeing availability. More importantly, it significantly
reduces management overhead by keeping TEE registration information transparent and
consistent by storing it in the blockchain, which gives all TEEs the same view. This means
the same grouping result can be calculated locally without the need for communication
across groups nor reliance on a centralized management service.

(2) Self-government. dTEE is blockchain-based without reliance on any trusted third parties.
To update the TEE registration information and rule out zombie TEEs, it uses smart
contracts [12] with a reporting mechanism. To attract TEE owners to offer their computing
services, dTEE uses a fair monetary incentive mechanism.

(3) Byzantine fault tolerance. A crowdsourcing task is handled by a group. It uses m-of-n
signatures [13,14] to manage the remuneration, which means the remuneration is available
even when some TEEs within the group are not functioning. The remuneration is also safe
when some TEEs are compromised by attackers. To ensure that the results are honestly
generated based on the actual quality of the sourcing data, dTEE evaluates the data
repeatedly using k different TEEs within the group (called k-repeated evaluation), accepting
only the result produced by the majority of the k number of TEEs.

dTEE is suitable for blockchain-based crowdsourcing applications that need to collect large-
scale data with a security guarantee. On the one hand, keeping unauthorized people from getting
access to the sourcing data is highly desirable because the data may contain sensitive information
about workers, and the data is an asset to the requester; On the other hand, the requester requires
integrity guarantee of the program that evaluates data quality in remote servers. By using a group
of TEEs for a crowdsourcing task, the TEEs work parallelly to collect and evaluate large-scale
data submitted by workers. This also overcomes problems of single-point failures and improves
system availability. In summary, dTEE can be used in crowdsourcing systems to collect large-scale
data with security and high availability.

This paper makes the following contributions:

(1) We propose a novel scheme for building a platform for distributed trusted computing via
TEEs. The platform aims at being infrastructure of trusted computing for blockchain-based
crowdsourcing systems to collect large-scale data with high availability.
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(2) dTEE’s design has three novel characteristics: (1) Self-government without relying on
trusted third parties through a reporting mechanism for self-updates, as well as a fair
monetary incentive mechanism to attract TEEs to join. (2) Security with Byzantine fault
tolerance, not limited to crash fault tolerance. (3) Scalability and availability.

The remainder of this paper is structured as follows. In Section 2, we present related work.
In Section 3, we provide the system overview, including workflow and architecture. In Section 4,
we present our proposal in detail. In Section 5, we describe the implementation and experiments.
Finally, Section 6 concludes the paper.

2 Related Work

Blockchain-Based Crowdsourcing. A few existing works [10,14–18] have used blockchains [19]
to replace the role of trusted third parties in crowdsourcing applications [20] to address issues of
fairness, privacy preservation [21], and service availability. An essential operation in a crowdsourc-
ing system is to evaluate the sourcing data uploaded by workers to confirm the data meet the
requester’s requirements. The protocols of these works [10,16–18] evaluate the quality of sourcing
data using smart contracts [22]. Although Zebralancer [15] uses smart contracts to verify the zero-
knowledge proofs generated by requesters rather than to evaluate sourcing data, it still requires
workers to submit the encrypted sourcing data to the blockchain. This causes significant overheads
when propagating large-scale sourcing data over the peer-to-peer blockchain network.

TEE and Blockchains. A TEE is a tamper-resistant processing environment that runs on a
separation kernel. It guarantees the authenticity of the executed code, the integrity of the runtime
states (e.g., CPU registers, memory, and sensitive I/O), and the confidentiality of the code, data,
and runtime states stored in persistent memory. Besides, it provides remote attestation of its trust-
worthiness to third parties. The content of the TEE is not static; it can be securely updated [23].
There are several existing TEE implementations, such as TrustZone [24], Sanctum [25], and Intel
Software Guard Extensions (SGX) [1].

To improve the blockchain’s performance and guarantee its security, previous works [4–7]
have used a TEE as an off-chain component, decoupling from the blockchain to provide efficient
computation and eventually persisting the state data in the blockchain. Matetic et al. [5] presented
an approach that protects the privacy of light clients in Bitcoin by leveraging TEEs. Fastkitten [4]
leverages the power of TEEs to efficiently execute arbitrarily complex smart contracts at a low
cost over distributed cryptocurrencies (e.g., Bitcoin) designed to support only simple transactions.
Yan et al. [3] use TEEs to execute smart contracts for consortium blockchains to address confiden-
tiality and efficiency problems, while Ekiden [8] combines blockchains with TEEs and separates
consensus from execution by executing smart contracts inside TEE enclaves, which addresses
the problems of lack of confidentiality and poor performance of smart contracts in current
blockchain systems. Those systems use a common design concept that decouples the TEE from the
blockchain to provide efficient off-chain computation without losing security. This paper adopts
this design concept and applies it to crowdsourcing applications. However, a centralized TEE
module could result in a throughput bottleneck for the system and is vulnerable to single-point
failures, implementation bugs, and targeted attacks.

3 System Overview

In this section, we first present the workflow overview of our system. Then we present
the architecture, as well as the consideration of system security, availability, and efficiency. It is
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noteworthy that in this paper we only focus on the construction and management of distributed TEEs,
which are used as an infrastructure of trusted computing for blockchain-based crowdsourcing. Therefore,
our goal is to design robust distributed TEEs with properties of security and high availability. Designing
a protocol of blockchain-based crowdsourcing is outside the scope of this paper.

3.1 Workflow and Architecture
We present the system architecture in Fig. 1a and the workflow overview in Fig. 1b, which

is described as follows: (1) A TEE registers the platform via the blockchain for providing trusted
computations. A smart contract is responsible for verifying the TEE’s eligibility before joining in.
(2) A requester downloads all registration information of TEEs from the blockchain and calculates
the target TEE group locally. Then, the requester publishes a task smart contract (TSC) on the
blockchain, including a deposit and parameters for selecting the group. (3) The requester sends
codetask and auxiliary data to the TEEs in the target group to set up the crowdsourcing task,
where codetask is a program created by the requester and used to evaluate the quality of sourcing
data. The program’s digest is stored on TSC. (4) The TEEs also download all the registration
information from the blockchain and calculate the target group locally to confirm whether the
TEEs themselves belong to the group. Then they confirm if the TSC and the deposit are accepted
by the blockchain. If all the confirmations pass, the TEEs install codetask and initialize the
program to be ready to provide trusted computation for the task. (5) During the crowdsourcing
task, the group securely evaluates the quality of sourcing data and manages remuneration inside
enclaves. (6) Finally, the group can publish a transaction with the remuneration records on the
blockchain to get the remuneration or to transfer money.

Based on the workflow described above, dTEE is responsible for two main operations: to
manage remuneration and to evaluate the quality of sourcing data. We use m-of-n signatures for
remuneration management and k-repeated evaluation (see Section 4.2) to evaluate the sourcing
data. We specifically cluster all TEEs based on their registration information and group the TEEs
in each cluster (Fig. 1a), such that requests of m-of-n signatures and k-repeated evaluation can be
processed by a specified group. Moreover, grouping the TEEs enables efficient and clear calculation
of the service fee in a fine-grained way and enables system scalability.

To address the possibility that attackers may adaptively compromise and corrupt the majority
of TEEs within a group, making the group insecure, we shuffle and regroup all TEEs at the end
of each epoch. One epoch is a system parameter that can be set as one day or one week. To avoid
chaos or allowing a specified group to serve a worker across multiple epochs, the following two
operations need to be finished. First, at the end of each epoch before shuffling, each TEE needs
to calculate its total service remuneration and ask all its group members to sign it. The collective
signature acts as proof, allowing the TEE to receive its remuneration via the blockchain. Second,
after shuffling, any TEE that moves to another group should send all its state data back to the
TEE taking its place. Thus, intuitively, we shuffle the TEEs rather than the state data stored in
those TEEs. Thus, we can find state data in the same group index before and after shuffling.

We use a reporting mechanism to punish zombie TEEs that stop working before the promised
time. We qualify some TEEs to be challengers and report zombie TEEs. A challenger publishes
a challenge transaction to the blockchain, and the zombie TEE must respond to the challenge
to prove it is alive. If the challenger succeeds, they can take the deposit of the zombie TEE.
This process will also trigger a function of a TEE Committee smart Contract (TCC) to mark the
information registered by the zombie TEE as invalid, such that in the next epoch, this zombie
TEE will not belong to any group.
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Figure 1: (a) System architecture, (b) operation sequences of our proposal

Grouping does not require communication among TEEs because all the registration informa-
tion is transparent in the blockchain. Each TEE can locally perform group operations based on
preset parameters contained in the registration information, obtaining the same result. To achieve
that, all TEEs use the last block’s hash value of the previous epoch as a seed to re-group all
TEEs. The seed is a random number used to generate a random permutation [26]. Parties that
use the same seed and the same permutation generator will obtain the same permutation.

3.2 Threat Model
We assume that an attacker can gain full control of a TEE and assume the integrity and con-

fidentiality of a TEE can be compromised, but this requires significant computational resources
and time from attackers because the TEE itself is a hardware security environment. Therefore,
the attacker can only compromise a very small fraction of all TEEs. Moreover, a group becomes
insecure only the security of the majority of TEEs is compromised. Our system shuffles the
group periodically to prevent the majority of TEEs within a group from being compromised.
Furthermore, attackers can choose which TEE to corrupt (e.g., stop or restart the TEE; modify,
reorder or delay network messages arbitrarily). We assume the attacker can only corrupt no more
than half of TEEs in a group. Thus, by selecting a larger group, the requester has a securer
guarantee but needs to spend more fees, which is a trade-off decided by the requester.

Our system is built on a blockchain. Thus, it also has the security assumptions made by
the underlying blockchain system. A (possibly adversarial) host application facilitates all com-
munications between enclaves and the blockchain. Thus, the host application might isolate the
TEE and trick it into verifying a fake transaction on an easily minable forked chain. We assume
the blockchain is capable of producing proof of publication to let the TEE confirm a specified
transaction is accepted by the blockchain if the proof passes the verification. Practically in
Ethereum for instance, the TEE can use Simple Payment Verification [27] or Flyclient [28] to verify
the proof of publication produced by a set of full nodes, at least one of which is honest.
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4 dTEE: Distributed Trusted Computing Scheme

In this section, we first present how a new TEE joins the platform and then explain why an
m-of-n signature and k-repeated evaluation are used, as well as why we group TEEs. Next, we
present how to associate a group with a crowdsourcing task and the details of group shuffling.
We describe details of Byzantine fault tolerance and the calculation of TEE service remuneration.
Finally, we explain the reporting mechanism.

4.1 TEE Registration
Individuals and organizations with eligible TEE machines can join the platform by register-

ing some information via a shared TCC. The registration information includes Sepoch, Sprice, Z,
the TEE’s IP address, and the TEE master public key (mpk), where Sepoch is the epoch number the
TEE promises to serve (i.e., time duration), Sprice is the service price, and Z is the group size
the TEE is expected to join. We define the remaining service epoch (RSE) of a TEE as the TEE’s
Sepoch minus the epoch number that the TEE has already served. Thus, a newly registered TEE’s
RSE is equal to Sepoch. Furthermore, the TEE needs to deposit a specified number of coins in
the TCC to guarantee it will provide the computation service continuously until its RSE= 0. If
the TEE has finished registering but does not provide an actual computing service or exits the
platform before the promised time, it may lose its deposit based on our reporting mechanism (see
Section 4.7). To confirm that a TEE is eligible, meaning it has been authenticated by the TEE
hardware manufacturer, it must get proof through a certificate authority (CA), such as the Intel
Attestation Service (IAS), and post this proof in the TCC during registration. The TCC uses the
public key of the CA to verify the signature on that proof and confirm the validity of the TEE.
Each TEE should finish its registration in the previous epoch.

4.2 M-of-n Signature & k-Repeated Evaluation & Grouping
An m-of-n signature is a collective signature that requires any m keys from a set of n keys to

sign a transaction. Workers store their remuneration within a group temporarily and use an m-of-n
signature to spend the remuneration. Using 1-of-1 signatures is insecure because some TEEs could
be compromised by attackers and behave maliciously. Also, if a TEE stops working, the workers
cannot spend the remuneration and may even lose them forever. In contrast, when an m-of-n
signature is used, workers can still spend their remuneration even if (n–m) TEEs stop working,
while even if (m− 1) TEEs are compromised, attackers still cannot steal the money.

A requester may require workers to repeat the evaluation of data quality in k number of
TEEs because some TEEs could be compromised. The k-repeated evaluation results are compared,
and the requester accepts only the majority one as the final result. This gives the requester more
confidence that the sourcing data has been evaluated by honest TEEs. The value k is specified by
the requester when she publishes a TSC in the blockchain. A greater k provides greater confidence
for the requester, but greater expenses for the services of trusted computing.

We divide the TEEs into various sizes of groups to handle the m-of-n signatures and
k-repeated evaluations specifically for the following two reasons: (1) By grouping the TEEs, we
achieve fine-grained management of the m-of-n signature and k-repeated evaluation processes.
Grouping makes the platform scalable and the management of many TEEs more efficient.
(2) A worker needs to pay only the TEEs in the group that provides a service rather than TEEs
in other groups. Thus, grouping makes calculating the TEE service fees clearer and more efficient.

All TEEs in a group store the same state data and are responsible for providing collective
signatures. The group size is equal to n of the m-of-n signature. A requester can specify a specified
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group size corresponding to the number n of the m-of-n signature, while workers can select m to
spend their remuneration while registering the task.

dTEE uses an efficient function groupingAll to group all TEEs presented in Algorithm 2.
This process does not require communication among TEEs, and each TEE calculates the same
grouping result. Specifically, each TEE gets all valid registration information from the TCC, i.e.,
e0, e1, . . . , en−1, then clusters the TEEs that have the same RSE, Sprice, and Z. A cluster consists of
multiple groups, while a group consists of multiple TEEs (Fig. 1a). To get a determinate grouping
result, each TEE sorts the elements in a cluster by mpk, then sorts all clusters in the cluster list.
A seed is used to shuffle the TEEs, which does not affect each TEE’s ability to get the same
grouping result because the seed is the last block hash in the previous epoch.

4.3 Associate a Group with a Task
A requester publishes a TSC and specifies some parameters to select a group, such as Z, the

maximum TEE service price the requester can afford, and the parameter k. Each TEE locally
calculates all candidate groups that meet the requester’s requirements, sorts the candidate groups
and stores them in an array, and finally calculates the index of the target group within the array
by Igroup←H (addrTSC)% ng, where H (addrTSC) is the hash value of the TSC‘s address, and ng
is the number of candidate groups. The group whose index is Igroup will serve the requester’s task
corresponding with TSC.

Using H (addrTSC) to calculate the target group for a crowdsourcing task makes it randomly
select a group in the candidate set. This prevents malicious requesters from selecting a specific
group to maximize their benefits. It also means the group in the candidate set has the same
probability of being selected to serve a task, which is good for load balance.

4.4 Shuffle TEE Groups
Some TEEs in a group might be compromised by attackers. The group becomes insecure if

the majority of its TEEs are compromised or corrupted. To address this problem, we shuffle the
groups within a cluster to distribute the compromised TEEs evenly across the groups [2].

We present the details of how groups within a cluster are shuffled in Algorithm 1, as well as
how all groups are shuffled in Algorithm 2. All TEEs within a cluster (and group), as mentioned,
have the same RSE, Sprice, and Z values. Each TEE executes the shuffle process locally without
interactions with others and obtains the same shuffling result. Because all TEEs have the same
view of the TEE registration information, as well as the same seed for shuffling.

The Sepoch of the newly registered TEE must be the same as the RSE of the cluster, in which
the TEE joins. Because all TEEs within a cluster have the same RSE, those TEEs will stop their
service simultaneously after the RSE becomes 0. If the new TEE cannot find a proper cluster with
the same RSE, Sprice, and Z, it becomes a new cluster itself. A new TEE that joins an existing
group should synchronize state data from its group members to make sure all TEEs in the group
have the same view.
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The process of group shuffling creates a new issue, which is that some TEEs and their state
data are in different groups after shuffling, making it chaotic for workers to track the TEEs that
have provided the services in previous epochs. This also creates difficulties in calculating service
fees for those TEEs. Our approach intends to keep state data always with the same group index,
even when the TEEs that store this state data move to other groups. Thus, a TEE na that changes
to another group must send the state data back to the TEE nb that is currently in the old position
of na. For example, as shown in Fig. 2a, TEE2 is in the old position of TEE6, so TEE6 must
send its state data to TEE2. A TEE that changes position within the same group does not need
to synchronize state data with others. Moreover, some TEEs might stop working or crash, causing
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the failure of the state data synchronization in two cases: (1) if the receiver crashes, the sender
simply ignores the synchronization; (2) if the sender crashes, the receiver contacts a previous group
member of the sender to get the state data. For example, as shown in Fig. 2a, TEE2 cannot
receive state data from TEE6 because TEE6 has crashed already. TEE2 can ask TEE4, which was
in the same group as TEE6 in epoch 1, to synchronize the state data. After shuffling and state
synchronization, the TEEs can delete state data that belongs to other groups.

Figure 2: (a) Collective signatures are needed within a group before shuffling occurs. After shuf-
fling, TEEs that move to another group, send the state data to the TEE in its previous position.
(b) A worker submits the same sourcing data to three TEEs for instance. Those TEEs evaluate
the data quality and ask the other four TEEs to sign the evaluation results

4.5 Byzantine Fault Tolerance
A TEE might be compromised by attackers. It might maliciously send tampered state data to

other TEEs during state synchronization. Thus, a way for the receiver to verify whether state data
has been tampered with is required. To address this issue, our approach intends for the receiver
never to trust an individual but to trust that the majority of TEEs in a group are honest. A TEE
needs to generate proof of honesty by obtaining a collective signature from its group. Specifically,
the sender asks all its group members to collectively sign the state data using their msk and get a
collective signature (co-sign), then send this co-sign to the receiver. The receiver verifies the co-sign
using those signers’ mpk. The sender’s group members will refuse to sign the state data if the data
is different from that stored in their local enclaves. For example, as shown in Fig. 2a, co-sig2 is
the collective signature on the state data of epoch 1 signed by the TEEs in Group2. TEE4 and
TEE6 send co-sig2 to TEE3 and TEE2, respectively. It is noteworthy that the TEEs need not
communicate with others while verifying the co-sign, because all TEEs have the same view of the
registration information.

In a group, only the k number of TEEs that evaluate sourcing data can gain the service fee.
It is necessary to let all TEEs within the group know which k TEEs are selected. Otherwise, if a
TEE, which is not within the k-selected TEEs, is compromised by attackers, it could use results
from those k-selected TEEs and maliciously broadcast it to other group members to earn the ser-
vice fee deceitfully. A strawman solution is to always select the k first TEEs within the group. This
solution is simple but creates a load imbalance problem. Our solution is that, before submitting
sourcing data, the worker signs a nonce using their secret key sk and calculates the first TEE index
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by I0← nonce% n, where n is the group size, such that I0% n, (I0+ 1)% n, . . . , (I0+ k− 1)% n are
the indexes of the k selected TEEs used to evaluate the data (Fig. 2b).

Security analysis. First, A compromised TEE that is not the k-selected TEE cannot trick the
group to obtain the service fee for data evaluation. This is because all TEEs in the group can
verify the worker’s signature. Second, if the compromised TEE is the k-selected TEE, it cannot
gain the service fee by generating an arbitrary evaluation result because the group accepts only the
result in the majority. The worker might sign a specific nonce on purpose. But the worker cannot
gain any extra benefits. Moreover, if nonce is selected randomly, each TEE within the group has
the same probability of evaluating the sourcing data, so the group is load-balanced. In summary,
the operation of k-repeated evaluation is secure if the majority of k number of TEEs in the group
are honest.

4.6 Calculate TEE Service Remuneration
dTEE uses a monetary incentive to attract TEE owners to join and provide computation

services. The more service that a TEE provides, the greater remuneration the TEE can gain. At
the end of each epoch before the group shuffle, each TEE needs to calculate and update its total
service remuneration.

A TEE can get remuneration by providing two kinds of services. The first is to manage
remuneration by participating in producing a collective signature to transfer the remuneration via
the blockchain based on state data stored in the enclaves; the second is to evaluate the data
quality. A worker submits the data to k TEEs within a group (Fig. 2b) for k-repeated evaluation,
and each TEE sends the evaluation result to other members. The group members store the state
data (amnt, epoch, receiver) in enclaves, where amnt is the remuneration that the TEE gains for
this quality evaluation service and receiver is the TEE whose evaluation result is in the majority.
Based on the state data, the group can transfer a specified amount of coins to the receiver via
the blockchain. All TEEs within a group store the same state data.

To calculate the value of amnt, we assume there is a function (Sprice
F→ pricegas) that can calcu-

late the gas price pricegas by inputting Sprice, where gas is the concept adopted from Ethereum [29].
A gas indicates a unit that measures the amount of computational effort it takes to execute
certain operations, such that amnt← pricegas ∗ amntgas, where amntgas is the amount of gas used
to evaluate the sourcing data.

A TEE also needs to store its total service remuneration proof (TSRP) in the
form of a collective signature to prove its total remuneration. Different TEEs might
gain various service remunerations depending on their service time, Sprice, Z, and so
forth. Thus, the TSRP of those TEEs could be different even though they are in the
same group.
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At the end of each epoch, TEEs need to liquidate and update their TSRP to the current
epoch. We present the details in Algorithm 3, which is executed in a TEE e that needs to update
its TSRP. Specifically, coSig0 is the TSRP of e up to the previous epoch, which also means
its collective signature is signed by e’s group members from the previous epoch. In the current
epoch, e’s group members need to verify coSig0, calculate e’s service fee for the current epoch,
add up all e’s service fees, and finally sign it. e needs to keep only the new collective signature
coSig1, which provides evidence of the total service remuneration e has gained up to the current
epoch. Recursively, e updates its TSRP until its RSE= 0, finally using the latest coSig1 to get the
remuneration payment.

4.7 Exit TEE Committee and Reporting Mechanism
Much management cost and many difficulties will be introduced if TEEs can arbitrarily stop

working or exit, which also leads to zombie TEEs and ruins the availability guarantee. Thus, a
TEE can exit or stop working only after the amount of time the TEE has promised (i.e., until
RSE = 0), otherwise, the TEE could lose its deposit. Inspired by FastKitten [4], we propose a
reporting mechanism to challenge a registered TEE that stops serving. If someone finds a TEE
that has stopped working, they publish a transaction on the blockchain to challenge the TEE.
If the TEE cannot respond to the challenge within a certain amount of time, the challenger can
take the TEE’s deposit. This challenge-response process requires TEEs to monitor the underlying
blockchain to timely respond to the challenge.
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dTEE encourages users to report and challenge potential zombie TEE nz but needs to prevent
excessive reporting. Therefore, dTEE allows only the TEE whose group size is greater than a
threshold θ1 to challenge nz. All challengers need to get a collective signature over the challenge
transaction within their group, which requires the approval of the majority of group members.
The challenger then publishes the transaction on the blockchain to trigger a function of TCC
using {encrypt(nonce, mpkz), mpkz} as input, where mpkz corresponds to the TEE to be reported
and nonce is a random value. If the TEE is alive, it can detect the transaction and use its
corresponding mskz to decrypt the data and get nonce; it then calls a function of TCC using
nonce as input to respond to the challenge. If the challenger succeeds, it can take the nz’s deposit
and trigger a function of TCC to mark the registration information of nz as invalid.

4.8 Security Analysis
Our system uses a group of TEEs to handle a crowdsourcing task. The group size is specified

by the crowdsourcing requester, wherein the trade-off between security and cost is decided by
the requester. The group specifically is used to evaluate data quality and manage remuneration.
It uses the way of k-repeated evaluation for data evaluation while using m-of-n signatures for
the remuneration management. Both need group signatures, and the parameters n and k are
decided by the requester, while parameter m is decided by the workers. The group signatures
guarantee security and availability even if some TEEs crash or are compromised. Attackers might
compromise the security of the majority of TEEs within a group to make the group insecure. Our
system shuffles the group periodically to present such attacks based on the assumption presented
in Section 3.2.

5 Implementation and Performance Evaluation

5.1 dTEE Implementation
We use Ethereum as the blockchain and create a smart contract as a TCC to provide the

functions that allow TEEs to register for the platform and store their registration information.
A newly registered TEE transfers its deposit to the address of the TCC. A requester who publishes
a new crowdsourcing task creates a smart contract as a TSC and also transfers the deposit to the
address of the TSC. The workers then register the task by calling a function of the TSC if they
want to participate in the task.

A requester’s deposit is associated with a group index, which means only the specified group
can spend it. If the majority of TEEs in a group are compromised by attackers, the deposit could
be stolen, but the deposits associated with other groups are still safe. We achieve this using a
function in the TCC to verify the group index before a group spends its deposit. Moreover, before
a group’s RSE becomes zero, the deposit associated with that group should be liquidated: the
worker and the TEEs should be paid, and the rest money should be returned to the requester.

Within a group, we do not specifically select one of the TEEs to be the leader but make the
TEE that receives the client’s request be responsible for replying to the client. First, if the request
is for getting remuneration, the TEE needs to broadcast the request to other members, create a
payment transaction with a collective signature, publish the transaction in the blockchain, and
finally reply to the client. The client can select another TEE in the group if the previous TEE does
not respond. Second, if the request is to evaluate the sourcing data, the TEE, which receives the
request, evaluates the data inside its enclave, broadcasts the result to its group members, collects
replies from the members, and responds to the worker. In our implementation, the worker directly
submits the sourcing data to k number of TEEs, rather than submitting the data only to one
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TEE and having this TEE forward the data to others because in this case, the receiver could be
malicious and tamper with the data before forwarding it.

5.2 Experimental Setup
Our experimental platform consists of six physical computers located in one room, each

equipped with Intel Core 3 GHz CPUs and 32 GB RAM and running on a Windows 10 operating
system. We use Intel’s SGX as the TEE implementation and run codeeval inside enclaves. Since
SGX is not available for all these machines, we configured the software development kit (SDK)
to run in simulation mode. We measured the latency of each SGX operation, running under
Windows 10 on an Intel Core i5-8500 CPU clocked at 3.00 GHz with 32.0 GB RAM and SGX-
enabled BIOS support, and injected it into the simulation. The network latency between two of
the six machines is less than 1 ms, and each machine executes 20 virtual TEEs. Thus, we insert
10 ms network latency into the simulation so that each virtual TEE has about 10 ms network
latency to communicate with the others.

Measuring blockchain access times is orthogonal to our approach because blockchain writing
latency depends on parameters inherent to its implementation, such as about 13 s for Ethereum
to create a block.

5.3 Results
TEES stores state data for workers and themselves. This state data contains rewards of the

workers and the service remuneration of the TEEs. After a TEE receives a request for getting
rewards from a worker, the TEE broadcasts it to all group members for verification of the request;
each member then creates a signature based on the state data stored locally. The TEE, which
received the request, is responsible for collecting the signatures from its group members, and
creating a payment transaction with the collective signature, and publishing it in the blockchain.
Fig. 3a shows the throughput of the operation get rewards with various group sizes. It shows that
dTEE achieves about 65 tps throughput when the group size is 120. The throughput value does
not decrease much when the group size increases. This is because all TEEs within the group work
in parallel. The latency of this operation is less than 50 ms within a group of 120, as shown
in Fig. 3b.

To prove the remunerations owned by a TEE, the TEE must send its previous TSRP to its
group members and ask them to generate a newly updated TSRP (i.e., a collective signature) at
the end of each epoch before group shuffling. Each group member must verify the previous TSRP
and sign the new TSRP. We evaluate the throughput of generating TSRP with various group sizes,
finding that the throughput decreases, and the latency increases with greater group size (Fig. 3).
This is because, in our experiment, a TSRP contains simply the signatures of each group member,
meaning that TSRP size increases with greater group size. In the future, we will attempt to use
Schnorr multi signatures [30] to merge the signatures in a TSRP to reduce its size and accelerate
the verification process.

To evaluate the throughput and latency of evaluating the quality of sourcing data, we use
two different sizes of sourcing data in the scenario that a request buys a lot of sourcing data
via dTEE in a crowdsourcing task. The first dataset is classic Sudoku solution data; a Sudoku
solution is a nine-by-nine matrix containing 81 integers. The second dataset is from the Modified
National Institute of Standards and Technology (MNIST) [31] and consists of 10 classes of 28 by
28 grayscale images. The MNIST test set consists of 10,000 images, while the training set consists
of 60,000 images. To recognize objects in the images and evaluate whether an image submitted by
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the worker meets the requirements, we built a convolutional neural network (CNN) model to be
the codetask executed inside the enclave. The CNN model consists of about 1,240 lines of C++
code and contains five layers, including two convolutional layers, two pool layers, and one output
layer. We trained the CNN model using the training set and tested it using the test set, achieving
about 97% accuracy.

Figure 3: Evaluation results of TEEs’ ability to get rewards and generate a new TSRP in terms
of (a) throughput and (b) latency

In the experiment, each time the client submits a Sudoku solution to k number of TEEs in
a group. The k TEEs perform the same evaluation process and generate k evaluation results, then
broadcast the results to all group members. The group members verify the signature over each
result and generate a response message with their signatures. Fig. 4 shows the throughput and the
latency of the process of evaluating a Sudoku solution with various group sizes. When we only
use one TEE (k= 1) within the group to evaluate the data, the throughput is about 65 tps, and
the latency is less than 50 ms when both groups are of 120. When we set k= 5, the throughput
is about 12 tps and the latency is about 110 ms with a group of 120.

In Fig. 5a, we show the quality evaluation latency of submission with 50 images with various
group sizes and various k values for k-repeated evaluation. In Fig. 5b, we show the processing
time of evaluating the quality of MNIST images using k= 5 TEEs with various group sizes. Each
time, the client submits 50 images to 5 TEEs for k-repeated evaluation. The client repeats the
submission until the total image number is 2,000, 4,000, 6,000, 8,000 or 10,000. The evaluation
results show that dTEE can finish evaluating 10,000 images in less than one minute. Moreover,
the processing time does not change much even when the group size increases.

To evaluate the effect of various k values for k-repeated evaluation on dTEE performance,
we fix the group size to 120 and calculate the processing time for evaluating images and
the latency of submission with 50 images or one Sudoku solution, using various k TEEs for
k-repeated evaluation (Fig. 6). The results show that the processing time increases with a greater
k value. However, practically speaking, it is rarely necessary to perform a k-repeated evaluation
with a big k value. This is a tradeoff between security and speed (or cost) determined by the
crowdsourcing requesters.
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Figure 4: Results of evaluating Sudoku solution data in terms of (a) throughput and (b) latency

Figure 5: (a) Quality evaluation latency of submission with 50 images with various group sizes
and various k values for k-repeated evaluation; (b) processing time to evaluate images with k= 5
and various group sizes
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Figure 6: (a) Results of evaluating image quality with group size 120 and various k values for
k-repeated evaluation; (b) The quality evaluation latency of submission with 50 images once, as
well as a submission with 1 Sudoku solution, with various k values for k-repeated evaluation

6 Conclusion

In this paper, we proposed dTEE, for building a platform for distributed trusted computing
via TEEs. It aims at being infrastructure of trusted computing for blockchain-based crowdsourcing
applications to collect large-scale sourcing data with high availability. It is Byzantine fault-tolerant
and self-governing without reliance on any trusted third parties.
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