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Abstract: The aim of this research is to develop a mechanism to help medical
practitioners predict and diagnose liver disease. Several systems have been
proposed to helpmedical experts by diminishing error and increasing accuracy
in diagnosing and predicting diseases. Among many existing methods, a few
have considered the class imbalance issues of liver disorder datasets. As all
the samples of liver disorder datasets are not useful, they do not contribute
to learning about classifiers. A few samples might be redundant, which can
increase the computational cost and affect the performance of the classifier.
In this paper, a model has been proposed that combines noise filter, fuzzy sets,
and boosting techniques (NFFBTs) for liver disease prediction. Firstly, the
noise filter (NF) eliminates the outliers from the minority class and removes
the outlier and redundant pair from the majority class. Secondly, the fuzzy set
concept is applied to handle uncertainty in datasets. Thirdly, the AdaBoost
boosting algorithm is trained with several learners viz, random forest (RF),
support vector machine (SVM), logistic regression (LR), and naive Bayes
(NB). The proposed NFFBT prediction system was applied to two datasets
(i.e., ILPD andMPRLPD) and found that AdaBoost with RF yielded 90.65%
and 98.95% accuracy and F1 scores of 92.09% and 99.24% over ILPD and
MPRLPD datasets, respectively.

Keywords: Fuzzy set; imbalanced data; liver disease prediction; machine
learning; noise filter

1 Introduction

Liver diseases are the leading cause of death in India and across the world. Approximately
two million people die annually because of liver disease throughout the world. In India alone,
216,865 people died from liver disease in 2014, representing 2.44% of all deaths in the country.
In 2017, the number of deaths increased to 259,749, representing 2.95% of all deaths [1].

Diagnosing liver disease in its early stages is a complicated task, as the liver continues to
perform normally until it is severely damaged [2]. The diagnosis and treatment of liver disease
are performed by medical experts. However, inappropriate treatment sometimes wastes time and

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.016957


3514 CMC, 2021, vol.68, no.3

money and causes the loss of life. Consequently, the development of an efficient and automatic
liver disease prediction system is necessary for efficient and early diagnosis. Automated liver
prediction systems take advantage of the data generated from the liver function test (LFT).
This system can support the medical practitioner in diagnosing liver disease with less effort and
more accuracy. The classification technique of a machine learning algorithm is applied when
developing automated disease prediction systems [3,4]. The purpose of the classification algorithm
is to predict the class label of an unknown instance [5] and work adequately when the instances
of the dataset are uniformly distributed among all the classes (balanced) [6]. Most healthcare
datasets, such as those for breast cancer [7,8], heartbeat [9], diabetes [10–13], kidney [14], and
liver disorders [15–17], involve class imbalance. The standard classification performs poorly when
a dataset is not uniformly distributed among all the classes (imbalanced) because minority class
data are classified as majority class data [18–20].

Four procedures have been proposed to mitigate the issues related to class imbalance. These
are (a) algorithm modifications, (b) a sampling-based technique, (c) a cost-sensitive approach, and
(d) ensemble learning techniques.

Algorithm modifications: This procedure adjusts the conventional algorithm by biasing the
learning to find a solution to the imbalance problem [21]. This strategy does not disturb the
original pattern of the data, whereas this methodology requires an awareness of the corresponding
classifier and application [21,22].

Sampling-based technique (SBT) [23–26]: Sampling can be accomplished either by over-
sampling or undersampling. Oversampling adds new or duplicate records to the minority class
until the desired class proportion is obtained, whereas undersampling removes records from the
majority class until the desired class ratio is achieved. The disadvantage of undersampling is that
information may be lost if significant data are removed, while its advantage is that it decreases
learning times by reducing the learning data size. Oversampling suffers from overfitting and
increased model learning times.

Cost-sensitive approach: This approach utilizes the variable cost matrix for instances that are
misclassified by the model. The cost of misclassification needs to be defined in this approach,
which is not usually given in datasets [24,25,27,28].

Ensemble learning techniques (ELT): Reference [29] Ensemble learning (EL) uses multiple
learning algorithms to accomplish the same task. ETL has a better classification and generaliza-
tion ability than machine learners that use a single learner. In recent times, an EL that combines
ELT and SBT gained recognition for its ability to solve class imbalance issues.

The objective of this work is to develop a noise filter, fuzzy sets, and boosting technique
(NFFBT) approach to predict liver disorder. The proposed NFFBT approach aids medical prac-
titioners in interpreting the consequences of LFT. Existing liver disorder detection techniques
mostly apply the boosting technique to handle imbalanced issues of LFT datasets only. Mean-
while, the proposed NFFBT approach applies a noise filter to eliminate all noise from the
majority and minority classes. This preserves the dataset’s characteristics and reduces the model’s
training time. Then, the fuzzification system—which eliminates the uncertainty in the relationship
among the features of datasets—and the AdaBoost boosting algorithm are applied with different
classifiers to handle issues of class imbalance. The architecture of the noise filter is shown
in Fig. 1.

The rest of this paper is arranged as follows. Section 2 discusses related works and the
authors’ vested motivation for this research work. A description of the proposed methodology
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for NFFBT development is presented in Section 3. The results and discussion are presented in
Section 4. Finally, a summary of the findings and the conclusions of this research work are given
in Section 5.

New minority
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Liver disorder 
dataset

Minority instances Majority instances

Elimination of redundant pair

Preprocessed 
data

New majority
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Elimination of tomek link pair from majority class (outliers)
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Figure 1: Architecture of noise filter

2 Related Works

In the last few years, a lot of studies have been performed on liver disorder predictions
using classification techniques. In these studies, the decisions made by the prediction systems and
input data from patients impacted liver disease diagnoses. Literature reviews concerned with the
proposed methodology are summarized in Tab. 1.

Table 1: Summary of literature reviews concerned with the proposed methodology

Sl. No. Author and
year

Technique used Dataset Finding Issues

1 Kang et al.
(2017) [24]

Noise-filtered Sixteen different
datasets

The proposed method
improves the results over
original
undersampling-based
methods.

Eliminates noise
from minority class
data only.

2 Abdar et al.
(2018) [30]

MLPNN and
boosted DT

ILPD dataset B-C5.0 and MLPNNB-C5.0
produce the highest
accuracies (92.61% and
94.12%, respectively).

Performs
implementations on
only one dataset.

(Continued)
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Table 1: Continued

Sl. No. Author and
year

Technique used Dataset Finding Issues

3 Lin et al.
(2010) [31]

ANN, AHP,
and CBR
methods

Data from 510
liver patients from
a medical center
in Taiwan

ANN assists the physician
in recognizing the existence
of disease; CBR with AHP
assists in classifying
different types of liver
disease.

Performs
implementations on
few data.

4 Tan (2005) [32] NWKNN
method

Reuter and TDT2
text dataset

NWKNN provides better
performance for unbalanced
text document classification
than KNN.

Performs
classifications of
unbalanced text
documents.

5 Jiang et al.
(2019) [9]

Proposed
MMNNS for
classification of
imbalance
heartbeats of
ECG signals

MIT-BIH
arrhythmia,
European ST-T,
and MIT-BIH ST
change database

The proposed method
produced 97.3% accuracy.

Performance can be
improved by using
other types of neural
networks.

6 Nahato et al.
(2016) [33]

Fuzzy sets and
ELM for
classifying
clinical datasets

CHD, SHD, and
PID dataset

Achieved the highest
accuracy (94.44%) for a
CHD dataset with five class
labels.

Nature-inspired
optimization
techniques can be
applied to improve
the FELM results.

7 Auxilia [34] DT, NB, RF,
SVM, and
ANN

ILPD dataset Analyzed the various
classification algorithm and
found DT work best.

Performed
performance analysis
of existing algorithm
on only one dataset.

8 Vats et al. [35] DBSCAN,
K-means, and
affinity
propagation

Liver disease data Performance is measured
based on adjusted mutual
information, V measure,
completeness, homogeneity,
adjusted Rand index, and
silhouette coefficient;
K-mean is better than that
of other techniques.

Unclear which
dataset was used and
how liver disease can
be predicted.

9 Lin et al.
(2010) [31]

SVDD with
GSO algorithm

Collected LFT
data from a
community
hospital in Beijing

The proposed method
produces 84.28% accuracy,
96% sensitivity, and 86.28%
specificity.

The method is
implemented on a
sample of 225
records from 1000
patients’ liver
function test records.

10 Patel et al.
(2017) [36]

Hybrid fuzzy
weighted
nearest
neighbor (fuzzy
NWKNN

Work on six
imbalanced
datasets

The fuzzy NWKNN
method is an extension of
the NWKNNmethod.

Assigns a weight for
majority and
minority class data
but calculations of
weight fail under
some conditions.

(Continued)
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Table 1: Continued

Sl. No. Author and
year

Technique used Dataset Finding Issues

11 Kumar et al.
(2019) [15]

SVM and
K-NN with
SMOTE
technique for
predicting liver
disorders based
on imbalanced
liver function
test data

ILPD and
MPRLPD

SVM with SMOTE
performs better than K-NN
with SMOTE.

The SMOTE
technique
oversamples the
dataset, which can
extend the training
time.

From the above studies, it is observed that there is still a need to develop an efficient and
effective system for liver disease detection using a machine learning approach.

Tab. 2 compares previous studies about liver disease prediction. From the comparison, it is
observed that these studies have not considered outliers of the majority and minority classes and
have neglected the class imbalance issues of LFT datasets. This paper will address these issues.

Table 2: Summary of literature reviews about liver disease prediction

Sl. No. Authors and years Algorithm Accuracy Datasets/remarks

1 Alfisahrin et al.
(2013) [37]

NBTree 67.01% ILPD

2 Jin et al.
(2014) [38]

LR 72.70% ILPD

3 Abdar (2015) [39] C5.0 87.91% ILPD
4 Ramkumar et al.

(2017) [40]
Bayes theorem 50.00% Sample of 20 patients of

BUPA dataset
5 Hamid et al.

(2017) [11]
Stochastic gradients AUC-ROC= 89.5% This model has been

examined on only 99 liver
ultrasound images.

6 Hashem et al.
(2018) [41]

Alternative decision
tree (ADT)

84.40% –

7 Abdar et al.
(2017) [42]

Boosted C5.0 93.75% ILPD

8 Abdar et al.
(2018) [30]

MLPNNB-C5.0 94.12% ILPD

9 Lin et al.
(2010) [31]

SVDD and GSO 84.28% Sample of 225 patient
records from 1000 LFT
records.

10 Auxilia [34] DT 81% ILPD
11 Kumar et al.

(2020) [17]
Variable-NWFKNN 78.46%, 78.46%

and 95.79%
BUPA, ILPD, and
MPRLPD datasets.
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3 Proposed Methodology

The proposed method consists of three stages: noise filtering, fuzzification, and the application
of the AdaBoost boosting algorithm with different classifiers.

3.1 Noise Removal
The noise filter mechanism eliminates outliers from the dataset. It is an essential technique for

noise removal, as real-world datasets are often noisy (LFT datasets are no exception). KNN filter
and redundancy-driven Tomek-linked-based undersampling techniques are used to remove noise
from minority and majority classes.

3.1.1 KNN Filter
The KNN filter [21] eliminates outliers from the minority class. It categorizes minority

instances into highly desirable samples, moderately desirable samples, and outliers. A sample from
the minority class is labeled highly desirable if all the nearest neighbors of that instance belong
to the minority class. A sample from the minority class is labeled moderately desirable if all the
nearest neighbors of that instance belong to both the minority and majority class. A sample from
the minority class is labeled an outlier (or noise) if all the nearest neighbors of that instance
belong to the majority class. The procedure of the KNN filter is given in Algorithm 1.

For dataset D, Dm ⊂D and DM ⊂D. Dm and DM are the minority and majority class sample,
respectively, in D.

Algorithm 1: KNN filter
1 Input: Dm, DM and K: number of nearest neighbors
2 Output: Outliers free minority class dataset D′

m
∀ i ∈Dm

3 For i= 1 to |Dm|
(1) Find the K-NN for instance i from the dataset (D) excluding the instance i.
(2) Calculate the sum of nearest neighbors belonging to the minority class in sm and the

majority class in sM
(3) If K = sM , then
(4) Instance i is considered an outlier and is marked with the label ‘o’.

4 End for
5 Delete the instances marked as ‘o’.

3.1.2 Redundancy-Driven Tomek-Linked Based Under Sampling (R_TLU)
R_TLU [23,43] eliminates Tomek-linked pairs and redundancy from the majority class. A pair

of the pattern pm and pn are called a Tomek-link pair if ¬∃pk : d (pm, pk) < d (pm, pn), where
class (pm) �= class (pn). Basically, pm and pn are called boundary instances that promote misclassifi-
cation. An instance is redundant if there exists another instance with an equal ability to perform
the same classification task. Redundant pairs are detected based on a similarity measure and can
be defined as follows: Rpair =

{(
pi, pj

) | ∀pi, pj ∈DM and similarity
(
pi, pj

)=max
}
. Based on the

contribution factor (Contrp), a redundant majority pattern can be eliminated from a majority

redundant pair
(
pi, pj

)
, which is defined as follows: Contrp= 1

N
×
{(

n∑
a=1

m∑
b=

ln f (pab |C1)

}
, where
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n is the number of instances, m is the number of attributes of each instance, ln f is log likelihood
function, and C1 is the class label of the majority class. Instances with many redundancies and a
low contribution factor are eliminated as defined in Eq. (1).

Eli(pi or pj) =max

(
similarity

(
pi, pj

)
Contrpi

,
similarity

(
pi, pj

)
Contrpj

)
, where pi, pj ∈Rpair (1)

3.2 Fuzzification Subsystem
In 1965, Zadeh [44] introduced the concept of the fuzzy set, which deals with uncertainty

arising due to the strength of the relationships among the elements of a set [37]. Let U be a
universal set, and let a fuzzy set (X over U) be represented as X = {y, μ(y) | y ∈U , μ(y)∈ [0, 1]

}
,

where μ(y) represents the degree of membership of y. The attribute of liver disorder datasets is
transformed into a fuzzy set with a specific membership value using a trapezoidal membership
function [33].

f (A, n1, n2, n3, n4)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 A< n1, A> n4

(A− n1)
(n2− n1)

n1 ≤A≤ n2

1 n2 ≤A≤ n3

(n4−A)

(n4− n3)
n3 ≤A≤ n4

(2)

Here, n1, n2, n3 and n4 are applied to determine the membership values of the attribute
value A.

3.3 Description and Fuzzification of Datasets
Numerous studies were performed using machine learning techniques. However, liver disease

predictions remain underexplored. So, the ILPD and MPRLPD datasets are used in the evaluation
of this study. The ILPD dataset consists of 583 records obtained from two classes of liver patients
(416 patients suffering from a liver disorder and 167 suffering from non-liver disorders). This
dataset was collected from the UCI repository [45], and it has 10 features. The MPRLPD dataset
consists of 7865 liver patient records. Of these patients, 6282 had some kind of liver disease, and
the other 1583 were healthy. This dataset consists of 12 features and was collected from Madhya
Pradesh in the Bhopal region of India. The dataset’s statistics (after eliminating noise, or outliers,
from the minority and majority classes) are shown in Tab. 3.

Table 3: Datasets’ statistics

Dataset #Instances #Attributes Before outlier elimination After outlier elimination

#Minority
instances

#Majority
instances

Imbalance
ratio (IR)

#Minority
instances

#Majority
instances

Imbalance
ratio (IR)

ILPD 583 10 167 416 2.5 151 202 1.34
MPRLPD 7865 12 1583 6282 3.97 1441 2923 2.03
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Figure 2: Fuzzification of the numerical features of ILPD datasets

3.3.1 Fuzzification of the ILPD Dataset
ILPD [45] dataset has nine attributes with the numerical datatype. During fuzzification, six

features, namely age, AlkPhos, SGPT, SGOT, TP, and albumin, are represented by three fuzzy
variables. Total bilirubin (TB) and direct bilirubin (DB) are represented by four variables. The
remaining attribute (A/G ratio) is represented by two variables. Fig. 2 illustrates the fuzzification
of the ILPD dataset using the membership function mentioned in Eq. (2).

3.3.2 Fuzzification of the MPRLPD Dataset
The MPRLPD dataset has 11 attributes with a numerical datatype. During fuzzification,

seven attributes, namely age, TB, IB, SGPT, SGOT, TP, and A/G ratio, are represented by three
variables, whereas AlkPhos is represented by three and four variables for children and adults,
respectively. The remaining attributes (DB and albumin) are represented by four and two variables,
respectively.

3.4 Classification Subsystem
The classification subsystem implements the boosting technique to improve the performance

of the classifier for imbalanced datasets. The boosting technique builds a strong classifier from sev-
eral weak classifiers. Weak classifiers are algorithms whose error rate is less than random guessing
(50%). In the proposed work, classification is done using the AdaBoost boosting algorithm [46,47].
The steps used in the AdaBoost algorithm are given below.

Initialization step: ∀p ∈D, set

ω (p)= 1
P
, where P is the total number of patterns.

Iteration step: for k= 1 to K

1) Based on the weight ω (p), find the best weak classifier hk (p)

2) Compute total error as Totalerror

Totalerror=
P∑
i=1

ω
(
pi
)
.1

{
1 if

[
yi �= hk

(
pi
)]

0 otherwise
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3) Compute weight αk

αk =
1
2
log

(
1−Totalerror
Totalerror

)

4) Update the weight for misclassified patterns

ω (p)=ω (p) .eak

5) Normalize the weight so that
P∑
i=1

ω
(
pi
)= 1

6) Output of the final classifier

Foutput (p)= sign

(
K∑
k=1

αkhk (p)

)

4 Results and Discussion

This section presents the evaluation of the NFFBT approach’s performance. The proposed
approach is evaluated based on two datasets. One dataset is a benchmark dataset collected from
the UCI repository, and the other is collected from a local hospital in Bhopal, India. Both datasets
have two classes. RF [47], SVM [48], LR [49], and NB [6] machine learning algorithms are applied
with a boosting technique on data prepared using the NFFBT approach (outlier-free datasets), as
well as on original datasets. MATLAB R 2014a and Python are used to conduct the experiment.
The NFFBT approach is implemented using MATLAB R 2014a, and classifications are performed
using Python.

The performance of the proposed model is validated according to measures that are calculated
based on the values of the confusion matrix. The confusion matrix [50] summarizes the predicted
results of a classifier (Tab. 4). The performance measures—namely accuracy (Accu), specificity
(Spec), sensitivity (Sens), precision (Prec), false positive rate (FPrate), false negative rate (FNrate),
F1-score, G-mean, and area under the curve (AUC)—are used to appraise the developed model,
(Tab. 5). The results are evaluated using a 10-fold cross-validation technique over the mentioned
measures.

Table 4: Confusion matrix (CM)

Actual class Predicted class Outcome

Disease (unhealthy) Disease True positive (TP)
Disease (unhealthy) No disease False positive (FP)
No disease (healthy) No disease True negative (TN)
No disease (healthy) Disease False negative (FN)

Tabs. 6 and 8 show the results of original datasets, whereas Tabs. 7 and 9 show the results
on outlier-free datasets. Tab. 6 contains the results of the original ILPD dataset. For this
dataset, Accu (78.39%), Spec (64.34%), Prec (87.74%), FPrate (35.66%), F1-score (85.28%), G-mean
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(73.05%), and AUC. (73.65%) are better obtained using AdaBoost with RF. Meanwhile, Sens.
(96.38%) and FNrate (3.62%) are better obtained using AdaBoost with NB.

Table 5: Performance measures

Measures Formula

Accu
TP+TN

TP+FP+TN +FN

Spec (TNrate)
TN

TN+FP

Sens (TPrate)
TP

TP+FN

Prec
TP

TP+FP

FPrate
FP

TN+FP

FNrate
FN

TP+FN

F1-score
2 ∗TP

2 ∗TP+FP+FN

G-mean
√
TPrate×TNrate

AUC
1+TPrate−FPrate

2

Table 6: Original ILPD dataset

Performance measures AdaBoost+RF AdaBoost+SVM AdaBoost+Logistic R AdaBoost+NB

Accu 78.39 73.58 75.64 63.81
Spec 64.34 55.28 55.36 43.92
Sens 82.95 78.48 89.14 96.38
Prec 87.74 86.78 75.00 51.20
FPrate 35.66 44.72 44.64 56.08
FNrate 17.05 21.52 10.86 3.62
F1-score 85.28 82.42 81.46 66.88
G-mean 73.05 65.87 70.25 65.06
AUC 73.65 66.88 72.25 70.15
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The ILPD dataset is processed using the NFFBT technique, for which AdaBoost is used along
with RF, SVM, LR, and NB for the outlier-free ILPD dataset (Tab. 7). It is found that AdaBoost
with RF produces better results than other mentioned classifiers for Accu (90.65%), Spec (92.75%),
Sens (89.30), Prec (95.05%), FPrate (7.25%), FNrate (10.70%), F1-score (92.09%), G-mean (91.01%),
and AUC (91.03%). Tab. 7 indicates better results than Tab. 6 because it contains results derived
from an improved ILPD dataset.

Table 7: Outlier-free ILPD dataset

Performance measures AdaBoost+RF AdaBoost+ SVM AdaBoost+Logistic R AdaBoost+NB

Accu 90.65 80.74 83.85 87.54
Spec 92.75 73.45 77.33 85.43
Sens 89.30 88.07 90.06 89.11
Prec 95.05 76.73 80.69 89.11
FPrate 7.25 26.55 22.67 14.57
FNrate 10.70 11.93 9.94 10.89
F1-score 92.09 82.01 85.12 89.11
G-mean 91.01 80.43 83.45 87.25
AUC 91.03 80.76 83.69 87.27

Accuracy is a valid metric for the efficiency of a classifier for experiments performed using
balanced datasets. In this study, both the ILPD and MPRLPD datasets are imbalanced. There-
fore, in this case, the F1-score is expected to indicate balance between precision and recall.
The F1-scores of AdaBoost +RF were 92.09% and 99.21% in Tabs. 7 and 9, respectively. This
confirmed that the AdaBoost+RF technique performs better than the other three techniques for
these two datasets.

Tab. 8 shows the results of the original MPRLPD. AdaBoost with RF produced the best
results for Accu (91.21%), Spec (85.28%), Prec (97.04%), FPrate (14.72%), F1-score (94.64%),
G-mean (88.75%), and AUC (88.82%), whereas AdaBoost with NB produced the best results for
Sens (99.70%) and FNrate (0.30%).

Table 8: Original MPRLPD dataset

Performance measures AdaBoost+RF AdaBoost+ SVM AdaBoost+Logistic R AdaBoost+NB

Accu 91.21 82.42 85.43 75.17
Spec 85.28 56.23 59.36 44.73
Sens 92.35 89.12 96.44 99.70
Prec 97.04 88.83 84.89 69.12
FPrate 14.72 43.77 40.64 55.27
FNrate 7.65 10.88 3.56 0.30
F1-score 94.64 88.97 90.30 81.64
G-mean 88.75 70.79 75.66 66.78
AUC 88.82 72.68 77.90 72.22

Tab. 9 shows the results of the improved MPRLPD dataset using the NFFBT approach.
AdaBoost with RF produced the best results for Accu (98.98%), Spec (98.00%), Sens (99.42%),
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Prec (99.01%), FPrate (2.00%), FNrate (0.58%), F1-score (20.58%), G-mean (99.21%), and AUC
(98.71%).

The Prec value of 99.01% in Tab. 9 indicates that the AdaBoost + RF combination can
predict 99 out of 100 liver patients as diseased and one liver patient as healthy. Meanwhile,
AdaBoost+SVM, AdaBoost+Logistic R, and AdaBoost+NB can predict 90.59%, 89.87%, and
92.23% patients having a liver disorder.

Table 9: Outlier-free MPRLPD dataset

Performance measures AdaBoost+RF AdaBoost+SVM AdaBoost+Logistic R AdaBoost+NB

Accu 98.95 87.05 88.93 89.30
Spec 98.00 80.72 80.90 84.10
Sens 99.42 90.13 93.35 91.83
Prec 99.01 90.59 89.87 92.23
FPrate 2.00 19.28 19.10 15.90
FNrate 0.58 9.87 6.65 8.17
F1-score 99.21 90.36 91.58 92.03
G-mean 98.71 85.29 86.91 87.88
AUC 98.71 85.42 87.13 87.96

(a) (b)

(c) (d)

Figure 3: (a & b) The ROC curve for the ILPD dataset; (c & d) the ROC curve for the MPRLPD
dataset
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Because liver disease is a significant cause of death in India and globally, patients need to be
diagnosed accurately. If a liver patient is diagnosed as false positive, then that patient’s healthy
status would be at risk. Hence, in cases with a high percentage of false positives, Spec is the
best evaluation metric. In Tab. 9, the Spec value for Adaboost+RF was 98%, meaning that false
positives are rare (2%).

The ROC curve is framed by plotting TPrate against FPrate at various threshold levels. It
gives a visual portrayal of the relative tradeoffs between the TPrate (Sens) and FPrate (1-Spec)
of classifications with respect to data distributions (FPrate is on the x-axis, and TPrate is on the
y-axis).

AUC is a measure of the separation capability of classifiers in a particular dataset. The
ROC curve is drawn from the results of the proposed NFFBT in the ILPD and MPRLPD
datasets. A comparison of Fig. 3a and 3b shows that all the four techniques (i.e., AdaBoost+RF,
AdaBoost+ SVM, Adaboost+ LR, and AdaBoost+NB) presented comparatively better separa-
bility between classes of diseased and healthy people for the outlier-free ILPD dataset than the
original ILPD dataset. Specifically, AdaBoost + RF produced the best disease predictions, and
AdaBoost+ SVM was the poorest performer. Similarly, these four techniques also showed more
promising results in the outlier free MPRLPD dataset (Fig. 3d) than in the original MPRLPD
dataset (Fig. 3c). Specifically, AdaBoost + RF performed the best regarding the separation of
healthy patients and those with liver disease, indicated by the fact that the AUC was close to 1.

5 Conclusion

In this paper, an NFFBT approach is proposed. This approach works in two main phases.
First noise is eliminated using KNN filter and R_TLU techniques. The KNN filter eliminates
outliers from the minority class, and R_TLU eliminates outliers from the majority class. After
that, datasets are fuzzified so that uncertainty can be handled. In the second phase, the fuzzified
datasets are classified using AdaBoost with RF, SVM, LR, and NB.

ILPD and MPRLPD datasets have been used in experiments to evaluate the performance of
the NFFBT approach. These datasets are imbalanced, and so the AdaBoost algorithm is applied
to the dataset because it can classify the imbalanced datasets. The AdaBoost boosting algorithm is
applied with different classifiers, both without outlier removal (original dataset) and after removing
noise from and fuzzifying (NFFBT) the datasets.

The results show improvements in Accu (12.26%), Spec (28.41%), Sens (6.35%), Prec (7.31%),
FPrate (28.41%), FNrate (6.35%), F1-score (6.81%), G-mean (17.96%), and AUC (17.38%) using
the NFFBT approach when compared to the original ILPD dataset. Meanwhile, improvements
in Accu (7.74%), Spec (12.72%), Sens (7.07%), Prec (1.97%), FPrate (12.72), FNrate (7.07%),
F1-score (4.57%, G-mean (9.96%), and AUC (9.89%) were achieved using NFFBT approach when
compared with the original MPRLPD dataset.

These results confirm the advantageous performance of the proposed NFFBT approach when
compared to AdaBoost with RF. Based on the results, we argue that the NFFBT can be used by
healthcare organizations and liver research institutes to classify imbalanced LFT data. It can also
be utilized as a screening tool by doctors to predict and diagnose liver disease.

In the future, similar experiments can be done for imbalanced datasets in other domains like
finance, cyber forensics, and athlete doping tests, among many others.
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