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Abstract: Variance is one of the most vital measures of dispersion widely
employed in practical aspects. A commonly used approach for variance esti-
mation is the traditional method of moments that is strongly influenced by
the presence of extreme values, and thus its results cannot be relied on. Find-
ing momentum from Koyuncu’s recent work, the present paper focuses first
on proposing two classes of variance estimators based on linear moments
(L-moments), and then employing them with auxiliary data under double
stratified sampling to introduce a new class of calibration variance estima-
tors using important properties of L-moments (L-location, L-cv, L-variance).
Three populations are taken into account to assess the efficiency of the new
estimators. The first and second populations are concerned with artificial
data, and the third populations is concerned with real data. The percentage
relative efficiency of the proposed estimators over existing ones is evaluated.
In the presence of extreme values, our findings depict the superiority and
high efficiency of the proposed classes over traditional classes. Hence, when
auxiliary data is available along with extreme values, the proposed classes of
estimators may be implemented in an extensive variety of sampling surveys.

Keywords: Variance estimation; L-moments; calibration approach; double
sampling; stratified random sampling

1 Introduction

Planning is an integral part of the administrative process for the development of any field.
Among the most important outputs of the planning process are the plans and programs that
institutions seek to execute. One of the most important pillars of planning success is the avail-
ability of data and information that enables the decision-maker to conduct scientific analysis. In
statistical literature, the additional information attached to each element is referred to as auxiliary
(or ancillary, supplementary, supporting, concomitant) information. Whatever type of information
is offered, it can be used to identify better sampling strategies. Auxiliary information has been
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used with sampling techniques for many years. The authors of [1,2] were pioneers in the usage
of auxiliary information regarding the development of estimation techniques with high estimation
accuracy. Recently, there have been many interesting works using auxiliary information in different
ways [3–12].

In all sample surveys, the major concern is the derivation of point estimators for various
parameters of interest. Nevertheless, it is equally important to evaluate the performance of these
estimators. The importance of variance estimators lies primarily in the fact that the estimated
variance, of any estimator, is a major component of its quality. Reference [13] pointed out that
the importance of variance estimation lies in the fact that it offers an indicator of the quality of
estimators. It can be used in calculating confidence intervals, and drawing accurate conclusions,
and can provide indicators of data quality. The sampling design that underlies a sample survey
is one of the most important factors determining both the size of sample and the procedure
needed to estimate the variances. More specifically, there are many components of sample designs
related to the estimation of variances, including the number of sampling stages. In single or
one-stage sample designs, the stage is very direct, and the closed formula can be derived for
estimation of variance. In designs with more than one stage, the state becomes complicated since
there is more than one source of variance. At each stage, unit sampling (primary, secondary, etc.)
leads to an additional component of variance. In cases where all other components of sampling
and estimation are rather simple, a closed formula can be obtained by calculating the variance
at each stage. However, common practice is to roughly estimate the variance by estimating the
variation among the initial sampling units, since this is the dominant component of the overall
variance. For example, with double or two-stage sampling, there are two sources of variance
such as variation resulting from the selection of the primary sampling units and the variation
resulting from the selection of the secondary sampling units (for more details, see [14]). There
are also many studies that have employed double sampling for real data [15–18]. In this paper,
we consider double stratified random sampling. With stratified sampling, the population is split
into subpopulations that are not overlapping; these are known as strata and typically describe
homogeneous subpopulations, resulting in reduced overall variability. A random sample is chosen
from each stratum, independently of the other stratum. A stratified sampling pattern may be the
same or different from that of other stratum.

Consider X and Y as the auxiliary and study variables associated with a finite population of
size N, and �= {ν1, ν2, . . . , νn}, where � is stratified into R strata with the hth stratum including

Nh units. h= 1, 2, . . . , R, and
∑R

h=1 Nh =N. For the first stage, a simple random sample with size

n∗h is chosen from the stratum h without replacement such as
∑R

h=1 n
∗
h = n∗. Then the sample nh(

nh < n∗h
)
for the second stage is selected. h= 1, 2, . . . , R, (xhi, yhi) represents the observed values

of X and Y with i = 1, 2, . . . , Nh, and (s∗2xh, s
2
xh) and (s∗2yh, s

2
yh) represent the variances of X and

Y for the first and second stage samples, respectively. In view of this double stratified sampling
design, the traditional variance estimator is

To=
R∑
h=1

Whs
2
yh (1)
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It is worth noting that s2yh is based on traditional moments and hence is highly affected by

the presence of extreme values. Note also that Wh =
Nh

N
is the stratum’s weight.

The analysis of sample data is complex. The complexity of the analysis increases when the
data contains unusual points (outliers or extreme values) that affect the robustness of the variance
estimation under traditional central moments. One of the solutions to tackle this issue is to
use L-moments instead of traditional central moments. L-moments provide a robust statistical
framework for the analysis. L-moments [19] are determined by linear combinations of the expected
values of the order statistics (O.S.). Furthermore, calibration estimation is another common
statistical approach that relies on the use of auxiliary information to adjust the original weights
of the design and improve the accuracy of estimators. The authors of [20] were pioneers in the
use of calibration estimation with survey data and several additional works on mean estimation
have been published since (for example, see [21–23]).

In the present paper, our objective is to develop some new classes of variance estimators
for a variable of interest, based on L-moments and the calibration approach under double
stratified random sampling. The remainder of this article is organized as follows. In Section 2,
the L-moments and proposed classes are presented in detail. Numerical illustrations of three
populations are offered in Section 3 to evaluate the performance of the new estimators. Finally,
Section 4 provides conclusions.

2 L-Moments and Proposed Classes

Reference [19] described the L-moments as expectations of the order statistics of certain linear
combinations. L-moments can be specified for any random variable for which a mean exists. They
are used to describe probability distributions and estimate parameters, and their estimates are
used for summarizing and describing the samples of observed data. There are many advantages
of L-moments over traditional moments: they are linear data functions, they suffer less from the
effects of sample change-ability, they are more robust to outliers/extreme values in data, and they
enable safer inferences made from small samples about any fundamental population parameter.
The general population mathematical forms of first four L-moments for the auxiliary variable X
in relation to the stratum h are defined as follows:

L1xl =E (X1:1)

L2xl =
1
2
E (X2:2−X1:2)

L3xl =
1
3
E (X3:3− 2X2:3+X1:3)

L4xl =
1
4
E (X4:4− 3X3:4+ 3X2:4−X1:4) .

Similarly, we can write second-stage sample L-moments of the auxiliary variable as

l1xl =
(
nh
1

)−1 nh∑
d=1

xh(d)
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l2xl =
1
2

(
nh
2

)−1 nh∑
d=1

{(
d− 1

1

)
−
(
n− d

1

)}
xh(d)

l3xl =
1
3

(
nh
3

)−1 nh∑
d=1

{(
d− 1

2

)
− 2

(
d− 1

1

)(
n− d

1

)
+
(
n− d

2

)}
xh(d)

l4xl =
1
4

(
nh
4

)−1 nh∑
d=1

{(
d− 1

3

)
− 3

(
d− 1

2

)(
n− d

1

)
+ 3

(
d− 1

1

)(
n− d

2

)
−
(
n− d

3

)}
xh(d).

where xh(d) represents the dth order statistics with binomial coefficient (:). Similarly, we can write
the L-moments expression for the first-stage sample as l∗1xl, l

∗
2xl, l

∗
3xl, and l∗4xl. Furthermore, we

can write the mathematical expressions of L-moments for the study variable Y by adapting the
structure of auxiliary variable X.

2.1 First Proposed Class of Estimators
The authors of [9,10] used robust regression and robust co-variance matrices methodologies

for improved estimation of the population’s mean. Their use of robust regression and robust
co-variance matrices allows us to utilize robust moments (L-moments) instead of traditional
moments. Hence, taking motivation from [21], we propose the following class of L-moments based
calibration estimators of variance under double stratified sampling:

Vai =
R∑
h=1

γhs
2
ymh (2)

where the calibrated weights are selected to minimize the measure of chi-square distance

R∑
h=1

(γh−Wh)
2

Whθh
(3)

is subject to the following calibration constraints

R∑
h=1

γh =
R∑
h=1

Wh (4)

R∑
h=1

γh�xmh =
R∑
h=1

Wh�
∗
xmh (5)

where s2ymh = l22yl is the second-stage L-variance of Y ; �∗
xmh =

(
x∗h = l∗1xl, C

∗
xmh=

l∗2xl
l∗1xl

, s∗2xmh = l∗22xl

)
is the first-stage L-location, L-cv, and L-variance; and �xmh=

(
xh = l1xl, Cxmh=

l2xl
l1xl

, s2xmh = l22xl

)
is the second-stage L-location, L-cv, and L-variance of X .



CMC, 2021, vol.68, no.3 3415

The Lagrange function is given as

T =
R∑
h=1

(γh−Wh)
2

Whθh
− 2μ11

(
R∑
h=1

γh−
R∑
h=1

Wh

)
− 2μ12

(
R∑
h=1

γh�xmh−
R∑
h=1

Wh�
∗
xmh

)
(6)

where μ11 and μ12 are the Lagrange multiples. To obtain the optimum value for the calibration
weight, we differentiate the Lagrange function with respect to γh and set it equal to zero. Thus
the weight of calibration can be obtained in the form

γh=Wh+Whθh (μ11+μ12�xmh) (7)

Now, μ11 and μ12 can be obtained by replacing γh in Eqs. (4) and (5) with its value given by
Eq. (7). Thus, we obtain a weight of calibration of

γh=Wh+Whθh

⎡⎢⎣ −
(∑R

h=1Wh
(
�∗
xmh−�xmh

)(∑R
h=1Whθh�xmh

))
(∑R

h=1Whθh�
2
xmh

)(∑R
h=1Whθh

)
−
(∑R

h=1Whθh�xmh

)2
⎤⎥⎦

+Whθh�xmh

⎡⎢⎣
(∑R

h=1Wh
(
�∗
xmh−�xmh

)(∑R
h=1Whθh

))
(∑R

h=1Whθh�
2
xmh

)(∑R
h=1Whθh

)
−
(∑R

h=1Whθh�xmh

)2
⎤⎥⎦

(8)

By substituting the value of γh from Eq. (8) with that from Eq. (2), we can obtain the
proposed estimator of the calibration as follows:

Vai =
R∑
h=1

Whs
2
ymh+ β̂cv

R∑
h=1

Wh
(
�∗
xmh−�xmh

)
(9)

where

β̂cv =

⎡⎢⎣
(∑R

h=1Whθh

)(∑R
h=1Whθh�xmhs2ymh

)
−
(∑R

h=1Whθh�xmh

)(∑R
h=1Whθhs2ymh

)
(∑R

h=1Whθh�
2
xmh

)(∑R
h=1Whθh

)
−
(∑R

h=1Whθh�xmh

)2
⎤⎥⎦ (10)

The members of the first proposed class are provided in Tab. 1.

2.2 Second Proposed Class of Estimators
By extending the idea of Vai, we propose the second class of estimators of variance under

double stratified sampling as given below:

Vbi =
R∑
h=1

γhs
2
ymh (11)

Through using the distance of chi-square,

R∑
h=1

(γh−Wh)
2

θhWh
(12)
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Table 1: First proposed class of estimators

Vai θh �xmh �∗
xmh

Va1 1 xh x∗h

Va2
1
xh

xh x∗h

Va3
1

sxmh
xh x∗h

Va4
1

s2xmh
xh x∗h

Va5
1

Cxmh
xh x∗h

Va6 1 Cxmh C∗
xmh

Va7
1
xh

Cxmh C∗
xmh

Va8
1

sxmh
Cxmh C∗

xmh

Va9
1

s2xmh
Cxmh C∗

xmh

Va10
1

Cxmh
Cxmh C∗

xmh

Va11 1 s2xmh s∗2xmh

Va12
1
xh

s2xmh s∗2xmh

Va13
1

sxmh
s2xmh s∗2xmh

Va14
1

s2xmh
s2xmh s∗2xmh

Va15
1

Cxmh
s2xmh s∗2xmh

which is subject to the following three calibration constraints:

R∑
h=1

γh�xmh =
R∑
h=1

Wh�
∗
xmh (13)
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R∑
h=1

γhs
2
xmh =

R∑
h=1

Whs
∗2
xmh (14)

R∑
h=1

γh=
R∑
h=1

Wh (15)

The Lagrange function is given as

T =
R∑
h=1

(γh−Wh)
2

θhWh
− 2μ21

(
R∑
h=1

γh�xmh−
R∑
h=1

Wh�
∗
xmh

)
− 2μ22

(
R∑
h=1

γhs
2
xmh−

R∑
h=1

Whs
∗2
xmh

)

− 2μ23

(
R∑
h=1

γh−
R∑
h=1

Wh

)

After taking the derivative of T with respect to γ and setting it equal to zero, we get

γh=Wh+ θhWh

(
μ21�xmh+μ22s2xmh+μ23

)
. (16)

The following equations system can be obtained by substituting Eq. (16) into Eqs. (13)–(15)
respectively:

[Pa]3×3 [Pb]3×1 = [Pc]3×1

where

Pb =

⎡⎢⎣μ21

μ22

μ23

⎤⎥⎦ , Pc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∑
h=1

Wh�
∗
xmh−

R∑
h=1

Wh�xmh

R∑
h=1

Whs
∗2
xmh−

R∑
h=1

Whs
2
xmh

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

Pa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∑
h=1

θhWh�
2
xmh

R∑
h=1

θhWh�xmhs
2
xmh

R∑
h=1

θhWh�xmh

R∑
h=1

θhWh�xmhs
2
xmh

R∑
h=1

θhWhs
4
xmh

R∑
h=1

θhWhs
2
xmh

R∑
h=1

θhWh�xmh

R∑
h=1

θhWhs
2
xmh

R∑
h=1

θhWh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Upon solving the equations system for μs, we get

μ21 = A1

D1
, μ22 = B1

D1
, μ23 = C1

D1
,

where

A1 =
(

R∑
h=1

Wh
(
�∗
xmh−�xmh

))( R∑
h=1

θhWh

)(
R∑
h=1

θhWhs
4
xmh

)

−
(

R∑
h=1

Wh
(
�∗
xmh−�xmh

))( R∑
h=1

θhWhs
2
xmh

)2

+
(

R∑
h=1

Wh

(
s∗2xmh− s2xmh

))( R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWhs
2
xmh

)

−
(

R∑
h=1

Wh

(
s∗2xmh− s2xmh

))( R∑
h=1

θhWh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)

B1 =
(

R∑
h=1

Wh

(
s∗2xmh− s2xmh

))( R∑
h=1

θhWh

)(
R∑
h=1

θhWh�
2
xmh

)

−
(

R∑
h=1

Wh

(
s∗2xmh− s2xmh

))( R∑
h=1

θhWh�xmh

)2

−
(

R∑
h=1

Wh
(
�∗
xmh−�xmh

))( R∑
h=1

θhWhs
2
xmh�xmh

)(
R∑
h=1

θhWh

)

+
(

R∑
h=1

Wh
(
�∗
xmh−�xmh

))( R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWhs
2
xmh

)

C1 =
(

R∑
h=1

Wh
(
�∗
xmh−�xmh

))( R∑
h=1

θhWhs
2
xmh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)

−
(

R∑
h=1

Wh
(
�∗
xmh−�xmh

))( R∑
h=1

θhWhs
2
xmh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)

+
(

R∑
h=1

Wh

(
s∗2xmh− s2xmh

))( R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWh�xmhs
2
xmh

)

−
(

R∑
h=1

Wh

(
s∗2xmh− s2xmh

))( R∑
h=1

θhWh�
2
xmh

)(
R∑
h=1

θhWhs
2
xmh

)
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D1 =
(

R∑
h=1

θhWh

)(
R∑
h=1

θhWhs
4
xmh

)(
R∑
h=1

θhWh�
2
xmh

)

−
(

R∑
h=1

θhWh�xmh

)2( R∑
h=1

θhWhs
4
xmh

)

−
(

R∑
h=1

θhWh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)2

−
(

R∑
h=1

θhWhs
2
xmh

)2( R∑
h=1

θhWh�
2
xmh

)

+ 2

(
R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWhs
2
xmh

)(
R∑
h=1

θhWh�xmhs
2
xmh

)

When substituting these μs, into Eq. (16) and then Eq. (11), we obtain the following:

Vbi =
R∑
h=1

Whs
2
ymh+β3(dnew)

R∑
h=1

Wh
(
�∗
xmh−�xmh

)+β4(dnew)

R∑
h=1

Wh

(
s∗2xmh− s2xmh

)
where β3(dnew) = A∗

1
D1

, β4(dnew) = B∗
1

D1
, and

A∗
1 =

(
R∑
h=1

θhWh�xmhs
2
ymh

)(
R∑
h=1

θhWh

)(
R∑
h=1

θhWhs
4
xmh

)

−
(

R∑
h=1

θhWh�xmhs
2
ymh

)(
R∑
h=1

θhWhs
2
xmh

)2

−
(

R∑
h=1

θhWhs
2
xmhs

2
ymh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)(
R∑
h=1

θhWh

)

+
(

R∑
h=1

θhWhs
2
xmhs

2
ymh

)(
R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWhs
2
xmh

)

+
(

R∑
h=1

θhWhs
2
ymh

)(
R∑
h=1

θhWhs
2
xmh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)

−
(

R∑
h=1

θhWhs
2
ymh

)(
R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWhs
4
xmh

)
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B∗
1 =

(
R∑
h=1

θhWh�xmhs
2
ymh

)(
R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWhs
2
xmh

)

−
(

R∑
h=1

θhWh�xmhs
2
ymh

)(
R∑
h=1

θhWh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)

+
(

R∑
h=1

θhWhs
2
xmhs

2
ymh

)(
R∑
h=1

θhWh

)(
R∑
h=1

θhWh�
2
xmh

)

−
(

R∑
h=1

θhWhs
2
xmhs

2
ymh

)(
R∑
h=1

θhWh�xmh

)2

+
(

R∑
h=1

θhWhs
2
ymh

)(
R∑
h=1

θhWh�xmh

)(
R∑
h=1

θhWhs
2
xmh�xmh

)

−
(

R∑
h=1

θhWhs
2
ymh

)(
R∑
h=1

θhWh�
2
xmh

)(
R∑
h=1

θhWhs
2
xmh

)

The members of the second proposed class are listed in Tab. 2.

Table 2: Second proposed class of estimators

Vbi θh �xmh �∗
xmh

Vb1 1 xh x∗h

Vb2
1
xh

xh x∗h

Vb3
1

sxmh
xh x∗h

Vb4
1

s2xmh
xh x∗h

Vb5
1

Cxmh
xh x∗h

Vb6 1 Cxmh C∗
xmh

Vb7
1
xh

Cxmh C∗
xmh

Vb8
1

sxmh
Cxmh C∗

xmh

Vb9
1

s2xmh
Cxmh C∗

xmh

Vb10
1

Cxmh
Cxmh C∗

xmh
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3 Numerical Illustrations

Here, we evaluate the performance of the proposed estimators through three populations.

3.1 Simulation Design (Population-1)
In this article, we consider the population with size N = 1000. Utilizing an equal allocation

of a sample with size 100 is selected from hth stratum, and the total sample size nh = 400.
Furthermore, for stratum h, random variables Xh and Yh are defined as follows:

Yh= δ+KXh+ εXp
h , for the hth stratum (17)

where Xh for h= 1, 2, 3, 4 follows Gamma distributions with parameter values as given below:

X1 ∼Gh (2.6, 3.8) , for h= 1

X2 ∼Gh (2.0, 3.1) , for h= 2

X3 ∼Gh (1.5, 2.7) , for h= 3

X4 ∼Gh (2.9, 3.1) , for h= 4.

ε follows a standard normal distribution, and δ = 5, p= 1.6, and K = 2.

Figs. 1–4 show the scatter plots for each stratum. The existence of extreme values is clearly
demonstrated by these figures and are therefore fitting for evaluating our proposed estimators.

Figure 1: Population-1, h= 1

The simulation steps are as below:

Step 1: Select a random sample with size nh through SRSWOR from stratum h.

Step 2: Find the value of variance estimate, say ω = Vai, Vbi where ai = 1, 2, . . . , 15 and
bi= 1, 2, . . . , 10 .

Step 3: Repeat Steps 1 and 2 for L= 5000 times. Obtain ω1, ω2, . . . , ωL .
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Step 4: Compute the mean square error (MSE) as

MSE (ω)= 1
L

L∑
i=1

(ω−ω)2

Step 5: Compute the percentage relative efficiency (PRE) as

PRE (ω)= MSE (T0)

MSE (ω)
× 100

Figure 2: Population-1, h= 2

Figure 3: Population-1, h= 3
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Figure 4: Population-1, h= 4

The estimators’ PRE obtained from the above five steps are provided in Tab. 3.

Table 3: PRE for Population-1

Va1−Va5 Va6−Va10 Va11−Va15 Vb1−Vb5 Vb6−Vb10

Va1 = 422.00 Va6 = 188.39 Va11 = 478.67 Vb1 = 140.80 Vb6 = 134.25
Va2 = 412.72 Va7 = 186.00 Va12 = 475.95 Vb2 = 140.67 Vb7 = 134.86
Va3 = 417.20 Va8 = 187.29 Va13 = 478.54 Vb3 = 140.86 Vb8 = 134.44
Va4 = 410.80 Va9 = 185.05 Va14 = 475.64 Vb4 = 140.79 Vb9 = 134.44
Va5 = 422.86 Va10 = 187.10 Va15 = 476.58 Vb5 = 140.72 Vb10 = 133.43

3.2 Real Life Data
The apple fruit is one of the most common types of fruits. It is native to Central Asia, but

today it grows worldwide with different colors and sizes. The apple fruit is rich in fiber, vitamins,
and antioxidants and has many health benefits.

In the present article, we use collected apple fruit data used by [24], where

Population-2: X= number of apple trees in 1999, Y= level of apple production in 1999.

Population-3: X= level of apple production in 1998, Y= level of apple production in 1999.

It should be noted that we consider 477 villages in four strata in 1999, termed (1: Marmarian),
(2: Agean), (3: Mediterranean), and (4: Central Anatolia). The scatter plots of extreme values
for each stratum are shown in Figs. 5–12. The estimators’ PREs are computed as defined in
Subsection 3.1, and are presented in Tabs. 4 and 5. The first-stage samples with sizes n∗1, n

∗
2, n

∗
3
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and n∗4 are selected, and then from these samples the second-stage samples with sizes n1, n2, n3,
and n4 are selected:

N1 = 106, N2 = 106, N3 = 94, N4 = 171,

n∗1 = 58, n∗2 = 58, n∗3 = 52, n∗4 = 94,

n1 = 29, n2 = 29, n3 = 26, n4 = 47.

Figure 5: Population-2, h= 1

Figure 6: Population-2, h= 2
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Figure 7: Population-2, h= 3

Figure 8: Population-2, h= 4

3.3 Findings
1: From Tab. 3, we can see that the results (Vai,Vbi) of Population-1 indicates that

PRE (Va11−15) >PRE (Va1−5) >PRE (Va6−10), w.r.t. Vai
PRE

(
Vb1−5

)
>PRE

(
Vb6−10

)
, w.r.t. Vbi.

The proposed estimators Va11 and Vb3 record the highest efficiency compared to other
competitor estimators.
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Figure 9: Population-3, h= 1

Figure 10: Population-3, h= 2

2: Meanwhile, the results (Vai, Vbi) of Population-2 in Tab. 4 indicate that

PRE (Va11−13, Va15) >PRE (Va1−5, Va14) >PRE (Va6−10), w.r.t. Vai
PRE

(
Vb1−5

)
>PRE

(
Vb6−10

)
, w.r.t. Vbi.

The proposed estimators Va11 and Vb5 record the highest efficiency compared to other
competitor estimators.
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Figure 11: Population-3, h= 3

Figure 12: Population-3, h= 4

3: The results (Vai, Vbi) of Population-3 (see Tab. 5) reveal that

PRE (Va11−15) >PRE (Va1−5) >PRE (Va6−10), w.r.t. Vai
PRE

(
Vb1, Vb5−8, Vb10

)
>PRE

(
Vb2−4, Vb9

)
, w.r.t. Vbi .

Hence, the proposed estimators Va11 and Vb1 record the highest efficiency of all compared
estimators.
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4: Comparing the two proposed classes for each population, leads us to the following findings:

Population-1: PRE (Va1−15) >PRE
(
Vb1−10

)
;

Population-2: PRE (Va1−15) >PRE
(
Vb1−10

)
;

Population-3: PRE (Va1−5, Va11−15) >PRE
(
Vb1−10

)
.

5: Overall, all the members of new classes have PRE > 100 with respect to To, and this
clearly indicates that the performance of the proposed estimators is better than that of traditional
estimators.

6: Furthermore, the proposed variance estimator Va11 is the best estimator among all pro-
posed estimators, having PREs of 478.67, 28051.41, and 77307.88 for populations 1–3, respectively.

Table 4: PRE for Population-2

Va1−Va5 Va6−Va10 Va11−Va15 Vb1−Vb5 Vb6−Vb10

Va1 = 22054.22 Va6 = 10802.69 Va11 = 28051.41 Vb1 = 4679.23 Vb6 = 2920.96
Va2 = 19909.06 Va7 = 10657.67 Va12 = 25287.50 Vb2 = 4568.57 Vb7 = 2712.07
Va3 = 19482.79 Va8 = 10556.63 Va13 = 24738.15 Vb3 = 4555.36 Vb8 = 2679.75
Va4 = 14317.23 Va9 = 8598.21 Va14 = 18935.43 Vb4 = 4054.82 Vb9 = 2316.42
Va5 = 21880.95 Va10 = 10848.33 Va15 = 27712.04 Vb5 = 4689.26 Vb10 = 2901.67

Table 5: PRE for Population-3

Va1−Va5 Va6−Va10 Va11−Va15 Vb1−Vb5 Vb6−Vb10

Va1 = 38630.57 Va6 = 4710.165 Va11 = 77307.88 Vb1 = 29995.12 Vb6 = 28542.51
Va2 = 39188.94 Va7 = 5415.428 Va12 = 76371.62 Vb2 = 24700.47 Vb7 = 27754.20
Va3 = 39183.04 Va8 = 5430.796 Va13 = 76342.05 Vb3 = 24669.71 Vb8 = 27732.49
Va4 = 39160.33 Va9 = 4463.861 Va14 = 73964.38 Vb4 = 18395.29 Vb9 = 24642.28
Va5 = 38630.45 Va10 = 4745.627 Va15 = 77297.10 Vb5 = 29953.95 Vb10 = 28544.35

4 Conclusion

The difficulty of data analysis arises from the presence of extreme values that adversely impact
the variance estimation based on central moments. One of the ways to solve this issue is to
use L-moments that provide a robust statistical structure for analysis. Calibration estimation is a
common statistical approach that relies on the use of auxiliary information to adjust the original
weights of design and to improve the accuracy of estimators. Motivation by [21], we propose
new classes of estimators to estimate the population variance based on L-moments and present a
calibration approach for double stratified random sampling. The percentage relative efficiency is
adopted to compare the performance of the proposed estimators through three populations and
through a simulation as well as application to real-life data. Our numerical results show that the
proposed estimators are always superior and more efficient to existing estimators.
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