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Abstract:Real-time dense reconstruction of indoor scenes is of great research
value for the application and development of service robots, augmented real-
ity, cultural relics conservation and other fields. ORB-SLAM2 method is one
of the excellent open source algorithms in visual SLAM system, which is often
used in indoor scene reconstruction. However, it is time-consuming and can
only build sparse scene map by using ORB features to solve camera pose.
In view of the shortcomings of ORB-SLAM2 method, this article proposes
an improved ORB-SLAM2 solution, which uses a direct method based on
light intensity to solve the camera pose. It can greatly reduce the amount of
computation, the speed is significantly improved by about 5 times compared
with the ORB feature method. A parallel thread of map reconstruction is
added with surfel model, and depth map and RGB map are fused to build the
dense map. A Realsense D415 sensor is used as RGB-D cameras to obtain the
three-dimensional (3D) point clouds of an indoor environments. After cali-
bration and alignment processing, the sensor is applied in the reconstruction
experiment of indoor scene with the improved ORB-SLAM2method. Results
show that the improved ORB-SLAM2 algorithm cause a great improvement
in processing speed and reconstructing density of scenes.
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1 Introduction

Scene reconstruction is a research focus in the field of computer vision. It has a wide appli-
cations in indoor positioning and navigation, semantic maps, augmented reality, virtual reality,
cultural relics protection, etc. [1–5]. In recent years, some new RGB-D sensors (such as Kinect V1,
Kinect V2, Realsense SR300, Realsense D415) are used for the 3D (three dimensional) reconstruc-
tion of indoor scenes, and new algorithms are successively produced (such as KinectFusion [6],
DynamicFusion [7], ElasticFusion [8], Fusion4D [9], BundleFusion [10]). KinectFusion method is
limited to small scenes, which cannot be used for moving, large, or deformation scenes. Dynam-
icFusion method can be used in the reconstruction of non-rigid dynamic scenes. BundleFusion
method is used for the reconstruction of a complete large indoor scene. Considering the density
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and accuracy of reconstruction of indoor scene map, it is often to use GPU accelerator, or even
multiple GPUs for parallel acceleration, which limits its application in some situation [11].

In recent years, SLAM (simultaneous localization and mapping) technology is often used
for 3D reconstruction of indoor scenes combined with RGB-D sensors, such as RGB-D SLAM
v2 [12], ORB-SLAM2 [13] and others. RGB-D SLAM V2 is a 3D reconstruction solution based
on the Kinect V1 sensor that can be used for robots, aircraft, and handheld equipment. It
performs 3D reconstruction of the scene through operations such as feature point matching and
graph optimization. GPU acceleration calculations are needed to obtain real-time reconstruction.
ORB-SLAM2 is an upgraded version carried out by Raul Mur-Artal based on ORB-SLAM [14]
for real-time reconstruction of monocular camera, which can be also used for binocular camera
and RGB-D sensor. The reconstruction point cloud of 3D scene is relatively sparse by ORB-
SLAM2 based on ORB feature. It will affect the accuracy of 3D reconstruction of indoor scene,
and may even cause holes in the generated 3D model.

This article proposes an improved ORB-SLAM2 method and applies it into the real-time
reconstruction of indoor scenes. It can promote the 3D reconstruction accuracy of indoor scenes
and can reduce the running time simultaneously.

2 Methods

2.1 RGB-D Sensor Calibration
Intel Realsense D415 RGB-D sensor is used to obtain the RGB and depth image of indoor

scene. It needs to be calibrated to obtain the internal and external parameters of the cameras.
Fig. 1 shows the Realsense D415 RGB-D sensor and its calibration experiment.

Figure 1: Realsense D415 RGB-D sensor (left), RGB-D sensor calibration experiment (right)

There are three coordinates system including the pixel coordinate system, the camera coordi-
nate system, and the world coordinate system, see Fig. 2. Camera calibration is to calculate the
internal and external parameters. Internal parameters are camera parameters. External parameters
are transformation relationship between different coordinates. Assuming that the left infrared
camera is the reference camera and its optical centre is located at the origin of the world
coordinate system, the internal parameters and external parameters of left infrared camera, right
infrared camera and RGB camera can be calculated.
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Figure 2: Three coordinate systems

A point in pixel coordinate can be calculated by formula (1), where K is the internal param-
eter matrix of the camera, M is the external parameter matrix of the camera. The external
parameters of the right infrared camera and RGB camera relative to the left infrared camera
can be calculated by the formula (2). Rl and tl are the rotation matrix and translation matrix in
external parameters of the left infrared camera respectively. Rr/RGB and tr/RGB are the calculated
rotation matrix and translation matrix in external parameters of the right infrared camera and
RGB camera respectively.
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The RGB-D sensor can acquire images at a variety of resolutions. It is set at 640×480 pixels
in RGB images and depth images. Twelve pictures of the calibration board at different angles
are collected by the left and right infrared cameras and RGB camera respectively. The calibration
algorithm in OpenCV is used to calculate the internal parameters and external parameters of
cameras. Fig. 3 shows part of the corner detection diagram during the camera calibration.
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Figure 3: Corner detection diagram during camera calibration

After calibrating the RGB-D sensor, we obtain the internal parameter values of the
left and the right infrared cameras and the RGB camera (Kl, Kr, KRGB), and the external
parameter values of right infrared camera and RGB camera relative to left infrared camera
((Rr|l, tr|l), (RRGB|l, tRGB|l)). as shown in formula (3)–(5):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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According to the calibration results, we can see that there is no rotation transformation
between the left and right infrared cameras, and the relative horizontal translation is about 5.5 cm.
There is both rotation transformation and horizontal translation between RGB camera and left
infrared camera.

2.2 Align RGBMap and Depth Map
In order to fuse the RGB map and the depth map, alignment operations are required. The

process of the alignment is to convert the depth value in the depth map to the space point
of the world coordinate system, and then project it to the RGB map. The schematic diagram
of alignment operation is shown in Fig. 4. The depth map of the Realsense sensor is acquired
through left and right infrared cameras and infrared laser projector. The internal parameter
matrices of the left and right cameras are the same according to the calibration results. The
acquired internal parameter matrix of the depth map is also the same as the internal parameter
matrix of the left and right cameras, Kd =Kl =Kr.

Figure 4: Schematic diagram of alignment operation

Assuming that the pixel coordinates of one point in the RGB map are represented as
(uRGB, vRGB, dRGB)T . uRGB, vRGB, dRGB represent the abscissa, ordinate, and depth values respec-
tively. The pixel coordinates in the depth map are represented as (ud , vd , dd)T . ud , vd , dd represent
the abscissa, ordinate, and depth values respectively. The conversion relationship between camera
coordinate system and pixel coordinate system in RGB map and depth map are shown in formula
(6) and (7) respectively.
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Conversely, the conversion relationship between the pixel coordinate system of the RGB map
and the depth map to the camera coordinate system are shown in formula (8) and (9):
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The relationship between the depth map and the RGB map in camera coordinate system is
expressed as formula (10). M′ is a 4 × 4 transformation matrix, including rotation matrix and
translation matrix.⎡
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Substituting formulas (8) and (9) into (10), the following formula (11) can be obtained:⎡
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Let W =Kd ∗M′ ∗K−1
RGB. dRGB ≈ dd, formula (11) can be simplified as formula (12).⎡
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W is a 4× 4 transformation matrix, it can be expressed as:

W =

⎡
⎢⎢⎢⎢⎢⎣

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

⎤
⎥⎥⎥⎥⎥⎦ (13)
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According to formula (14), the transformation relationship between depth map and RGB map
can be calculated. The aligned RGB map and depth map in experiments are shown in Fig. 5.

Figure 5: The aligned RGB map and depth map

2.3 Improved ORB-SLAM2
ORB-SLAM2 is a visual SLAM method based on ORB feature and nonlinear optimization.

It mainly includes camera tracking based on ORB feature, trajectory estimation, closed-loop
detection and relocation, and local and global optimization [15]. It can only construct a sparse
point cloud map of indoor scene by using the ORB feature. A direct method is proposed to
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replace the ORB feature method used in the parallel tracking thread. The surfel map is used to
reconstruct the dense indoor scene. The improved ORB-SLAM2 flow diagram is shown as Fig. 6,
the red line frame in the figure is the improved parts. The improved ORB-SLAM2 is mainly
composed of four parallel threads and one global optimization thread. The four parallel threads
are the trace thread, the local mapping thread, the loop closing detection thread, and the dense
map builder thread.
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Figure 6: Improved ORB-SLAM2 flow diagram

2.4 Direct Method to Solve Camera Pose
In ORB-SLAM2, the camera pose is estimated by the ORB features which are extracted

between two adjacent frames. The ORB feature is mainly composed of Oriented FAST and
BRIEF. The extraction of Oriented FAST and the calculation of BRIEF are time-consuming. It
is difficult to perform real-time processing operations on low-performance computers. In order to
solve the time-consuming problem of ORB-SLAM2, this article proposes to use the direct method
to solve the camera pose.

In the direct method, the camera pose is obtained by minimizing photometric error without
concerning the feature between pixel points. The image points of a point P(X , Y , Z) in world
space are respectively denoted as p1, p2 at two moments, then p1, p2 can be expressed as
Eqs. (15), (16):
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where Z1 is the depth of P in the camera coordinate system at the first moment, Z2 is the
depth of P in the camera coordinate system at the second moment, K is the camera’s internal
parameters, R and t are the rotation matrix and the translation matrix, respectively.

Comparing minimizing the reprojection error in the ORB feature method, the aim of direct
method is to minimize photometric error, and the formula is e= I1 (p1)−I2 (p2), e is a scalar value.
The optimization calculation is based on the assuming that the gray level of the same point is
unchanged in different image. For a space point Pi, the camera pose estimation problem becomes
an optimization of formula (17).⎧⎪⎪⎪⎨
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min
T
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Figure 7: Comparison of results by ORB feature method (top) and direct method (bottom)

The direct method to solve the camera pose can be transformed into an optimization problem,
which can be solved iteratively using the Gauss–Newton method. Fig. 7 shows the calculated
results by the two methods. Tab. 1 shows the comparison of run-time by the two methods in
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several tests. The test results show that, compared with the ORB feature method, the solving speed
is significantly improved by about 5 times.

Table 1: Comparison of the run-time by ORB feature method and direct method

Method Test group

Test group 1 Test group 2 Test group 3 Test group 4

Time (ms)

ORB feature method 20.285 21.453 20.438 22.212
Direct method 4.371 4.579 4.412 4.715

2.5 Dense Reconstruction of Scenes
In this article, Surfel is used to fuse the depth map and RGB map obtained from RGB-D

sensor to reconstruct the indoor scene. Each surfel stores the location of the corresponding spatial
point, the radius, the normal vector, the color, and the time information [16]. The position, normal
vector, and color will be updated according to the weighted fusion result, and the radius is
obtained by the distance between the surface and the optical center of camera [8]. The radius of
each surfel is initialized according to the following formula:

r= d
√
2

f |nz| (18)

where, d is the depth value corresponding to the surfel, f is the focal length of the depth camera,
and nz is the normal z component obtained by central difference estimation of the depth map.
The surfel is updated and expanded by continuously fusing the depth map and RGB map, and a
densely 3D model based on surfel is reconstructed finally. Fig. 8 shows the densely reconstructed
three-dimensional model by Surfel.

Figure 8: Three-dimensional model reconstructed by Surfel
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3 Experimental Results

In this experiment, a notebook computer with Intel Core i5-4210U CPU and 12G memory
is used to carry out the 3D reconstruction of indoor scene. The Realsense D415 sensor is driven
to obtain RGB image and depth image with the API interface provided by Realsense SDK 2.0,
and the frame rate is 30 fps. The 3D reconstruction map of laboratory scene is reconstructed by
the improved ORB-SLAM2 algorithm. The reconstruction process and result are shown in Fig. 9.
Experimental results show that the improved ORB-SLAM2 algorithm has greatly improved the
processing speed and the density of the reconstructed scene map.

Figure 9: The diagram of 3D reconstruction process (left) and result of laboratory scene (right)

4 Conclusion

In order to solve the problem of time-consuming and sparse reconstruction by the ORB-
SLAM2 scheme, the direct method based on light intensity is used to calculate the camera pose,
and the surfel model is used for fusion. A dense scene reconstruction solution is proposed with
the depth map and RGB map obtained from RGB-D sensor. Results show that the improved
ORB-SLAM2 scene reconstruction method has a great improvement in processing speed and the
density of the reconstructed scene map.
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