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Abstract: The end-to-end delay in a wired network is strongly dependent on
congestion on intermediate nodes. Among lots of feasible approaches to avoid
congestion efficiently, congestion-aware routing protocols tend to search for
an uncongested path toward the destination through rule-based approaches
in reactive/incident-driven and distributed methods. However, these previous
approaches have a problem accommodating the changing network environ-
ments in autonomous and self-adaptive operations dynamically. To overcome
this drawback, we present a new congestion-aware routing protocol based on a
Q-learning algorithm in software-defined networks where logically centralized
network operation enables intelligent control and management of network
resources. In a proposed routing protocol, either one of uncongested neigh-
boring nodes are randomly selected as next hop to distribute traffic load to
multiple paths or Q-learning algorithm is applied to decide the next hop by
modeling the state,Q-value, and reward function to set the desired path toward
the destination. A new reward function that consists of a buffer occupancy,
link reliability and hop count is considered.Moreover, look ahead algorithm is
employed to update the Q-value with values within two hops simultaneously.
This approach leads to a decision of the optimal next hop by taking congestion
status in two hops into account, accordingly. Finally, the simulation results
presented approximately 20% higher packet delivery ratio and 15% shorter
end-to-end delay, compared to those with the existing scheme by avoiding
congestion adaptively.

Keywords: Congestion-aware routing; reinforcement learning; Q-learning;
Software defined networks

1 Introduction

Congestion in a network significantly increases the end-to-end delay. To prevent or remove
congestion, many congestion control schemes have been proposed for current TCP/IP networks,
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where a strictly layered architecture and fully distributed algorithms are applied. Owing to layered
restrictions, most of the current algorithms, including congestion control, have been implemented
on the transport layer for an end-to-end connection.

As an alternative for current TCP/IP networks, software defined networks (SDN) have been
studied to overcome the drawbacks of legacy networks (i.e., a lack of adaptability). In contrast
to the typical combined model, the data and control plane are separated and operated in an
SDN by centralizing the network intelligence and state logically. Therefore, it is feasible to execute
or run new centralized algorithms over an SDN without regard to a layered architecture. Based
on a centralized functionality, an intelligent algorithm such as a machine-learning algorithm
used to solve the complexity can be gradually applied in an SDN. Specifically, machine learning
(ML) algorithms have been applied to improve the network performance in the areas of network
operation and management. ML techniques have recently been employed to deal with fundamental
network problems, for example, traffic prediction, routing and classification, congestion control,
resource and fault management, quality of service (QoS), quality of experience management, and
network security [1–3].

Stemming from these observations, a new congestion-aware routing protocol for an SDN is
presented herein. Unlike previous studies on end-to-end congestion control, our goal is to develop
a routing protocol to manage congestion at the network layer. Thus, it is possible to control
congestion in a hop-by-hop approach. In addition, it is extremely feasible to implement this type
of protocol in an SDN. A new routing protocol is designed to search for an uncongested path
with a Q-learning method known as reinforcement learning. We present a model for a routing
protocol with Q-learning properties, which can be defined by the Q-value and reward function.
With the Q-value and reward function, we can determine if the next-hop is a congested node.
The reward function is characterized by a new buffer occupancy, retransmission ratio, and hop
count parameters. Finally, we evaluate the performance of the proposed routing protocol through
simulations.

The main contributions of this paper are as follows:

• An architecture that employs Q-learning for achieving efficient and intelligent congestion-
aware routing in an SDN;
• A Q-learning based routing algorithm that considers a look-ahead algorithm to compute

the Q-value;
• An extensive set of experiments with simulations and an analysis for the proposed routing

protocol.

The rest of this paper is organized as follows. Following the introduction, we describe some
previous state-of-the-art studies conducted in this area. The proposed scheme is explained and
described. The simulation results are next given. Finally, some concluding remarks and areas of
future study are presented.

2 Related Studies

In this section, we describe related studies on congestion-aware routing protocols in three
parts. First, routing protocols used in an SDN are presented. Second, ML-based routing protocols
used in an SDN are analyzed. Third, a congestion-aware routing protocol is detailed.
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2.1 Routing in SDN
Zhang et al. [4] addressed the performance measurement of the routing protocol in an SDN in

terms of a forwarding delay and convergence time for a failure as compared to a legacy protocol.
They experimented and concluded that an SDN is beneficial in large-scale networks. In addition,
the impact of a link failure in an SDN is less than that in legacy routing protocols. Thus, more
robustness against a failure is achieved in an SDN by reducing the convergence time significantly.
In terms of the performance evaluation of the routing protocol in an SDN, Gopi et al. [5] focused
on the convergence time to recover a link or node failure with respect to the topology scale.
Similar to the experiment results of a former study, a shorter convergence time is measured when
a large-scale topology is assumed. Akin et al. [6] compared the routing protocol for an SDN
with a static and dynamic link cost by implementing it on a Mininet emulator. Incorporating the
use of a multi-criteria decision-making method (MCDM) in an SDN, Ali et al. [7] proposed the
use of a hierarchical SDN control plane approach for an inter-domain collaboration and QoS
class mapping to ensure the E2E quality-of-service for applications in heterogeneous networks
with multiple domains of different QoS classes. In this study, the commonly used MCDM, known
as TOPSIS, was applied at the controller module to select the most suitable QoS class for each
domain in the E2E path. The findings of this study suggest that the use of a single controller
with varying QoS classes could lead to a single point failure and E2E service delivery-related
issues. For all the cases, it has been proved that the performance of a routing protocol in an SDN
is mostly dependent on the accuracy of the network state information. Based on the mentioned
study, it is reasonable to determine that the routing protocol in an SDN is more robust than
a conventional routing protocol while requiring more accurate network state information. In
addition to a performance evaluation, a new routing protocol for an SDN has been continuously
studied.

First, centralized QoS routing protocols for an SDN were analyzed and compared in [8]. In
addition to a description of outstanding features, the authors employ a novel four-dimensional
evaluation framework for QoS routing protocols for a quantitative comparison in terms of the
runtime and cost inefficiency. Despite a performance improvement in an SDN, the replacement
cost from a legacy network to an SDN will be a major concern. To address this problem, a new
QoS routing protocol for SDN hybrid networks was proposed by Lin et al. [9], whose proposed
protocol, called simulated annealing based QoS-aware routing (SAQR), dynamically adjusts the
weights of three QoS parameters, namely the delay, loss rate, and bandwidth, and achieves an
improved delay performance exceeding 20%.

Second, a number of studies have proposed routing protocols in a specific SDN. Ji et al. [10]
proposed an SDN-based geographic routing protocol for vehicular ad hoc networks. Unlike pre-
vious geographical routing protocols that use local information, a new protocol makes use of
vehicle information, that is, the node location, vehicle density, and digital map, and computes the
optimal path based on such information. In parallel with vehicular ad hoc networks, smart-city
and IoT applications are regarded to be suitable for SDN infrastructure. To reduce the delay in
an SDN, EL-Garoui et al. [11] proposed a new routing protocol based on an SDN by employing
a machine learning algorithm as a prediction scheme. As for IoT, a new SDN-based routing
was proposed by Shafique et al. [12]. The proposed scheme targets the balance between the cost
for reconfiguration and the flow allocation in which multiple SDN controllers are assumed. In
addition, heterogeneous network traffic is monitored to keep the networks balanced. As a special
type of network, a disturbance-awareness routing algorithm [13] based on weather information
has been proposed to minimize the network cost function as well as the cost of the risk function
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in an SDN. Each of the above-mentioned specific network types has its own approach to detect
and deal with a link failure. To discuss a link failure and recovery schemes on SDN-based
routing schemes, Ali et al. [14] presented a survey that highlights various link failure detection
and recovery schemes, mechanisms, and their respective weaknesses in an SDN. In addition, a
well-organized classification of link failure recovery approaches was presented based on a review
of 49 papers. To combat congestion-related link recovery issues in routing, an introduction of
proactive and reactive schemes was further mentioned for both single and multi-objective schemes.

2.2 ML-Based Routing in SDN
Differing from the traditional model-driven approach for routing protocols, ML-based routing

protocols can capture the growing complexity and adapt to network changes accordingly. However,
the management of large-scale data for ML has been a challenge in the current distributed
infrastructure. This is why an SDN based on a centralized entity is a suitable architecture for
operating ML algorithms.

Before looking into the details, it is worth mentioning a comprehensive overview [15] for
machine learning in an SDN. In this study, the authors provide a survey for machine learn-
ing algorithms feasible for an SDN. Following an ML outline, the authors have addressed the
challenges and reviewed related studies in terms of several perspectives including a routing opti-
mization. In addition, open issues and challenges for ML in an SDN are discussed. In addition
to this survey, we categorize routing protocols based on the type of ML-algorithms and present
their key features.

First, reinforcement learning (RL) to optimize the routing problems in an SDN is presented
by C. Fang et al. [16]. The proposed RL model contributes to making decisions through inter-
actions with the environment. A combination of RL and neural networks has been proposed for
the routing algorithm. Another protocol called V-S routing (variable ε-Greedy function within
SARSA-learning routing) is addressed by Yuan et al. [17]. The proposed algorithm takes the
dynamic priority of the current state in an SDN to avoid a delay as well as improve the link
transmission speed. Another scheme to utilize RL has been proposed to meet the QoS require-
ments. A new algorithm, called reinforcement learning and software-defined networking intelligent
routing (RSIR) [18], utilizes RL to search for the best route for all flows with a link state metric
(i.e., bandwidth, loss, and delay). To obtain an optimal path, the proposed algorithm finds the
most-rewarding path for every pair of nodes in the network. The simulation results proved that
an RSIR can avoid traffic concentration and congestion by applying different edge weights for
mentioned metrics. Similar to the mentioned approaches, Hossain et al. [19] present an RL-driven
QoS-aware routing algorithm that consists of both QoS monitoring for the delay, packet-loss rate,
and RL-based intelligent routing decision-making (RIRD). During operation, if the RL agent
selects the path having the lowest delay and packet-loss rate, it should obtain the highest reward
value.

In addition to RL, a deep learning-based QoS routing protocol was proposed by Owusu
et al. [20]. In this study, the authors mention the real-time application on the Internet and present
a framework based on an SDN. A deep neural network is employed to classify the class of traffic
and search for appropriate routes to meet the QoS demand. As a new ML framework, federated
learning (FL) has recently attracted the interest researchers. As an example, Sacco et al. [21]
merges network softwarization and FL to optimize routing decisions in an SDN. Their main
contribution is a new path selection algorithm based on long short–term memory (LSTM) to
predict the forthcoming traffic on a link based on history. In the case of a high traffic volume,
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a new path is selected to avoid high-loaded links and take the under-utilized ones. ML-based
routing protocols can be deployed for a special objective. Pasca et al. [22] proposed an application-
aware multipath flow routing framework called AMPS. The proposed scheme is composed of a
dynamic prioritization of the flow, a path assignment based on priority, and Yen-K-shortest path
algorithm to find the path. In addition to traffic, an energy-efficient routing protocol for an SDN
called MER-SDN was suggested by Assefa et al. [23]. For energy efficiency, a principal component
analysis (PCA) was suggested to reduce the feature size, along with a linear regression to train
the model. In addition, an integer programming (IP) formulation for energy consumption as a
function of the traffic amount and heuristics algorithm are presented.

2.3 Congestion-Aware Routing
A general congestion control scheme over the transport layer has a long convergence time

under an end-to-end argument principle. Compared to the scheme used in the transport layer,
an enhanced functionality in the network layer leads to a reduced convergence time. To identify
and remove congestion proactively and reactively, diverse congestion-aware routing protocols have
been studied, which we categorized into the underlying target networks.

First, some congestion-aware routing protocols have been proposed to prevent packet loss
in wireless sensor networks [24]. In particular, if a lost packet contains important event or data
information, it can affect the reliability of the system. To handle this situation appropriately,
advanced congestion-aware routing (A-CAR) is a priority and congestion-aware routing protocol
in wireless sensor networks. In ACAR, a differential routing policy depending on priority is
applied. For a flow with a higher priority, an inside zone path is established, whereas another
path is constructed outside a zone for a packet with lower priority. In addition, ACAR can
provide mobility support by changing the routing zone accordingly. Unlike flat networks, Farsi
et al. [25] proposed a new congestion-aware clustering and routing protocol to properly address
congestion issues. Congestion is prevented by the load distribution of the cluster head node
between members and the rotation of role changes in the cluster during every round. While taking
limited energy as well as a real-time requirement into account, congestion-aware routing needs to
cover the mentioned demands. El-Fouly et al. [26] presented the real-time energy-efficient traffic-
aware approach (RTERTA) in industrial wireless sensor networks. In RTERTA, congestion can be
avoided by utilizing underloaded nodes with a hop count to the sink node that is measured by
the buffer occupancy in a node.

Second, unlike static wireless sensor networks, congestion-aware routing has been studied in
dynamic networks, including vehicular ad hoc networks. Hung et al. [27] presented an intersection-
based routing protocol called a data congestion-aware routing protocol (DCAR) that is suitable
for urban environments. In DCAR, the amount of data and vehicular traffic are estimated. This
value is used to construct a routing path. While establishing a path, a look-ahead algorithm for
deciding the next intersection is also considered to avoid congestion. Congestion caused by a
flooding broadcast was addressed by Liu et al. [28]. A novel congestion-aware GPCR routing
protocol (CA-GPCR) utilizes a free buffer queue size and the distance between the next node and
destination node and restricts the greedy forwarding procedure to avoid congestion. Simulation
results show that the CA-CPCR protocol outperforms the existing protocol in terms of packet
delivery ratio and delay caused by congestion. In addition, Keykhaie et al. [29] presented the
congestion-aware and selfishness aware social routing protocol for use in a delay tolerant network.
To distinguish congested and selfish nodes, both the buffer congestion and selfish behavior are
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measured and used to obtain the utility value. Depending on this value, a more suitable node is
selected for message relaying.

Third, congestion-aware routing for an SDN is proposed. Attarha et al. [30] proposed a
method to reroute a flow to avoid congestion in an SDN. To make a decision, link utilization is
periodically measured and reported. A new flow is routed according to the network conditions.
The controller predicts the congestion and calculates the amount of flow to be rerouted toward
the backup paths. Another congestion-aware routing based on a rerouting path in an SDN was
proposed by Cheng et al. [31]. In the proposed scheme, a flow along the congested route is
detoured toward the local path and modeled by the LP. Finally, Ahmed et al. [32] addressed the
congestion control and temperature-aware routing over SDN-based wireless body area networks.
The authors presented the energy optimized congestion control based on temperature aware
routing algorithm based on enhanced multi-objective spider monkey optimization. The proposed
routing algorithm introduces the congestion queue length as a major factor in the routing cost
model and combines it with other factors such as the residual energy, link reliability, and path
loss.

As previously analyzed, an SDN is capable of implementing complicated algorithms such
as ML in a central entity with topology information. In addition, congestion avoidance in the
network layer not only can reduce the convergence time but also consequently adapt the network
dynamics. However, despite the mentioned benefits, there is no ML-based congestion-aware routing
protocol over an SDN. Furthermore, we take Q-learning, which is a model-free technique that
does not require prior knowledge about the underlying reward resulting from taking specific action
in a particular state. According to this property, Q-learning is suitable to handle dynamic net-
work congestion properly. A typical operation of the Q-learning based congestion-aware routing
protocol would appear as summarized below in Fig. 1.

Figure 1: Typical Q-learning based congestion aware routing protocol flow

3 Q-Learning Based Congestion-Aware Routing in SDN

In this section, we propose a new Q-learning based congestion-aware routing (QCAR) in an
SDN. Both the network architecture and details for a routing protocol are consequently described.
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3.1 Architecture and Component
To implement QCAR over an SDN, the network architecture including the control plane, data

plane, and an application plane is designed as shown in Fig. 2. The control plane collects raw
data about the network status through periodical messages. The collected information is passed
to the application plane. In the application plane, the Q-learning agent and algorithm compute
the Q-values for the topology and the best route decision for the flow. This decision is sent to the
control plane. Consequently, the control plane requests to update the forwarding table at the data
plane.

Figure 2: QCAR architecture

3.2 QCAR Routing Protocol
The QCAR protocol follows the Q-learning technique to define the routes to be followed

by flows with source–destination pairs. Each step consists of selecting and performing an action,
changing the state (i.e., moving from one to another), and receiving a reward. The updated Q-
function value at time t is the underlying reward for the execution of action At while in state St,
which provides an optimal reward Rt. Next, we provide details about the derived parameters for
node and link states in an SDN, RL-agent, and RL-based routing algorithms.

3.2.1 Node and Link States in SDN
For the QCAR protocol, we define a set of parameters that indicate the node and link status

to be used by the RL agent. For a node, say node i, the parameters are as follows: the queue
length of node i (QLti ), the hop count to the destination (Ht

i ), and retransmitted packet ratio
(RPRti,j) over a link between two adjacent nodes, i and j, at time t. Based on measured values,

the parameters are computed as follows:
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Queue length: To measure congestion level at arbitrary node i, we periodically estimate the
buffer occupancy based on the queue length of node i. The queue length is computed at time t
according to Eq. (1). Let QLti be the sum of the queue length of node i and that of the node two
hops ahead at time t. By taking into consideration the queue length of the node two hops away
through the look-ahead algorithm, a large value is given to the node whose neighbors are already
in a state of congestion. If there are at least two neighbors for node i, the minimum queue length
at the neighbors is considered, where Ni denotes the set of neighbors of node i.

QLti =QLti +min
j∈Ni

(QLtj), (1)

Retransmitted packet ratio: In addition to the congestion parameters of a node, the adjacent
link reliability affects the congestion because the received packet remains at the buffer until a
receiver successfully receives it. To measure the link reliability, we consider the retransmitted
packet ratio, which counts for all retransmitted packets owing to propagation-related errors of a
link. A link with a larger ratio of retransmitted packets is considered unsatisfying for the traffic
demand and hence unreliable. To obtain the RPR of a link between nodes i and j during the past
s seconds, we use the expression below:

RPRti,j =
Packets_Retransmittedt−si,j

Packets_Sentt−si,j
(s< t), (2)

RPRti,j =RPRti,j+min
j∈Ni

(RPRti,j), (3)

where Packets_Sentt−si is the total number of packets sent by node i during the past s seconds

from current time t, and Packets_Retrasmittedt−sj counts the total number of packets transmitted

to neighbor j during the past t seconds. Similar to the queue length, the link reliability also
employs a look-ahead algorithm, as given in Eq. (3).

3.2.2 RL-Agent
Typical RL-problems are usually referred to as discrete-time Markov decision problems owing

to the modeling of their solution which is based on 4-tuples (S, A, P, R). Here, S is the finite
set of states, A is the set of actions, P is the matrix of state transition probability, and R is the
reward function for which the system is continuously looking to maximize. The environment for
the RL agent to act on is composed of data packets flowing in a network from a given source
to the desired destination. The presence of a given packet p at node i defines the state of that
packet at time t as Sti . An action Ati,j represents a decision made by the RL agent to forward the

packet from node i to neighbor j as adopted by the policy (πt) controlling state transition with a
greedy exploration strategy at time t, as shown in Eq. (4). Upon this action being taken, the state
of packet p will move from Sti to St+1j and the reward associated with this action will be Rt+1i,j .

πt
(
Sti

)← argmin
an∈A(Si)

Q
(
Sti ,A

t
i,n

)
(4)

This means that, instead of finding a path with the maximum reward, our proposed QCAR
finds a path with the lowest costs by greedily selecting actions with the lowest rewards provided
that all available neighbors have a level of congestion more than the predetermined threshold.
In addition, for each state transition (Sn→ Sn+1), the Q-function value Qn (Sn,An) associates a
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reward function R, which is computed as shown in the following subsection, to estimate the cost
of forwarding a packet toward that particular neighbor.

In Q-learning, the agent learning phase consists of a sequence of stages, called epochs (0, 1,
. . ., n . . .). During the nth epoch at time t, the RL-agent selects an action At on a packet p at
a current state St and receives a reward Rt as it moves to the next state, St+1. The action-value
Qt+1(St, At) is updated based on the following equation:

Qt+1 (St,At)= (1−α)×Qt (St,At)+α×
[
Rt+ γ ×min

a∈A
{Qt (st+1,a)}

]
(5)

where α is the learning rate that controls how fast the Q-table changes, and γ is the discount
factor that determines the degree to which the agent considers the effect of the immediate rewards
when estimating new Q-values. The initial Q-values, QO (S0, A0), for all the states and actions are
initialized to zero before the RL-agent learning phase starts.

3.2.3 Reward Function
The reward function used by the RL-agent is based on three measured parameters. The reward

is proportional to the queue length, retransmitted packet ratio, and hop count, as defined in
Eq. (6). To normalize the mentioned parameters, Qmax and Hmax were introduced and denote
the maximum queue length and maximum allowed hop count, respectively. In addition, Eq. (6) is
applied along with the respective tuning weights ω1,ω2, and ω3 ∈ [0, 1], where ω1+ω2+ω3 = 1.

R=ω1 ·
(
QLti
Qmax

)
+ω2 ·

(
LRti,j

)
+ω3 ·

(
Ht
i

Hmax

)
(6)

3.3 QCAR Routing Decision
The general process of the proposed congestion-aware based routing protocol is explained in

Algorithm 1, which provides a brief explanation of how the different layers work together to find
a better path for all pairs of nodes at the data plane. First, the RL-agent at the application plane
is provided with processed link state information from the control layer and given inputs (i.e., the
learning rate, discount factor, network size, training epochs, all (src, dst) pairs, network graph, and
weights (ω1,ω2,ω3)). From the given inputs, the RL agent is expected to continuously compute
and update the best paths for all pairs of nodes in a given network.

Algorithm 1: Q-value Update
Input: All (src, dst), Network graph, Link states
Output: Qt+1

i

(
Sti ,A

t
i

)
.

1 Initialize α, γ , ω1,ω2,ω3, Q: A × S → R, initialized with 0
2 For each (src, dst) pair do
3 current_state = src
4 While current state is not the destination do
5 Rt+1←R(St, At) with Eq. (6)
6 Update Q-table
8 St← St+1
9 End While
10 End For
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Algorithm 2: Selecting Next Hop at Node i
1 If ( NID(i) == NID(dst))
2 Deliver a packet to upper layer
3 Else
4 Flag ← False
5 NHi =
6 For all nodes in Ni
7 If (QLti < Threshold)
8 NHi =NHi ∪NID(i)
9 Flag ← True
10 End If
10 End For
11 If (Flag == True)
12 Select a next hop in NHi randomly
13 Else
14 Take Q-table and find a path with lowest Q-value
15 End If
16 End If

The algorithm execution processes to find the optimum paths for all pairs of nodes start by
initializing the Q-values of the Q-table to zeros (Line 1). For a given packet at the source node,
the first exploration epoch starts by initializing the state of a packet at the src node (Line 1),
and from that state selects one action (At) among all possible actions from the current state (Line
2). With the selection of this action, it considers moving to the next state (St+1) (Line 8). Using
Eq. (4), the minimum Q-value for this next state is obtained based on all possible actions (Line 6),
followed by setting the next state as the current state (Line 8). The state transition loop continues
until the current state is equal to the final state (i.e., the packet reaches the dst node) (Line 4).
Once the final goal is reached, the training epoch ends and a new one starts until they have all run
(Line 2). Based on the computed Q-values, the RL-agent computes the optimal routes to forward
data packets between the given src-dst pairs and forwards them to the flow control module at the
control plane.

The routing algorithm of QCAR is described in Algorithm 2. Initially, if a node is a desti-
nation by comparing the node identifier, a packet is passed to the upper layer. Otherwise, a node
chooses the next hop for a packet. Choosing the next hop is dependent on the neighbor node’s
congestion level. From Lines 5 to 10, we construct the new neighbors’ subset (NHi) of Ni with
the only node whose queue length is less than the predetermined threshold. After building NHi,,
a node performs two different operations. The former is to select a next-hop among the NHi, set
randomly to prevent node congestion by distributing packets along with multiple nodes, whereas
the latter is to set the next hop as the node along the path with the lowest Q-value. These actions
are shown between Lines 11 and 15. That is, when the congestion levels of multiple neighbors are
acceptable, the next hop is randomly selected among them. Otherwise, the best route through QL
is chosen and set as the next hop for a given packet.
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4 Performance Evaluation

This section presents an evaluation of the proposed QCAR protocol through simulations
based on the network simulator ns-3. First, we illustrate our simulation settings followed by a
discussion on the impacts of different settings of the Q-learning-related parameters. In addition,
the influence of the data flow rate, the number of traffic sources, the node density, and the
maximum buffer size on the system performance will be discussed and ultimately compared
between the performance of our proposed QCAR, the shortest path based on Dijkstra’s algorithm,
and the traditional Q-learning without a look-ahead, which is represented as QL in the figures.
We present the performance comparisons with two performance parameters: packet delivery ratio
and end-to-end delay.

4.1 Simulation Settings
To verify the routing mechanism based on QCAR, we deployed network topologies with nodes

uniformly distributed. To observe how well the proposed approach reacts to different congestion
levels, we perform several simulations with different data flow rates, a varied number of traffic
sources, varied node densities, and the maximum buffer size. To avoid the formation of long routes
between the given source and destination nodes, we limit the formation of the route length to
the maximum of only 4 hops. The rate error model with a byte unit is applied to cause packet
corruption. According to the probability, a packet is discarded if a byte is corrupted. To best
estimate the obtained results, we run each scenario 10 times with different seed values and obtain
the averaged results. For the specific configuration of the parameters, see Tab. 1 below.

Table 1: Simulation parameters

Parameter Value or range

Simulation time (s) 100
Traffic types UDP
Packet size 1 Kb
Link types Point-to-point
Ethernet type IEEE 802.3.
Queue type FIFO
Route update interval 2 s
Learning rate (α) 0.8
Probability for error model 0.0001–0.004

4.2 Impact of Q-Learning Related Parameters on QCAR
In the QCAR proposed approach, the link-state associated with each node is periodically

updated based on the look-ahead method to determine the potential next-hop(s). The updated
link states offer information necessary for next-hop selection such as the available queue size and
measured link reliability on that particular node. The degree by which the information of the
potential neighbor is considered important when selecting the next-hop depends on the discount
factor parameter, which ranges between zero and 1. The closer it gets to 1, the higher the impact
will be, and vice-versa. In addition, we discuss the impacts of different weight settings (ω1,ω2,ω3)



3682 CMC, 2021, vol.68, no.3

that determines which of the three metrics (available buffer size ratio, link reliability, and hop
count) is dominant when computing the routes to the destination node.

As previously mentioned, the weights are added to comprehensively minimize the effects of
the available buffer size, link reliability, and path length in the route selection. We randomly select
the ratios and run through the simulations to find a single weight set that gives the best results.
We categorize the three sets under different cases with each showing the effect of setting one of
the parameters as dominant over the others. In Case 1 (ω1 : ω2 : ω3 = 2:1:7) the parameter hop
count is placed as the most dominant, whereby the shortest path to the destination is the most
favored. Case 2 (ω1 : ω2 : ω3= 2:7:1) favors the formation of a path based on the reliability of the
links. Finally, in Case 3 with the ratio of (ω1 : ω2 : ω3 = 7:1:2), the nodes prefer the selection of
next hops based on the degree of packet congestion. According to the simulation results shown
in Figs. 3 and 4, assigning a relatively larger weight value to the congestion metric causes more
data packets to be delivered at an acceptable increased delay with the QCAR approach. Case 3
shows a better trade-off between the parameters by allowing the nodes to prefer the selection of
less congested and shorter routes as much as possible. In Figs. 3 and 4 we use a single traffic
source by sending packets at a rate of 20 packets per second, which is expected to cause a buffer
overflow after some time on certain nodes because the maximum buffer size is only 10 packets.

Figure 3: Packet delivery ratio vs. weight ratio

The results suggest that a large discount factor has a better impact on the performance of the
QCAR algorithm because it allows nodes to give higher priority to neighbors whose neighbors are
less congested and closer to the destination node. In addition, we studied the impacts of different
learning rates on both the QL and QCAR approaches and present the results in Figs. 5 and 6
below. The learning rate parameter determines how fast nodes update the routing table based on
newly computed route information. The higher the learning rate is, the faster the nodes tend to
find the optimal route information and vice-versa. However, this reaches its limit as the value
approaches 1. At this moment, the nodes will almost always use the newly computed path without
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considering the effectiveness of the currently used path, which in some cases is better than the
newly computed path.

Figure 4: End-to-end delay vs. weight ratio

Figure 5: Packet delivery ratio vs. learning rate
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Figure 6: End-to-end delay vs. learning rate

4.3 Effect of Data Flow Rate
To learn the effectiveness of the proposed QCAR algorithm on the formation of the shorter

less-congested paths, we conducted some simulations at different data flow rates. In this particular
set of experiments, a single source node was allowed to send packets at different rates of 5,
10, 15, 20, and 25 packets per second toward a single destination. As can be seen from Fig. 7
below, at low data rates, the network has sufficient resources to forward all data packets to the
destination. Regarding the packet delivery ratio, for all three approaches, almost all data packets
were successfully delivered. Meanwhile, in Fig. 8, the shortest-path algorithm performs better in
terms of delay because packets are delivered through a shorter and less congested path.

With a gradual increase of the data flow rate, the performance of the shortest-path approach
falls sharply owing to the congestion experienced at the selected short path. Meanwhile, the QL
and QCAR approaches adapt better to the increased packet flow rate, thereby avoiding paths
with congested neighbors and hence a relatively increased delivery ratio. Our proposed QCAR
approach exhibits a better performance compared to the typical Q-learning-based approach by
delivering approximately 10% more packets with a slightly reduced delivery delay. This is because
the selection of next-hops considers the future possible consequences that could happen 2-hops
away if the current action is taken. Simply stated, the QCAR allows for the selection of neighbor
nodes that may currently be seen as congested but are soon to be potential next hops, unlike with
the QL method. As shown in Fig. 8, the delivery delay for both the QL and QCAR approaches
increases in proportional to the increase in the data flow rate. This is caused by the tendency of
nodes to create longer routes as they try to find less congested next hops. Regardless, the QCAR
approach exhibits a shorter delivery delay by 10% compared to that of the traditional Q-learning.
All approaches exhibit a sharp increase in delay when the data flow rate is more than 10 packets
per second because the maximum buffer size set for this experiment was 10 packets. Hence, it is at
this rate when some nodes tend to experience congestion owing to a buffer overflow, upon which
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our proposed QCAR method reacts accordingly through the random route selection algorithm,
which prevents congestion at the intermediate node.

Figure 7: Packet delivery ratio vs. data rate

Figure 8: End-to-end delay vs. data rate
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4.4 Effects of Varied Number of Traffic Source Nodes
In this section, we discuss the impacts of using a varied number of traffic source nodes on

all three approaches discussed. We limit the maximum buffer size to 10 packets, in a network
of 10 nodes, and observe how the different approaches react to varied traffic sources of 1, 3, 5,
and 7 nodes. In this set of experiments, the intermediate nodes are subjected to the reception
of data packets from different sources directed toward different destinations at some point in the
simulation time. We expect our proposed QCAR to react better than the shortest-path and the QL
approach because nodes use the look-ahead method to detect possible consequences of selecting
a node as its next hop.

To conduct the experiments, each source node is allowed to send data packets at a constant
flow rate of 10 packets per second towards a given destination. To create varied congestion levels
on nodes, each link connecting two nodes is given a different bandwidth. As can be seen in
Fig. 9, with a single traffic source, most of the data packets are successfully delivered to their
respective destinations within a short time for all schemes because the paths are not congested. As
the number of sources of the traffic nodes increases, some intermediate nodes start to experience
congestion caused by a traffic burst. The shortest path approach experiences a sharp decline in
delivery ratio caused by a buffer overflow because the nodes use fixed routes to forward the data
packets.

Figure 9: Packet delivery ratio vs. source nodes

Compared to the QL approach and the shortest-path, our proposed scheme can deliver more
data packets regardless of the increased traffic flow owing to its ability to distribute traffic by a
random selection of next-hops among the nodes with low congestion levels. In addition, periodic
updates of the route information allow for a temporary rest of the busy routes, thereby allowing
buffered packet forwarding without any loss. The QL mechanism is unable to do this better than
QCAR because a node will continue to forward data packets toward a neighbor as long as it
can accept data packets without considering what will happen shortly thereafter. The QCAR
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mechanism delivers approximately 13% more data packets than the QL and 19% more than
the shortest-path approach at an acceptable increased delay (see Figs. 9 and 10) caused by the
tendency of nodes routing packets toward longer routes compared to the shortest-path approach.

Figure 10: End-to-end delay vs. source nodes

Figure 11: Packet delivery ratio vs. number of nodes
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4.5 Effect of Varied Number of Nodes
To observe the impact of increasing the number of nodes, we created three different topologies

with 10, 30 and 50 nodes to represent small, intermediate, and large node density topologies,
respectively. Here, we use three traffic source nodes, each sending data packets at the rate of 10
packets per second during the entire simulation time toward different destinations. Similar to the
previous set of experiments, we limit the maximum buffer size to 10 packets only and present the
simulation results in Figs. 11 and 12 below to reflect the behaviors shown by the three approaches.
As can be seen from Fig. 11, the shortest path approach exhibits almost a similar tendency
by mostly maintaining the amount of data packets delivered for all varied node densities. This
is because the shortest-path approach chooses the same short routes regardless of the presence
of other nodes. However, the QL and QCAR approaches react differently. Both show a linear
increase in the packet delivery ratio. This is caused by the presence of multiple neighbors, which
offers additional options to forward data packets without experiencing congestion.

At some point during the simulation, some intermediate nodes experiencing congestion per-
form better with the QCAR approach because doing so guarantees better routing decisions
by considering nodes up to two hops away. This offers more options to forward data packets
compared to the previous QL approach. The QCAR approach sends more data packets at an
increased ratio of almost 7% and nearly 20% compared to the QL and shortest-path, respectively.
Similar to the previous scenarios, the QL and QCAR approach tend to increase in terms of
delivery delay owing to the tendency of nodes selecting longer routes to forward data packets, as
shown in Fig. 12.

Figure 12: End-to-end delay vs. number of nodes
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Figure 13: Packet delivery ratio vs. buffer size

Figure 14: End-to-end delay vs. buffer size

4.6 Effect of Varied Maximum Buffer Size
In this set of experiments, we observe the impact of varying the maximum buffer size of the

nodes. We set a network of 30 nodes with three traffic sources, all generating packets at a rate of
10 packets per second. It is expected that the packet delivery ratio should increase proportionally
to the increase in buffer size. As shown in Fig. 13, all approaches exhibit a relative linear increase
in packet delivery ratio and reduced delivery delay as the buffer size increases. With our proposed
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approach, increasing the buffer size means the nodes tend to have a relatively larger subset table
of nodes with congestion levels lower than a predetermined threshold (see Algorithm 2). A larger
table for nodes actively participating in the routing means that the nodes have increased options to
choose the next hops with far less congestion. The QCAR approach performs better by delivering
data packets nearly 10% and 5% smaller (10 packets at maximum) and larger (30 packets at
maximum) with a relatively shorter delay compared to the traditional Q-learning approach, as
shown in Fig. 14.

5 Conclusion

In this paper, we proposed a new congestion-aware routing protocol based on Q-learning over
an SDN architecture. Topology information and the periodical measured value for congestion are
used to compute the Q-value and make the best route to avoid a congestion. The performance
evaluation reveals that QCAR outperforms the existing scheme by more than 15% in terms of
packet delivery ratio and reduced end-to-end delay at a high traffic rate, large network density, and
varied buffer size. In addition to the selection of the best route, a load balance along the multiple
paths can contribute to congestion avoidance and stabilize the network performance. Based on
this research, load balancing with a Q-value for each path and an intelligent next-hop selection
instead of a random selection will be studied and evaluated.
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