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Abstract: With the striking rise in penetration of Cloud Computing, energy
consumption is considered as one of the key cost factors that need to be man-
aged within cloud providers’ infrastructures. Subsequently, recent approaches
and strategies based on reactive and proactive methods have been developed
for managing cloud computing resources, where the energy consumption and
the operational costs are minimized. However, to make better cost decisions in
these strategies, the performance and energy awareness should be supported
at both Physical Machine (PM) and Virtual Machine (VM) levels. Therefore,
in this paper, a novel hybrid approach is proposed, which jointly considered
the prediction of performance variation, energy consumption and cost of
heterogeneous VMs. This approach aims to integrate auto-scaling with live
migration as well as maintain the expected level of service performance, in
which the power consumption and resource usage are utilized for estimating
the VMs’ total cost. Specifically, the service performance variation is handled
by detecting the underloaded and overloaded PMs; thereby, the decision(s) is
made in a cost-effectivemanner.Detailed testbed evaluationdemonstrates that
the proposed approach not only predicts the VMs workload and consumption
of power but also estimates the overall cost of live migration and auto-scaling
during service operation, with a high prediction accuracy on the basis of
historical workload patterns.

Keywords: Cloud computing; energy efficiency; auto-scaling; live migration;
workload prediction; energy prediction; cost estimation

1 Introduction

Cloud Computing is an effective and emerging model that has changed the industry of
Information Technology (IT), in which it can deliver a wide variety of services for their customers
in the form of applications, platforms and infrastructures. Nevertheless, the wide adoption of
Cloud Computing leads to increase the number of customers and thereby increase the cloud
providers’ operational costs [1–5]. Therefore, minimizing the operational costs for the Cloud ser-
vices has attracted considerable attention from industry and academic researchers in recent years,
where numerous cost approaches and techniques (e.g., on-demand, subscription and auction cost
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models) have been developed by providers which can significantly affect the adoption of Cloud
Computing industry. However, these approaches are sophisticated and have a set of limitations
because the customers are charged on the basis of pre-defined tariffs for the resources, even if
they have not used them [6–8]. In addition, the variation of energy cost is not considered in
these approaches [9,10]. With the increasing cost of electricity, energy consumption is considered
as one of the major cost factors that has a great effect on the Cloud infrastructure’s operational
cost [1–3,11]. Therefore, building a novel cost approach for Cloud services that are adapted to the
energy costs is challenging and has attracted the attention of many researchers [1–3].

The consumed energy at the clouds is dependent on two main factors, which are the physical
resources’ efficiency and the strategies employed to manage these resources [12,13]. Consequently,
numerous reactive and proactive-based methods are used to manage Cloud resources in an efficient
way such as dynamic consolidation and resource provisioning [14]. For example, when the workload
exceeds a specific threshold, (i.e., 95% of CPU utilization), the right decision is made (e.g.,
VMs migration or resources scaling) to avoid the degradation of service performance. Indeed,
proactive-based methods can make the corrective decisions (e.g., auto-scaling, live migration and
re-allocation) at earlier stages, in which the violation of Service Level Agreement (SLA) is
prevented, and the service performance is maintained acceptable. Therefore, studying and under-
standing the impact of these decisions is important to develop cost-efficient strategies and energy
efficient resource allocation methods. Moreover, estimating future Cloud services’ cost can help
service providers for making effective-cost decisions and offering suitable services that meet the
requirements of their customers. Furthermore, recent developments in the management of Cloud
paradigm at different levels and the reduction of energy consumption have received attention and
thereby reduce the operational expenditure (OPEX) costs for the Cloud providers.

The aim of this paper to overcome the identification’s challenge of cost-effective approaches
for cloud services by enabling energy consumption’s awareness, performance variation and the vir-
tual level cost in the environment of Cloud. In addition, the result of this work can be integrated
with reactive and proactive resource management methods for making effective-cost decisions in
which it is reinforced by performance and energy awareness to manage Cloud resources efficiently.
Moreover, the consumed energy is reduced and then the total cost of Cloud providers is minimized
while the service performance is maintained. The contributions reported in this paper can be
summarized as follows:

• A novel hybrid approach is introduced for predicting the VMs total cost, energy consump-
tion and performance variation, where auto-scaling and live migration are integrated in
order to provide cost-effective strategies. Additionally, the trade-off among cost, energy and
performance in the cloud environment are considered.

• Set of models and algorithms are proposed for enhancing VMs consolidation and resource
provisioning techniques, as well as supporting energy consumption’s awareness, performance
variation and cost in the infrastructure of Cloud.

• The evaluation results based on a real Cloud testbed proved the usability of the proposed
approach and verified the capability of the prediction models.

The reminder of this paper is organized as follows: Section 2 introduces the hybrid approach
for performance and predication cost of energy that integrates VMs auto-scaling with live migra-
tion. The experimental setup and design are presented in Section 3. This is followed by the
evaluation and results discussion in Section 4. Finally, Section 5 concludes this paper and discusses
future steps.
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2 Integration of VMs Auto-Scaling with Live Migration: A Hybrid Approach

Recently, resource provisioning and VMs consolidation are used to address workload fluctu-
ations issues, in the cloud environment. From on hand, the resource provisioning-based solutions
(e.g., auto-scaling) can provide VMs with needed additional resource capacity to satisfy the
requirements of Quality of Service (QoS). For instance, when one or more VMs are detected as
overloaded (e.g., the workload surpasses the predefined percentage of upper threshold), the VMs
should be scaled up/out to meet the application demands. Generally, VMs auto-scaling are cate-
gorized into two main types, namely, vertical scaling (i.e., scale-up/resizing) and horizontal scaling
(i.e., scale-out) [15–17]. In the case of vertical scaling, the resources (e.g., vCPUs and memory)
are added into VMs, while in the horizontal scaling case, an additional VMs are created. Note
that, the additional resources are determined regarding the application requirements. Nevertheless,
the second scaling type (i.e., horizontal scaling) requires a few minutes to be initiated [15,18,19],
which is unacceptable for real-time and delay-sensitive computation [20,21]. Additionally, there are
extra costs for vertical and horizontal scaling [17] which are scaling time (booting/rebooting), new
VMs’ license fees and energy overhead that need further consideration [16]. From the other hand,
VM consolidation-based solutions (e.g., live migration) can improve the resource utilization and
achieve energy efficiency in Clouds, in which the live migration process allows VMs to be moved
from one PM to another without service interruption [22]. This approach plays an important role
to balance the load among the PMs and reduces the overall energy consumption. For instance,
when a host is detected as underloaded (e.g., the workload less than the predefined percentage
of lower threshold), it is a candidate for being switched off or to enter power saving mode.
However, the process of live migration is considered as a resource-intensive operation [23], in
which the migrating VMs’ service performance, and the services running on other VMs, are
effected [24–27]. Moreover, it’s needs to take attention that there are extra costs for the migration
process [17], which includes the migration time and energy overhead [28,29]. Therefore, studying
and understanding the influence of VMs auto-scaling and live migration is important to develop
cost-effective strategies for Cloud services.

Numerous approaches for resource provisioning and VM consolidation independently emerged
in the literature [16,17,21,24,25,30–32] with the goal of balancing the load, increasing the capacity
of VMs resources and reducing the energy-related costs. To minimize the operational costs while
achieving performance objectives, Cloud providers may automatically perform VMs consolidation
and resource provisioning to match workload changes and prevent any performance loss. Indeed,
a proactive-based framework can make the preventive actions on-the-fly (e.g., VMs auto-scaling,
migrating and re-allocating) at earlier stages, in which the degradation of service performance is
avoided. In addition, the framework’s effectiveness depends on possible actuators/decisions to be
implemented at service operation. This solution would enable Cloud providers to better use of
their infrastructure in terms of maintaining service performance, reducing power consumption and
operating cost. Besides, estimating future Cloud services’ cost supports the service providers for
offering appropriate services that satisfy the requirements of their customers [33].

Therefore, the proposed framework in [34] has been extended to support a new hybrid
approach for predicting the total cost of heterogeneous VMs, considering their energy consump-
tion and performance variation, as depicted in Fig. 1. More specifically, the costs of auto-scaling
and live migration processes are integrated to determine the decision, in which the issues related
to quality characteristics (e.g., energy consumption and application performance) are considered.

In addition, Autoregressive Integrated Moving Average (ARIMA) model is utilized to predict
the workload of PMs/VMs in order to handle the performance variation of the applications and
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perform the most effective decision(s) (e.g., auto-scaling, live migration or both). Moreover, regres-
sion models exploit VMs and PMs workload’s correlation to predict the VMs power consumption
for an efficient allocation/re-allocation of the VMs. Consequently, on the basis of the predicted
workload and energy consumption for each VM, VMs’ total cost caused by the most effective
decision(s) can be estimated. Finally, to reach this goal, numerous steps are needed to detect PMs’
workload (i.e., underloaded and overloaded), predict PMs/VMs workload and consumption of
power, and thereby estimating the scaled/migrated VMs’ total cost, that are described in detail in
the following subsections.

Figure 1: A hybrid approach for performance and energy-based cost prediction

2.1 PMs Performance Detection
Step 1: The threshold percentages of PMs’ CPU utilization and RAM usage are determined

(i.e., lower, upper and max_upper; 25%, 85% and 95%, respectively) and the workload of PMs
is monitored periodically. Algorithm 1 shows the detailed process for detecting the underloaded
and overloaded PMs. This Algorithm combines two sub-algorithms: 1) live migration with VMs
re-allocation in order to switch the underloaded host to power saving mode, hence save energy-
related costs. Also, this mechanism aims to minimize the overall cost of migration by re-allocation
the VMs to the most energy efficient host (if possible), as presented in Algorithm 2; and 2) an
integration of auto-scaling, live migration and re-allocation in order to prevent the host to be
overloaded. This mechanism would help to select the most cost-effective action(s) in order to min-
imize VMs’ total cost that cased by scaling and migration decisions, as presented in Algorithm 3.
The list of the algorithms notations and their definitions are summarized in Tab. 1.

Step 2: The underloaded PMs is detected through Algorithm 1 and then appropriate actions
are made such as live migration and re-allocation to save cost. Therefore, if the PMi workload
(
∑n

i=1VMs Workload) is less than or equals to the threshold lower percentage (e.g., 25%), then
ARIMA model is utilized for predicting next time interval VMs’ workload (e.g., every 5 min) on
the basis of historical patterns of workload (see Step 4). Indeed, this process can detect the PMi
with the underloaded workload in advance, and thereby can migrate the VMs and switch PMi to
power saving mode. Afterward, if the next time interval VMs’ predicted workload is still less than
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or equals to the lower threshold, then VMs live migration and re-allocation are performed using
Algorithm 2.

Also, this algorithm (i.e., Algorithm 2) is used to select a matching destination PMj to
host the migrated VMs, and to check whether the cost incurred by VMs live migration is
less than the cost of switching the source PMi to power saving mode. To do so, PMs are
descending sorted regarding their energy efficiency. This is aimed to migrate the VMs to the
host with the most appropriated energy efficient. In this regard, the estimation of the energy
efficiency for both host (i.e., source PMi and destination PMj) can be calculated as: PM Power

= PMi(idle power of the source)
PMj(idle power of the destination)

. For example, if the PM power > 1, the destination host is

more energy efficient than the source; if the PM power= 1, the destination host is similar to the
source in terms of the energy efficient and if the PM power< 1, the destination host is less energy
efficient than the source.

Starting with the lowest idle power for PMj (the most energy efficient host), and then check
if PMj has enough resources to meet the migration requirements, while simultaneously ensuring
that the destination host PMj does not exceed the upper percentage threshold after allocating
the migrated VMs. This algorithm ensures: 1) the destination PMj is not overloaded after VMs
migration process, 2) the source PMi will be switched to power saving mode once the migration
takes place in order to save cost.
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Step 3: The overloaded PMs is detected through Algorithm 1 and then the candidate VMs
that need to be scaled/migrated are identified. Therefore, if the workload value of PMi within
the range of [upper and max_upper percentage of threshold], then ARIMA model is utilized for
predicting the next time interval of VMs workload in PMi (e.g., every 5 min) on the basis of
historical patterns of workload (see Step 4). Obviously, this process can detect the PMi with the
overloaded workload, and thereby can perform preventive actions such as VMs auto-scaling and
live migration. Further, this mechanism would help to control the number of scaling and migra-
tions decisions in order to prevent unnecessary scaling/migration incurred by small workload peaks
(false alarm). Afterward, if the workload of predicted VMs is still within the range of [upper and
max_upper percentage of threshold] for the next interval, VMs auto-scaling/live migration process
is employed using Algorithm 3.

The proposed Algorithm 3 combines the auto-scaling (vertical/horizontal scaling) with live
migration for obtaining the appropriated cost-effective decision(s). The overloaded VMs is firstly
scaled/migrated (e.g., resize VMs, migrate existing VMs and resize them, or initiate new VMs),
then select appropriate destination PMj for hosting it. To achieve this, the following set of
conditions are tested in the same order and perform the associated actions: 1) if PMi (the source
host) has enough resources to meet the scaling requirements, then the vertical scaling is performed
on this PMi (hint: vertical scaling is restricted by PMi capacity [17,35,36]); 2) if PMi does not have
enough resources, the PMs are descending sorted regarding their energy efficiency, as described in
Step 2. After sorting the PMs based on their energy efficiency, the migration and vertical scaling
decision is performed in order to firstly migrate the overloaded VMs to appropriate host PMj and
then vertically scaling them. It also checks if PMj has enough resources to meet the migration
and scaling requirements, while at the same time ensuring that the destination host PMj does
not exceed the upper percentage threshold after allocating the migrated VMs along with their
scaling requirements (the additional resources); otherwise, 3) horizontal scaling is made on PMj
in a similar manner as the previous action by placing the new VM to an appropriate destination.
This algorithm ensures: 1) the destination PMj is not overloaded after VMs scaling and migration
processes, 2) workload of the source PMi is significantly decreased once scaling/migration process
is performed, and 3) minimize VMs’ total cost caused by scaling/migration decisions.
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Table 1: Summary of notations

Notation Description

PMi Source physical machine
PMj Destination physical machine
VMx Candidate VM for migration/the overloaded VM for scaling
C_CPU_PM PM’s CPU capacity
C_RAM_PM PM’s memory capacity
U_CPU_PM Used PM’s CPU capacity (

∑VM_Count
y=1 (vCPU))

U_RAM_PM Used PM’s memory capacity (
∑VM_Count

y=1 (RAM))
C_CPU_VM VM’s CPU capacity
C_RAM_VM VM’s memory capacity
U_CPU_VM Used VM’s CPU capacity
U_RAM_VM Used VM’s memory capacity
I_CPU_VM Increment VM’s CPU capacity
I_RAM_VM Increment VM’s memory capacity

For VMs scaling, Algorithm 4 is utilized to select the appropriate VMs size for cost-effective
scaling on the basis of closest cloud provider-defined instance sizes set (e.g., small, medium and
large VM). However, over-provisioning may be happened in this mechanism (e.g., in the case of
there is a difference between the requested scaling resources and the predefined cloud providers’
instance sizes). Subsequently, the extra-resources are wasted, where set of capacity is created
and useless, and thereby more money might paid without any benefit [17,37], which is not the
auto-scaling goal of VMs. Moreover, wasted resources may lead to an increase in energy costs
because of their under-utilization and a decrease in the revenue of Cloud providers, as the number
of resource requests acceptable may decrease. Therefore, motivated by these considerations, a
new self-configuration algorithm is proposed for resizing/creating VMs on the basis of the right
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requested resources size, where the self-configuration algorithm aims to allocate adequate resources
to VMs and avert resources’ over-provisioning. In this way, this algorithm (i.e., Algorithm 4) can
maximize cloud providers’ resources usage and thereby their profits are maximized, and only the
actually used resources will be paid by customers.

2.2 VMs Workload Prediction
Step 4: In this step, VMs workload is predicted for the next time interval using ARIMA

model, which is expressed as the number of VMs requested and their capacity (i.e., vCPUs,
memory, disk and network) for executing the application, and can be calculated based on histor-
ical workload patterns retrieved from a knowledge database. Different patterns of workload can
be achieved in Cloud applications based on the behaviors of customers usage, which consume
different power depending on the utilized resources. As stated in [38], there are several workload
patterns such as static, periodic, continuously changing, unpredicted, and once-in-a-lifetime. The static
workload pattern can be easily predicted, but there are many challenges that can obstruct the
workload prediction when using other patterns. For example, other patterns may reflect temporary
fluctuations of the workload such as continuously changing and once-in-a-lifetime or may be
difficult to predict in advance such as the unpredicted pattern. These patterns do not necessarily
occur in data centers on a daily basis [32]. Therefore, it is essential to have approximated workload
patterns that occur in the time series history to achieve a high prediction accuracy [32]. Thus, the
periodic workloads can be more appropriate and precise to allow Cloud services to quickly scaling
or descaling the capacity to meet demand and dynamically control the cost of the infrastructure.
Therefore, the simulated periodic workload pattern is considered for the historical data to be used
in this work. Due to the sophistication and ARIMA model accuracy, it is widely used in different
fields, such as economics and finance [39], where a further details exist in [39]. After predicting
the workload of VMs using a model of ARIMA, which is based on historical data, the workload
of PMs as well as the power consumption of PMs/VMs are predicted using regression models.

2.3 PMs Workload Prediction
Step 5: Workload prediction of PMs is represented as (PMs CPU utilization), which can be

calculated based on the relationship between vCPUs number and the PM CPU utilization for the
heterogeneous PMs, as shown in Figs. 2–4, respectively.

In this step, a model of linear regression is utilized for predicting the PMs CPU utilization
on the basis of the ratio of used vCPUs requested number by VMs, considering their current
workload as the PM can already running other VMs [40,41]. The following Eq. (1) is used.

PMxPredUtil =
⎛
⎝α×

⎛
⎝VMCount∑

y=1

(VMyReqvCPUs× VMyPredUtil
100

)

⎞
⎠+β

⎞
⎠+ (PMxCurrUtil−PMxIdleUtil)

(1)

where PMxPredUtil indicates the predicted CPU utilization of PM; α and β denote the slope
and the CPU utilization’s intercept, VMyReqvCPUs and VMyPredUtil denote the number of vCPU
requested and the predicted utilization for each VM. The PMxCurrUtil and PMxIdleUtil denote the
current and idle PM utilization, respectively.
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Figure 2: Number of vCPUs (VMx) vs. PM CPU utilization (source PMi), Host A

Figure 3: Number of vCPUs (VMx) vs. PM CPU utilization (destination PMj-most energy
efficient PM), Host B

Figure 4: Number of vCPUs (VMx) vs. PM CPU utilization (destination PMj-less energy efficient
PM), Host D
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2.4 PMs Energy Consumption Prediction
Step 6: After the workload of PMs was predicted in the previous step, the power consumption

of PMs is predicted in this step, which can be computed on the basis of the relationship
between the predicted workload (CPU utilization) and power consumption of PM. Therefore, the
considered PM should be characterized using regression models with respect to the correlation of
their power consumption and CPU utilization, as shown in Fig. 5.

Figure 5: The PM CPU utilization vs. power consumption (source PMi), Host A

Figure 6: The PM CPU utilization vs. power consumption (destination PMj-most energy efficient
PM), Host B

Consequently, the power consumption of the predicted PM, PMxPredPwr measured in Watt,
can be linearly expressed using the CPU utilization of the predicted PMs, as shown in Fig. 5 and
in Eq. (2). Where α and β denote the values of slope and interceptor obtained using regression
relation, and PMxPredUtil denotes CPU utilization of the predicted PM.

PMxPredPwr = (α× (PMxPredUtil)+β) (2)
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However, all existing PMs do not necessarily follow this linearity relation due to the natural
heterogeneity of PMs’ resources, as shown for example in Figs. 6 and 7. Therefore, in this case, the
correlation among power consumption and the targeted PM’s CPU utilization can be characterized
using other regression models, such as polynomial, as presented in Eq. (3).

PMxPredPwr =
(
α(PMxPredUtil)

3+γ(PMxPredUtil)
2+ δ(PMxPredUtil)+β

)
(3)

where α, γ and ϕ represent slopes, β denotes the intercept and PMxPredUtil denotes the CPU
utilization of the predicted PM.

Figure 7: The PM CPU utilization vs. power consumption (destination PMj-less energy efficient
PM), Host D

2.5 VMs Energy Consumption Prediction
Step 7: The goal of this step is to assign the PM predicted consumption of power to the

newly requested VM, VMxPredPwr, as well as to the running VMs on the physical host, which can
be computed using Eq. (4).

VMxPredpwr =PMxIdlePwr×
(

VMxReqvCPUs∑VMcount
y=1 VMyReqvCPUs

)
+ (PMxPredPwr−PMxIdlePwr)

×
(

VMx(PredUtil×ReqvCPUs)∑VMcount
y=1 VMy(PredUtil×ReqvCPUs)

)
(4)

where VMxPredPwr denotes one VM’s predicted power consumption in Watt. The VMxReqvCPUs
and VMxPredUtil denote the vCPU requested number and the predicted CPU utilization of VM,

respectively.
∑VMcount

y=1 VMyReqvCPUs denotes VM’s total vCPU on the same PM. The PMxIdlePwr
and PMxPredPwr denote the idle and predicted consumption of power for a single PM.
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Note that, the energy providers are usually charged by Kilowatt per hour (kWh). Therefore,
the consumption of power needs to be converted to energy based on the following Eq. (5).

VMxPredEnergy =
VMxPredPwr

1000
× Times

3600
(5)

2.6 VMs Total Cost Estimation
Step 8: Finally, regarding the obtained values of predicted VMx resource usage and energy

consumption in Steps 4 and 7, the VMx total cost is estimated in this step. In the case of VM
migration, the total time Times needed to migrate VMx can be expressed as follows:

TMig = (TMig_End −TMig_Start) (6)

TRun_Sou= (TRun_Sou_Bef _Mig+TMig) (7)

TRun_Des= (TRun_Des_Aft_Mig+TMig) (8)

where TMig denotes the total migration time of VMx in seconds. TMig_Start and TMig_End denote
the start and end time of the migration process. TRun_Sou denotes the summation of VMx running
time on the PMi before the migration process starts plus the migration time TMig itself, and
TRun_Sou_Bef _Mig denotes the VMx running time before migration. TRun_Des denotes the VMx
running time on the PMj during and after the migration process, and TRun_Des_Aft_Mig denotes the
VMx running time after migration. In the case of VM auto-scaling, the total time Times needed
to scale VMx can be expressed as follows:

TScaling_VMx = (TEnd_Scaling−TStart_Scaling) (9)

TExisting_VMx =
(
TEnd_Run−TStart_Run

)− (TScaling_VMx) (10)

where TScaling_VMx denotes the VMx scaling time in seconds. TStart_Scaling and TEnd_Scaling denote
the start and end time of scaling. TExisting_VMx denotes the VMx running time before the scaling
process starts. TStart_Run and TEnd_Run denote the start and end time for the operating task. For
estimating the total cost of VMx based on the suitable action(s), Eq. (11) is proposed.

VMxEst_Cost_PMi

=
((

VMxReqvCPUs_PMi× VMxPred_U_PMi

100

)
× (Cost_vCPU ×Times)

)

+ (VMxPred_RAM_U_PMi× (Cost_GB×Times)
)+ (VMxPred_Disk_U_PMi× (Cost_GB×Times)

)
+ (VMxPred_Net_U_PMi× (Cost_GB×Times)

)+ (VMxPred_Energy_PMi×Cost_kWh) (11)

where VMxEst_Cost_PMi denotes the VMx total estimated cost before and during the action is made
on the source PMi. The VMxReqvCPUs_PMi denotes the vCPUs requested number for each VM
and VMxPred_U_PMi denotes the predicted CPU utilization for each VM, times vCPUs requested
cost for a period of time (the time is based on the performed action). VMxPred_RAM_U_PMi
denotes the predicted usage of memory, times the cost for that resource for a period of time. The
notation of disk and network resources are similarly considered. VMxPred_Energy_PMi denotes the
VMx predicted energy consumption, times the energy providers-considered energy cost. Therefore,
Eq. (11) can be used to estimate the VMx cost during and after the action is made at the
destination PMj, while the resources of PMi (e.g., CPU, RAM, disk, network and energy) are
substituted with PMj resources. Moreover, an additional license fee α is added for the new VM
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(i.e., constant £0.1/h.) in the case of making horizontal scaling decision. Thus, Eq. (12) can be
used to obtain the VMx estimated cost, VMxTotal_Est_Cost, before and after the action is made.

VMxTotal_Est_Cost= VMxEstCostPMi
+ VMxEst_Cost_PMj (12)

3 Experimental Setup

In this section, the experimental details to critically evaluate the performance of the proposed
approach is conducted, in which a real Cloud testbed is used. First, the cloud testbed and
monitoring infrastructure are introduced. Afterward, experimental design is presented.

3.1 Cloud Testbed and Monitoring Infrastructure
The experiments are undertaken on a Cloud testbed composed of commodity Dell servers’

cluster, in which each server is equipped with 16 GB RAM and 500 GB of SATA HDD storage,
running Linux CentOS version 6.6 platform. In addition, four different PMs are considered on the
cloud testbed, where three of them (Host A, C and D) equipped with an Intel Xeon CPU with
four core X3430 and the last one (Host B) equipped with an Intel Xeon CPU with eight-core
E3-1230 V2. Also, the testbed offers a share of Network File System (NFS), which runs on the
cluster head node and provides with a 2 TB of VM images’ storage. Moreover, this testbed is
supported by Virtual Machine Manager (VMM) with OpenNebula [42] version 4.10.2, and used
a Kernel-based Virtual Machine (KVM) [43] hypervisor version 4.0.1 built on Linux Kernel with
version 2.6.32.24. Further, in this testbed, Host A is considered as the source host (PMi) and Host
B, C and D are considered as the destination’s hosts (PMj). Where Host B is the most energy
efficient host, Host C is the similar host configuration to the source Host A, and Host D is the
less energy efficient host.

In addition, Cloud testbed monitors and measures the usage of resources and energy. At
the physical level of host, each PM is equipped with a WattsUp meter [44], for measuring the
power consumption values per second, which then pushed to Zabbix (infrastructure monitoring
tool) [45]. Besides, for each of the running PMs and VMs, the usage of resources (e.g., CPU,
memory, network and disk) are monitored by Zabbix. Moreover, the power consumption of PMs
and resource usage of VMs are transferred together to the proposed approach, which can measure
the energy consumption as well as VMs’ total cost.

Finally, with regard to VMs considered in this paper, Rackspace [46] is utilized as VMs
configurations reference, to provide an extensive range of VM types, that allows customers plenty
of flexibility to satisfy their needs. Additionally, in this paper, three types of VMs (i.e., small,
medium and large) with different capacities are utilized. Furthermore, with regard to Elasti-
cHosts [47] and VMware [48], the virtual resources’ cost is determined, whereas they describe a
service cost breakdown in detail as follows: 1 vCPU, 1 GB Memory, 1 GB Storage and 1 GB
Network are respectively assigned £0.008/h, = £0.016/h, = £0.0001/h, = £0.0001/h; and energy
cost = £0.14/kWh [49]. Note that customers are charged based on the resources they utilize in
British Pound Sterling (GBP/£).

3.2 Design of Experiments
In this subsection, an experimental design is conducted to prove the capability of the proposed

approach to detect and predict the underloaded/overloaded PMs in order to handle the service
performance variation in a cost-effective manner. This approach also aims for predicting the
workload and power consumption and can estimate the total cost associated with migrated and
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scaled VMs in the case of heterogeneous PMs are used for running. Additionally, the approach
focuses on total saving cost which can be achieved if VMs are migrated/scaled to/on different
hosts with different energy characteristics. In the experimental design, a real pattern of workload
for Cloud applications is represented by generating historical data, in which all the resources (i.e.,
CPU, memory, network and disk) are stressed to their full utilization on different VMs types
using the Stress-ng tool [50]. Then, guided by the intuition in [51], the time interval for each
VM type’s generated workload is divided into four slots (30 min each), in which three of them
are used a set of prediction historical data, whereas the last one can be utilized as a set of
testing data for evaluating the predicted results. The applying process of the proposed approach
is as follows. Firstly, the underloaded and overloaded hosts are detected in order to handle the
service performance variation. Then, the auto.arima R package’s function [52] is used to predict
the workload of VMs, in which ARIMA best fit model is automatically selected on the basis of
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) value. Afterwards,
the process passes through the framework cycle [34] and takes into account the relationship among
the physical and virtual resources for predicting VMs’ consumption of power, in the case of
several PMs are used for running. Finally, the most cost-effective decision(s) is performed, and the
total cost is estimated for both migrated and scaled VMs on the basis of their power consumption
and workload predicted.

4 Evaluation and Results Discussion

In this section, an extensive and quantitative evaluation of the proposed approach based on
the performance and predication cost of energy are presented, in which VMs total cost during
service operation is estimated with the consideration of migration and scaling decisions. First, the
predicted workload results for VMs with three different types (i.e., small, medium and large) that
operated on several PMs on the basis of historical periodic workload pattern, are introduced.
Afterward, the results of VMs power consumption prediction with live migration and auto-scaling
processes are discussed. Finally, the estimation cost of VMs is presented.

4.1 VMs Workload Prediction
Regarding Algorithm 1, the predictive model is employed to reduce the number of VM

migration/scaling decisions in the case of PMi is underloaded/overloaded, while the predefined
thresholds (i.e., lower, upper and max_upper) are satisfied, and thereby prevent the unnecessary
migration and scaling incurred by small workload peaks (false alarm). Generally, with regard
to Algorithm 2, VMs are migrated or re-allocated/allocated to the appropriate destination PMj
(i.e., with sufficient resources and energy-efficient) in the case of PMi is underloaded, in which
the predicted workload is less than or equals to the predefined lower threshold, and thereby
PMi is switched to power saving mode and then the cost is saves. Furthermore, according to
Algorithm 3, the most cost-effective scaling/migration decision(s) (e.g., resize VMs, migrate existing
VMs and resize, or initiate new VMs) is performed and VMs are re-allocated/allocated to the
selected destination PMj (i.e., with sufficient resources and energy-efficient) in the case of PMi is
overloaded, where the workload predicted is with the range of [upper and max_upper percentage
of threshold]. Also, the VMs predicted results in relation to the actual workload are illustrated
in Figs. 8–10, where CPU, RAM, disk, and network usage are included. It is observed from
the figures that the predicted and actual workload results of VMs for CPU, RAM and network
are approximately matched where the utilization peaks are periodic. This is due to the fact that
the ARIMA model is capable of captures the trend of historical seasonal and therefore gives
an accurate prediction. Whereas the accuracy for predicted disk workload is less with respect to
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the results of CPU, network and RAM prediction. This is trace to the high variations of disk
workload pattern of the generated historical periodic which is not nearly matched in each interval.

Figure 8: The workload prediction results for small VM

Figure 9: The workload prediction results for medium VM
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Besides the mean values of VMs predicted workload, the results also illustrated the confidence
intervals of each VM predicted workload with low and high percentage (i.e., 80% and 95%) based
on the ARIMA model.

Figure 10: The workload prediction results for large VM

Meanwhile, Tab. 2 presents different number of metrics used to verify the accuracy of the
prediction of CPU, RAM, disk and network workload using three VMs types (i.e., small, medium
and large) on the basis of periodic workload patterns.

Table 2: Prediction accuracy for three types of VMs

VM Type Parameters ME RMSE MAE MPE MAPE

Small VM CPU utilization 0.00486 1.7101 0.5652 −3.4611 4.978
RAM usage 0.00167 0.0189 0.0055 0.1618 0.6585
Disk usage −0.0052 0.1869 0.0461 3.459 6.940
Network usage 0.00072 0.0051 0.0030 0.64200 2.8612

Medium VM CPU utilization 0.019355 0.2451 0.12275 −3.1443 3.576033
RAM usage 0.001976 0.0189 0.00588 0.11509 0.333648
Disk usage 0.000197 0.0940 0.01848 −8.96 9.5482
Network usage −0.00005 0.0030 0.00181 −0.2380 2.716369

Large VM CPU utilization 0.437240 4.8481 1.39113 0.86261 2.095702
RAM usage −0.00097 0.0308 0.00791 −0.0621 0.328699
Disk usage −0.08418 1.4943 0.47049 −3.3323 11.57954
Network usage −0.00001 0.0028 0.00156 −0.3278 3.637562
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These metrics include, Mean Error (ME), Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Mean Absolute Percent Error (MAPE), and Mean Percentage Error (MPE). The
first metric (ME) is used to measure the predicted average error, whereas the measured variance
square root with the average absolute error is measured by (RMSE). Moreover, (MAE) is utilized
to compute the average absolute value for the predicted and actual value’s difference. Finally,
(MPE) is used to compute the average of percentage variation errors between the predicted and
actual values, while (MAPE) is used to compute the average absolute value for the predicted actual
value’s difference, which is explained as the actual value percentage [53]. When the values of these
metrics are too low or close to zero, it indicates that the prediction method has achieved very
high prediction accuracy.

4.2 VMs Power Consumption Prediction
Besides the VMs workload prediction, the power consumption is predicted using the proposed

approach for different number of VMs, while PMi and PMj, source and destination, are running
for both live migration and auto-scaling, as described next.

4.2.1 VMs Live Migration Power Consumption Prediction
VMs predicted results in relation to actual value of power consumption is shown in

Figs. 11–13, in which different VMs are running on source PMi (Host A) and destination PMj.
Note that, the destination PMj can be the most energy efficient (Host B), which is similar to the
configuration of the source host (Host C) or with less energy efficient (Host D) comparing to
source PMi, all of which were based on the migration decision.

Figure 11: Small VM predicted vs. actual power consumption on (source PMi and destination
PMj)

According to Algorithm 2, the migration is performed for the underloaded PMi if the selected
destination PMj has enough resources and the upper value of threshold is not exceeded once the
VMs migration takes place. Also, it is worth mentioning that a change in the PM predicated value
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of CPU utilization will influence the value of predicted power consumption of all VMs. Mean-
while, Tab. 3 presents different number of metrics used to verify the accuracy of the prediction of
power consumption using three types of VMs (i.e., small, medium and large) based on a periodic
workload pattern.

Figure 12: Medium VM predicted vs. actual power consumption on (source PMi and destination
PMj)

Figure 13: Large VM predicted vs. actual power consumption on (source PMi and destination
PMj)
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Table 3: Prediction accuracy for the predicted power consumption for all VMs on source (Host A)
and destination (Host B, Host C and Host D)

Parameter VMs Hosts ME RMSE MAE MPE MAPE

VMs power
consumption

Small VM Host A −0.00551665 0.5150904 0.2493285 0.00539324 0.3674461
Host B 0.005655233 0.4750381 0.2190667 0.04799226 0.5281281
Host C −0.00551665 0.5150904 0.2493285 0.00539324 0.3674461
Host D 0.00246747 0.1537848 0.07028654 0.0023619 0.05689478

Medium VM Host A 0.01939327 0.07113483 0.04306951 0.02648363 0.05983904
Host B 0.01529777 0.05683427 0.03492552 0.03521646 0.08024377
Host C 0.01939327 0.07113483 0.04306951 0.02648363 0.05983904
Host D 0.004925887 0.01823638 0.01120869 0.003956332 0.00901164

Large VM Host A −0.2564522 1.533448 0.5685501 −0.2213621 0.5101096
Host B −0.07265782 0.5223516 0.193443 −0.0954475 0.2912161
Host C −0.2564522 1.533448 0.5685501 −0.2213621 0.5101096
Host D 0.00000132 0.0000031 0.00000278 0.00000099 0.0000021

4.2.2 VMs Auto-scaling Power Consumption Prediction
Figs. 14–22 show the predicted results in relation to the actual value of VMs’ power consump-

tion that are operating on different hosts using different techniques (vertical scaling, migration and
vertically scaling and horizontal scaling).

Figure 14: Small VM predicted vs. actual power consumption using vertical scaling on a number
of PMs
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Figure 15: Medium VM predicted vs. actual power consumption using vertical scaling on a
number of PMs

Figure 16: Large VM predicted vs. actual power consumption using vertical scaling on a number
of PMs
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Figure 17: Small VM predicted vs. actual power consumption using migration and vertically
scaling on a number of PMs

Figure 18: Medium VM predicted vs. actual power consumption using migration and vertically
scaling on a number of PMs
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Figure 19: Large VM predicted vs. actual power consumption using migration and vertically
scaling on a number of PMs

Figure 20: Small VM predicted vs. actual power consumption using horizontal scaling on a
number of PMs
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Figure 21: Medium VM predicted vs. actual power consumption using horizontal scaling on a
number of PMs

Figure 22: Large VM predicted vs. actual power consumption using horizontal scaling on a
number of PMs
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According to Algorithm 3, the vertical scaling is performed for the overloaded VMs on the
same host, if the host has enough resources to meet the scaling requirements (PMi capacity is
limited by vertical scaling). Otherwise, the VMs migration and vertically scaling or the horizontal
scaling are performed for the overloaded VMs on a number of hosts, e.g., (Host B) is the most
energy efficient, (Host C) has a configuration similarity to the source host (Host A), and (Host D)
is the less energy efficient. Note that, the vertical scaling was not performed for all types of VMs
(e.g., large VM), since the large VM has four CPU cores and the capacity of the hosted PM (e.g.,
on Host A, Host C or Host D) has the same number of CPU cores as the VM. Thus, vertical
scaling on the same host is not available. Therefore, only horizontal scaling can be performed with
this type of VM. On the other hand, the vertical scaling or migration and vertically scaling can be
performed for the large VM only on (Host B), since it has eight CPU cores.

Meanwhile, Tabs. 4–6 present different number of metrics used to verify the accuracy of the
prediction of power consumption using three types of VMs (i.e., small, medium and large).

Table 4: Prediction accuracy for the predicted power consumption for all VMs performs (vertical
scaling) on different hosts

Parameter VMs Hosts ME RMSE MAE MPE MAPE

VMs power
consumption

Small VM Host A −0.00827498 0.7726357 0.3739927 0.01611016 0.5129771
Host B 0.01625062 0.6698005 0.2994985 0.09771351 0.6698014
Host C −0.00827498 0.7726357 0.3739927 0.01611016 0.5129771
Host D 0.00627207 0.2159668 0.09559397 0.00575502 0.07665149

Medium VM Host A 0.02908991 0.1067022 0.06460426 0.03629048 0.08216754
Host B 0.01980407 0.07504576 0.04582536 0.04335952 0.09834909
Host C 0.02908991 0.1067022 0.06460426 0.03629048 0.08216754
Host D 0.006596707 0.02445368 0.01499183 0.005249759 0.01192901

Large VM Host B −0.03093269 0.3194241 0.1197874 −0.02547422 0.174785

Table 5: Prediction accuracy for the predicted power consumption for all VMs performs (migra-
tion and vertically scaling) on different hosts

Parameter VMs Hosts ME RMSE MAE MPE MAPE

VMs power
consumption

Small VM Host B 0.01625062 0.6698005 0.2994985 0.09771351 0.6698014
Host C −0.00827498 0.7726357 0.3739927 0.01611016 0.5129771
Host D 0.00627207 0.2159668 0.09559397 0.00575502 0.07665149

Medium VM Host B 0.01980407 0.07504576 0.04582536 0.04335952 0.09834909
Host C 0.02908991 0.1067022 0.06460426 0.03629048 0.08216754
Host D 0.006596707 0.02445368 0.01499183 0.005249759 0.01192901

Large VM Host B −0.03093269 0.3194241 0.1197874 −0.02547422 0.174785
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Table 6: Prediction accuracy for the predicted power consumption for all VMs performs (horizon-
tal scaling) on different hosts

Parameter VMs Hosts ME RMSE MAE MPE MAPE

VMs power
consumption

Small VM Host B −0.0054593 0.7680777 0.3691814 0.00744378 0.3509133
Host C −0.0082749 0.7726357 0.3739927 0.00169475 0.2865351
Host D −0.0052990 0.5977032 0.2882975 −0.0005908 0.1515757

Medium VM Host B 0.02823278 0.1035619 0.06297163 0.02507514 0.05674791
Host C 0.02908989 0.1067022 0.06460427 0.02091843 0.04715986
Host D 0.02224723 0.08158656 0.04950406 0.01128311 0.02533147

Large VM Host B −0.3341869 2.027128 0.7513777 −0.1932349 0.4520876
Host C −0.3846782 2.300172 0.8528251 −0.1904874 0.4350779
Host D −0.2811938 1.68985 0.6266054 −0.1155186 0.2615967

4.3 VMs Total Cost Estimation
The proposed approach is also able to estimate VMs’ total cost of live migration and auto-

scaling when they are running on different PMs.

4.3.1 VMs Live Migration Cost Estimation
Fig. 23 shows the results of the estimated VMs’ total cost before live migration on (Host A)

and after live migration takes place on (Host B, Host C and Host D) along with their migration
cost. According to Algs. 1 and 2, the migration is performed for the underloaded PMi only if
the cost of VMs incurred by live migration to the selected destination PMj is less than the cost
of switching the source PMi to power saving mode. In this case, only small VMs can meet these
conditions to be migrated to the selected destination PMj, if it is the only VM running on the
source PMi.

Figure 23: Estimated total cost before vs. after migration on different PMs

In addition, Fig. 24 presents the estimated cost saving results, which can be achieved for the
small VM when being migrated to different hosts. This power savings cost is gained by switching
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the source (Host A) to power saving mode. For example, when the VM is migrated to the most
energy efficient host (Host B), it can achieve approximately 100% cost saving which means the
cost that can be saved by switching PMi to power saving mode minus the cost incurred by live
migration decision. With a similar host configuration to the source (Host C), it can achieve around
76% and with the less energy efficient host (Host D), it can achieve about 27%. Further, hosts’
energy efficiency plays a major role in reducing overall energy consumption.

Figure 24: Estimated cost saving for migrating small VM to different PMs

Thus, selecting the appropriate hosts to migrate the VMs have a great effect on the overall
cost saving (e.g., migrating the VMs to most energy efficient PM (Host B) is more cost-efficient
than migrating the VMs to less energy efficient PM (Host D)).

4.3.2 VMs Auto-Scaling/Migration Cost Estimation
Figs. 25–27 show the results of the estimated total cost for three VMs types operating

on multiple PMs using different scaling/migration strategies. According to Algorithms 3 and 4,
the scaling of the VMs will be respected to the requested resources’ right size using the self-
configuration technique. Thus, the vertical scaling is performed on the same host, if the host has
enough resources to meet the scaling requirements. Otherwise, the VMs migration and vertically
scaling or the horizontal scaling are performed on a number of hosts, e.g., (Host B) is the most
energy efficient, (Host C) is a host with a similarity configuration to the source host (Host A), and
(Host D) is the less energy efficient. As mentioned earlier, the vertical scaling was not performed
with the large VM, since it has the same number of CPU cores as the hosted PM (e.g., on Host
A, Host C or Host D), which means that the host is fully utilized via the VM. However, the
vertical scaling can be performed for the large VM only on (Host B) that has eight cores, as
shown in Figs. 25 and 26, respectively.
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Figure 25: Estimated vertical scaling VMs total cost

Figure 26: Estimated migration and vertically scaling VMs total cost

Choosing between different scaling strategies have a great effect on the scaled VMs’ cost (e.g.,
vertical scaling can be more cost-efficient than the proposed migration and vertically scaling or the
horizontal scaling when the VMs are scaled on the host with a similar configuration), as shown in
Figs. 25–27, respectively. This can be justified because vertical scaling has no additional costs in
terms of migration cost (e.g., in the case of migration and vertically scaling) or software license for
new VMs [36] (e.g., in the case of horizontal scaling). However, the technique of vertical scaling
is limited to the host’s capacity [15,36]. Therefore, the proposed migration and vertically scaling
mechanism helps for selecting the most appropriate cost-effective scaling strategy, rather than just
only choosing between scaling up/out. As shown in Figs. 26 and 27, the proposed migration and
vertically scaling mechanism outperforms the horizontal scaling one. This can be justified because
of the additional cost in terms of new VMs’ software license in the case of performing horizontal
scaling is larger than the cost of live migration for the VMs when migration and vertically scaling
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is performed. Furthermore, selecting the appropriate hosts in terms of their energy efficiency to
scale the VMs have a great effect on the scaled VMs’ total cost (e.g., it is a cost-efficient decision
if a PM with most energy efficient is used for horizontal scaling rather than a PM with less energy
efficient). Although the workload utilization with high variation, the metrics of accuracy show
that the VMs predicted workload and consumption of power are accurately predicted as well as
the live migration and auto-scaling’s estimated cost. Thus, the cost decision of cloud providers
can be enhanced using the proposed approach in terms of selecting the most suitable cost-efficient
migration and scaling techniques.

Figure 27: Estimated horizontal scaling VMs total cost

5 Conclusion and Future Work

This paper has proposed and verified a new hybrid approach for performance and predication
cost of energy. This approach can support decision-making dynamically, regarding auto-scaling
and live migration costs, while simultaneously aware of the energy consumption effect and applica-
tion performance during service operation. This hybrid approach integrates auto-scaling with live
migration in order to estimate the total cost of heterogeneous VMs by considering their resource
usage and power consumption, while maintaining the expected level of application performance.
The overall results show that the proposed hybrid approach can detect the underloaded and
overloaded hosts to perform the most cost-effective decision(s) to handle the service performance
variation. It can also accurately predict the workload and power consumption as well as estimate
the total cost for both migrated and scaled VMs when operating on different PMs, on the basis
of historical workload patterns.

In ongoing and future work, this approach will be extended to consider the impact of
hardware accelerators, such as Graphic Processing Units (GPUs) and Field Programmable Gate
Arrays (FPGAs) on the energy consumption and service performance. This extension would be
useful when modelling and identifying the energy consumption and total cost of Cloud services.
Furthermore, it is hard and costly to conduct large-scale experiments in a real Cloud environment
(e.g., a Cloud testbed), especially with limited resources. Therefore, simulation can be considered to
further study the scalability-related issues. Finally, additional Cloud applications workload patterns
such as unpredictable and continuously changing as well as different prediction algorithms such
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as Deep Neural Network (DNN), can be further considered as an expansion of the scope for the
workload prediction, power consumption prediction and the VMs’ cost estimation on the basis of
different types of workload patterns.
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