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Abstract: Image inpainting is an interesting technique in computer vision and
artificial intelligence for plausibly filling in blank areas of an image by refer-
ring to their surrounding areas. Although its performance has been improved
significantly using diverse convolutional neural network (CNN)-based models,
these models have difficulty filling in some erased areas due to the kernel size
of the CNN. If the kernel size is too narrow for the blank area, the models
cannot consider the entire surrounding area, only partial areas or none at all.
This issue leads to typical problems of inpainting, such as pixel reconstruction
failure and unintended filling. To alleviate this, in this paper, we propose a
novel inpainting model called UFC-net that reinforces two components in
U-net. The first component is the latent networks in the middle of U-net to
consider the entire surrounding area. The second component is the Hadamard
identity skip connection to improve the attention of the inpainting model on
the blank areas and reduce computational cost. We performed extensive com-
parisons with other inpainting models using the Places2 dataset to evaluate
the effectiveness of the proposed scheme. We report some of the results.

Keywords: Image processing; computer vision; image inpainting; image
restoration; generative adversarial nets

1 Introduction

Image inpainting is one of the image processing techniques used to fill in blank areas of
an image based on the surrounding areas. Inpainting can be used in various applications, such
as image/video uncropping, rotation, stitching, retargeting, recomposition, compression, super-
resolution, and harmonization. Due to its versatility, the importance of image inpainting has been
particularly addressed in the fields of computer vision and artificial intelligence [1-3].

Traditional image inpainting methods can be classified into two types: diffusion-based and
patch-based methods [4-9]. Diffusion-based methods use a diffusion process to propagate back-
ground data into blank areas [4-7]. However, these methods are less effective in handling large
blank areas due to their inability to synthesize textures [4]. Patch-based methods fill in blank areas
by copying information from similar areas of the image. These methods effectively restore a blank
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area when its ground truth is a regular and similar pattern. However, they could have difficulty
reconstructing an erased area when the ground truth has a complex and irregular pattern [8,9].
As a result, both types of methods have difficulty reconstructing specific patterns, such as natural
scenes and urban cityscapes [10].

Recently, deep neural network (DNN)-based methods [11-15] have significantly improved
image inpainting performance compared to diffusion-based and patch-based methods. Generally,
because DNN-based methods fill in the blank areas using learned data distribution, they can
produce consistent results for blank areas, which has been almost impossible using traditional
methods. Among the DNN-based methods, adapting the generative adversarial network (GAN)
has become mainstream for image inpainting [11,16]. The GAN estimates the distribution of
training data through adversarial training between a generator and discriminator. Based on this
distribution, the GAN reconstructs the blank area realistically in inpainting [11-15,17]. Still, this
approach often produces unexpected results, such as blurred restorations and unwanted shapes,
when the image resolution is high, or the scene is complex [10,11,13].

One plausible approach to solving these shortcomings is to consider spatial support [12].
Spatial support represents the pixel range within the input values necessary to generate one
pixel inside blank areas. To fill blank areas effectively, the inpainting model should consider the
entire area outside the blank areas. For instance, lizuka et al. [12] proposed a new inpainting
model using dilated convolutions to increase the spatial support from 99 x 99 to 307 x 307.
As a result, this model exhibits consistent inpainting performance compared to the Context
Encoder (CE) [11,12]. Although several inpainting studies have used this model, it lacks spatial
support when the blank areas are extensive [12]. Another approach to improving inpainting model
performance is to use the skip connection (SC) [18,19]. In such models, the SC connects the
previous values of the neural network to the output of the neural network to enhance the effect
of the input values on the output. By adding SC to an inpainting model, unwanted shapes can
be removed, and the resulting images can be sharper [18]. However, as the previous values of the
neural network have both spatial information and information about blank areas, the SC has no
significant effect on nonnarrow masks [15]. In addition, as the SC has unnecessary information,
using the SC as is for inpainting can be a burden.

In this paper, we propose a new inpainting model called UFC-net using U-net with fully
connected (FC) layers and the SC. The proposed model is quite different from other models
from two perspectives. First, UFC-net allows full spatial support, which recent inpainting models
cannot guarantee [12-15]. Second, UFC-net uses the Hadamard identity skip connection (HISC)
to reduce the decoder’s computational overhead and focus on reconstructing blank areas. We first
perform qualitative and quantitative comparisons with recent inpainting models to verify that
these two differences improve inpainting performance. Then, we demonstrate through experiments
that HISC is more effective than the SC in inpainting.

This paper is organized as follows. Section 2 reviews the related work, and Section 3 describes
UFC-net and HISC. Section 4 presents the quantitative and qualitative results by comparing
UFC-net with several state-of-the-art models. We also quantitatively and qualitatively compare the
inpainting performance of the HISC and SC. Section 5 concludes this paper and highlights some
future plans.
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2 Related Work

Three approaches improve the performance of DNN-based inpainting models. The first is
to consider spatial support [11,12,14]. The second is to use the SC [18-22], and the third is
to improve the restoration performance using some additional techniques, such as loss func-
tions [23-25], a two-stage model [13,15,23,26], and optional input [15,19]. Fig. 1 lists various
inpainting models according to this classification.

Another techniques
for improving inpainting performance
« Context encoder + U-net Adding loss Proposing two Additionally
« lizuka et al. [12] » DenseNet function stage model optional input
»Liuetal. [14] * ResNet
« UFC-net * SC-FEGAN » Adversarial loss + DeepFill vl * DeepFill v2
(proposed) » Boundless » Perceptual loss + DeepFill v2 * SC-FEGAN
» Style loss + EdgeConnect
» StructureFlow

Figure 1: Classification of deep learning-based inpainting models

2.1 Considering Spatial Support

The CE was the first DNN-based inpainting model to use the GAN [I1]. The CE com-
prises three components: an encoder based on AlexNet [27], a decoder composed of multiple
de-convolutional layers [28], and a channel-wise FC layer connecting the encoder and decoder.
Although CE can reduce restoration errors, it cannot handle multiple inpainting masks or
high-resolution images wider than 227 x 227 [12,14].

To mitigate these problems, lizuka et al. [12] proposed a new model consisting of an encoder,
four dilated convolutional layers [29], and a decoder. The encoder downsamples an input image
twice, and the decoder up-samples the image to its original size. Due to the dilated convolution,
their model considered a wider surrounding area to generate a pixel than the vanilla convolu-
tion [30]. They called this spatial support and demonstrated that this could extend the area from
99 x 99 to 307 x 307. However, their model was only effective for filling in blank areas using regular
masks (25% of the image size in the center) but not for irregular masks with diverse shapes, sizes,
and rotations.

Liu et al. [14] applied U-net [20] for both inpainting irregular masks and increasing the
region of spatial support. Although their model exhibited more consistent inpainting performance
than lizuka’s model or CE, its spatial support was not sufficient for filling in both regular and
irregular masks.

2.2 Skip Connection

The SC has been studied to address three main problems arising from the training of the
DNN: the effect of weakening input values, vanishing or exploding gradients, and performance
degradation with increasing network depth. The SC was used in U-net to enhance the effects
of input values in image segmentation. DenseNet [21] attempts to mitigate both vanishing or
exploding gradient problems and weakening input value effects by connecting the output of each
layer to the input of every other layer in a feed-forward network. He et al. [22] suggested and
implemented a shortcut connection in every block in the model to alleviate degradation when
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the network depth increases. Boundless [18] and SC-FEGAN [19] used the SC to provide spatial
information, improving inpainting performance compared to each model without the SC. However,
in [15], the authors suggested that the SC is not effective when blank areas are large.

2.3 Other Techniques for Improving Inpainting Performance

The extra loss function can be used to improve inpainting performance. For instance, adver-
sarial loss can be used as a reasonable loss function to estimate the distribution and generate
plausible samples according to the distribution [11,31]. Following this, adversarial loss has become
one of the most important factors in DNN-based inpainting models [12—15]. Additionally, several
recent studies on inpainting [13,15,23] have attempted to reduce the frequency of undesired shapes
that have often occurred in inpainted data by using perceptual loss [24] and style loss [25].

Alternatively, two-stage models have been proposed to improve reconstruction perfor-
mance [13,15]. In the first stage, the models usually restore blank areas coarsely by training the
generator using reconstruction loss. Then, in the second stage, they restore blank areas finely by
training another generator using reconstruction loss and adversarial loss. DeepFill vl [13] is a
two-stage inpainting model in which a contextual attention layer is added to the second generator
to improve inpainting performance further. The contextual attention layer learns where to borrow
or copy feature information from known background patches to generate the blank patches. Yu
et al. [15] proposed a gated convolution (GC)-based inpainting model, DeepFill v2, to improve
DeepFill vl. This model created soft masks automatically from the input so that the network
learns a dynamic feature selection mechanism. In the experiment, DeepFill v2 was superior to
lizuka’s model, DeepFill vl, and Liu’s model, but some filled areas were still blurry [19].

Nazeri et al. [23] proposed another two-stage inpainting model called EdgeConnect. This
model was inspired by a real artist’s work. In the first stage, the model draws edges in the given
image. In the second stage, blank areas were filled in based on the results of the first stage.
Although the model exhibits higher reconstruction performance than Liu’s model and lizuka’s
model, it often fails to reconstruct a smooth transition [32]. StructureFlow [26] follows the two-
stage modeling approach. The first stage reconstructs the edge-preserved smooth images, and the
second stage restores the texture in the output of the first stage as the original. StructureFlow is
very good at reproducing textures but sometimes fails to generate plausible results [33].

Lastly, inpainting performance can be improved using additional conditions as an input. For
instance, DeepFill v2 allows the user to provide sparse sketches selectively as conditional channels
inside the mask to obtain more desirable inpainting results [15]. In SC-FEGAN, users can input
not only sketches but also color. Both DeepFill v2 and SC-FEGAN are one step closer to
interactive image editing [19].

3 Approach

In this section, we present details of the proposed model, UFC-net, including the discrim-
inator, loss function, and spatial support. We first describe the effects of the FC layers in an
inpainting model and then introduce UFC-net in detail. Afterward, we discuss the discriminator
and loss function for the training process.

3.1 Effects of Fully Connected Layers

Unlike other recent inpainting models, we appended FC layers into the inpainting model to
achieve two effects [12—-15,19]. The first effect is that the model has enough spatial support to
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account for all input areas, and the second is that the model can provide sharp inpainting results.
We explain these two effects in turn.

The FC layer is connected to all areas for the model to account for all surrounding areas.
Recent inpainting models [12-15], which are composed only of convolutional neural networks
(CNNs), cannot consider all input areas. For a more detailed explanation, we demonstrate the
difference between the U-net model, which is popularly adopted as an inpainting model [14,19],
and the U-net model with FC layers.

B : Generated pixel

: Spatial support of given the generated pixel by U-net [14].

() () ©

Figure 2: A data sample with a vertex-aligned 384 x 384 square mask and the spatial support of
each of two given pixels with the data sample in U-net: (a) data sample, (b) spatial support of
the center-aligned pixel with the data sample, and (c) spatial support of the top-right pixel with
the data sample

For example, for the 512 x 512 sample image with a 384 x 384 area erased in Fig. 2a, the
images in Figs. 2b and 2c¢ represent two pixels generated by the U-net model and their spatial
support with a 767 x 767 area.

Fig. 2b illustrates the case where the spatial support can consider the surrounding area. In
contrast, Fig. 2c depicts the case where the spatial support cannot consider any surrounding image
even though the spatial support is the same size. In this case, the U-net model fills the blank area
regardless of the surrounding area because CNN-based models, such as U-net, construct spatial
support with the pixel as the center point.

Unlike the original U-net, U-net with an FC layer can consider all input areas because the
FC layer uses all inputs to calculate the output. As a result, inpainting models based on the U-
net with FC layer recover all blank regions more effectively by considering all surrounding areas
regardless of the position of the generated pixel, as displayed in Figs. 3b and 3c.

Another effect of the FC layer is to naturally transform the input image distribution,
including blank areas, into the original image distribution without any blank areas. As typical
convolutions operate with the same filters for both blank and surrounding areas, several problems,
such as color discrepancy, blurriness, and visible mask edges, have been observed in CNN-based



3452 CMC, 2021, vol.68, no.3

inpainting models [14,15]. Kerras et al. [34] reported that applying the FC layer makes it easier
for the generator to generate plausible images because the input distribution is flexibly modified
to the desired output distribution. They also revealed that an inpainting model without an FC
layer often fails to generate plausible images.

B : Generated pixel

: Spatial support of given the generated pixel by U-net with FC layer
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Figure 3: An image sample with a vertex-aligned 384 x 384 square mask and the spatial support
of two pixels inside the image by U-net with an FC layer: (a) image sample, (b) spatial support
of the pixel at the center of the image, and (c) spatial support of the top-right pixel of the image

Although partial convolution (PC) and GC can alleviate typical convolution problems, they
have their limitations. For instance, if the layer becomes deep, PC becomes insensitive to the
erased area [15], or two convolutions must be performed in GC. In contrast, the FC layer
enables the inpainting model to mitigate the typical convolution problems in inpainting and avoid
problems by PC or GC. The FC layer is a trainable weight that can learn both the blank and
surrounding areas, which PC cannot do. In addition, inpainting models based on the U-net with
an FC layer is lighter than GC-based inpainting models.

3.2 UFC-Net

We constructed an inpainting model called UFC-net that implements FC layers into U-net to
employ the benefits of the FC layer in inpainting. Fig. 4 presents the overall architecture of UFC-
net, which has fully spatial support and can transform the input distribution into the original
image distribution naturally. The generator model receives masked images, masks, and sketches as
input data, where the sketches are optional. A DNN-based generator usually has the risk that
the gradient used for learning may disappear [25-27], so the generator in the UFC-net uses batch
normalization [35] except for the last layer.

The UFC-net consists of three components: the encoder, latent networks, and decoder. The
encoder consists of nine convolutional layers that compute feature maps over input images with
a stride of 2. Tab. 1 describes some encoder details.



CMC, 2021, vol.68, no.3 3453

_ : Reconstruction loss L,
------------------ > : Perceptual loss Lp,,..

Style loss Lgpye

UFC-net
Adversarial loss Lgqy

Discriminator

X

[ : Convolutional layer @ : Convolutional layer with stride 2

[ : Fully connected layer : Bilinear upscaling
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Figure 4: The UFC-net architecture

Table 1: Hyperparameters of the UFC-net encoder

ID Network type Activation function Kernel size Stride Output dimension (¢ x h x w)
1 Conv. ReLU 3 1 32 x 256 x 256

2 Conv. ReLU 3 2 64 x 128 x 128

3 Conv. ReLU 3 2 128 x 64 x 64

4 Conv. ReLU 3 2 256 x 32 x 32

5 Conv. ReLU 3 2 512x 16 x 16

6 Conv. ReLU 3 2 512x 8 x8

7 Conv. ReLU 3 2 512 x4 x4

8 Conv. ReLU 3 2 512x2x%x2

9 Conv. ReLU 3 2 S512x1x1

After the encoding process, encoded features pass through eight FC layers to smoothly
transform the input distribution to the corresponding output distribution. Tab. 2 presents some
hyperparameters of the latent networks in the generator model.

The decoder consists of eight Hadamard identity blocks (HIB). Fig. 5 presents the difference
between U-net’s SC and HIB. A typical SC takes the latent value of the encoder and concatenates
it channel-wise to the decoder. In the case of HIB, however, the value of the nonblank area is
replaced by the latent value of the encoder. The HISC can be defined by Eq. (1):

B=BO(0—-M)+aOM, (1)

where B represents the result of the previous neural networks, and M is the mask area (0 for
holes and 1 for filled). In addition, « is the latent value received from the encoder.
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Table 2: Hyperparameters of latent networks in UFC-net

1D Network type Output dimension
10 Fully connected 512
11 Fully connected 512
12 Fully connected 512
13 Fully connected 512
14 Fully connected 512
15 Fully connected 512
16 Fully connected 512
17 Fully connected 512

B=pOQA-M)+aOM

B 1-M
(Decoder latent)  (Blanked area)
(Hadamard Identity

Skip-Connection)

a M Conv. layers
(Encoder latent) (Non-blanked area)

(@) )

Figure 5: Two convolutional neural networks with skip connections (SC): (a) SC and a couple of
convolutional layers, and (b) Hadamard identity block

Channel-wise HISC

Concatenate

a (Encoder latent) Conv. layers

As HISC replaces the decoder latent value with the encoder latent value for nonblank areas,
the gradient between the HIB and another HIB is not calculated in these regions. Thus, the HISC
reduces the computational cost by having the generator focus on the erased area. Tab. 3 lists some
hyperparameters of decoder networks in the UFC-net.

3.3 Discriminator and the Loss Function

Many inpainting models have used the patchGAN discriminator [36] as their discrimi-
nator [12-14,23]. However, due to the adversarial training process in the GAN, GAN-based
inpainting models often exhibit unstable training [34,37,38]. This problem should be addressed
to use the discriminator in GAN-based models. Further, spectral normalization has the property
that the generated data are quite similar to the training data [37]. Therefore, we applied spectral
normalization to the patchGAN discriminator and used the outcome as the discriminator of
UFC-net. Tab. 4 presents the hyperparameters of the patchGAN discriminator.
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Table 3: Hyperparameters of decoder networks in UFC-net

1D Type Kernel size Up factor/stride Output dimension Encoder latent
(cxhxw) ID («)

18 Up-sampling - 2 SI2x2x2

19 HIB 3 1 512x2x2 8

20 Up-sampling — 2 512x4 x4

21 HIB 3 1 512x4 x4 7

22 Up-sampling — 2 SI2x 8 x8

23 HIB 3 1 512 x 8 x 8 6

24 Up-sampling — 2 S12x 16 x 16

25 HIB 3 1 512x 16 x 16 5

26 Up-sampling — 2 256 x 32 x 32

27 HIB 3 1 256 x 32 x 32 4

28 Up-sampling — 2 128 x 64 x 64

29 HIB 3 1 128 x 64 x 64 3

30 Up-sampling - 2 64 x 128 x 128

31 HIB 3 1 64 x 128 x 128 2

32 Up-sampling - 2 32 x 256 x 256

33 HIB 3 1 32 x 256 x 256 1

34 CNN 1 1 3 x 256 x 256

35 Tanh - - 3 x256 x 256

Notes: Up-sampling: bilinear up-sampling, CNN: convolutional neural network, Tanh: hyperbolic tangent.

Table 4: Hyperparameters of the patchGAN discriminator

ID Network type Activation function Kernel size Stride  Output dimension (¢ x h x w)

1 Conv. LeakyReLU 4 2 64 x 128 x 128
2 Conv. LeakyReLU 4 2 128 x 64 x 64
3 Conv. LeakyReLU 4 2 256 x 32 x 32
4 Conv. LeakyReLU 4 2 512x16x 16

We used reconstruction loss, adversarial loss, perceptual loss, and style loss to train our model.
Reconstruction loss is essential for image reconstruction and is defined using Eq. (2). We used
the hinge loss from [15] as the adversarial loss. The adversarial loss effectively restores the results
sharply [11,12], which can be defined by Eq. (3). Both perceptual loss and style loss are used to
mitigate unintended shapes [14,23], defined by Eqgs. (4) and (5), respectively:

Erec = |G (Z) - xl (2)
. { L =Eyp, 0 [RLU (1= D (x))]+Eonp,,. o) [RLU (14 D (G (2)))]
adv —
L= _Ez'vpdam(z) [D(G(2)]

3)

1
Lpere =E [Z ;o1 0 i (G(Z))Ill} 4)
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Loe=E[|6f 0 -6/ G| ] 5)

where x, X, m, and s represent samples from the original data, erased data, mask, and sketch,
respectively. The generator G receives z, which is the channel-wise concatenated feature of X, m,
and s, and generates the fake data G (z). The discriminator D receives two types of samples:
fake data samples G (z) from fake distribution p;,, (z) and real data samples x from pgu, (X).
This discriminator outputs D (G (z)) and D (x) for the fake and real data samples, respectively. In
addition, ¢; (x) € C; x Hj x Wj is the activation map of relui_1 calculated using the given data x in
the VGG-19 model pretrained with the ImageNet dataset. Moreover, g}" (x) € C; x C; is a Gram

matrix constructed from ¢; (x). To summarize, our final loss function is defined by Eq. (6):

LG=10%Lyoc + Lygy + 10 % Lyere + 100 % Lstyle (6)

4 Experiments

To evaluate the inpainting performance of the proposed model, we conducted various exper-
iments. We first present the environment and hyperparameters for the experiments and then
describe the effectiveness of the spatial support and HISC used in UFC-net. In addition, we
demonstrate the effect of the sketch input in the proposed model.

4.1 Experimental Setting

As the dataset for the experiments, we used the Places2 [17] dataset, which contains 18 million
scene photographs and their labeled data with scene categories. Fig. 6 presents some of the images
in the dataset.

We employed two types of masks for training: regular and irregular masks. Regular masks
were square with a fixed size (25% of total image pixels) centered at a random location within
the image. Irregular masks used the same dataset as Liu et al. [14]. We applied the canny edge
algorithm [39] to the Places2 dataset to obtain the sketch dataset. Before training, all weights in
the generator and discriminator were initialized with samples of a normal random distribution.

The distribution had 0 for the mean and 0.02 for the standard variation. For training, we used
Adam [40] as the optimizer. They were implemented based on the TensorFlow framework and
run on Nvidia GTX 1080ti and Nvidia RTX Titan, with batch sizes of 4 and 8, respectively. Both
generators and discriminators set the learning rate to 0.002, with one million training iterations.
We updated the generator weights twice after updating the discriminator weights once [41].

4.2 Quantitative Comparison

The proposed model’s primary goals are to widen the spatial support and restore the blank
areas for more effective inpainting. Therefore, for comparison, we considered three models that
are closely related to these two properties. The models are DeepFill vl [13], Liu et al. [14] model,
and DeepFill v2 [15].

In addition, we used the L1 loss, L2 loss, total variation (TV) loss [14], and variation as the
evaluation metrics, which can be defined by Eqs. (7)—(10) as follows:

Llloss=F||G (z) — x|l (7
L2loss=E |G (2) —x||% 8)
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i+l i i+l i
TVioss = Z Hy+ + Z HJ;Tyh )
(i.))eR, (i,j+1)eR (i,)€R, (i+1,/)eR
Variation:lE||G(Z)—)CII%—IE2 G (2) — xIl; (10)

where R is the region of one-pixel dilation of the hole region, y is |G (z) — x|, N is the number
of elements of the nonmask areas in y, and y“/) represents the pixel corresponding to a spatial
position (i, ) in y.

Figure 6: Images from the Places2 dataset

The L1 loss is also known as the least absolute error that measures the absolute difference
between the target and estimated values. Similarly, the L2 loss is used to measure the sum of
the square of the difference between the target and estimated values. These two loss functions
are often used to evaluate the performance of inpainting models. Smaller values of these metrics
indicate better generative performance. The TV loss is a metric that expresses the amount of
change from the surrounding area based on each pixel for the L1 error. If the TV loss is low,
the error does not change rapidly, making it difficult to detect the error visually. The variance
indicates the gap performance between the L1 loss and L2 loss in each model. Tab. 5 presents the
L1 loss, TV loss, L2 loss, and variance of four models for both regular masks and irregular masks.
The proposed model presented the lowest L1 and TV loss errors, which indicates that our model
outperforms PC or GC in handling blank areas. However, the proposed model could not achieve
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the lowest L2 loss and variance. Nevertheless, the proposed model yields the best inpainting results
for the human eye. We demonstrate this in the next section.

Table 5: Inpainting implementation of quantitative results. Bold indicates the smallest value
(smaller is better) when comparing models in each evaluation metric

Mask type Evaluation metric ~ DeepFill v1*  Liu’s model*  DeepFill v2*  Proposed
Regular mask L1 loss 9.4 9.8 8.6 8.1

TV loss 25.7 26.9 26.6 234

L2 loss 2.4 2.3 2.0 2.6

Variance 1.5 1.3 1.2 1.9
Irregular mask L1 loss - 10.4 9.1 6.3

TV loss - 27 26.8 22.7

L2 loss - 1.9 1.6 1.7

Variance - 0.8 0.8 1.3

Rl
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~
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Figure 7: Comparison of inpainting results for the Places2 test dataset
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Table 6: Accuracy comparison of HISC and SC in inpainting

Mask type Evaluation (%) SC HISC
Regular mask L1 loss 5.1 4.1
L2 loss 1.1 1.3
TV loss 25.3 234
Irregular mask L1 loss 10.1 6.3
L2 loss 3.1 1.7
TV loss 23.23 22.7
Input SC HISC Ground Truth

Figure 8: Inpainting results of HISC and SC for the Places2 test dataset. The top two images
were generated without sketches, and the bottom two images were generated with sketches
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4.3 Qualitative Comparison

Fig. 7 illustrates some of the inpainting results by the four models. Overall, our model
outperformed the other models visually. For instance, Liu’s model produced pixels of different
colors than the original color, especially in the background. DeepFill v2 produced some edges or
regions in the first and fourth images that were not in the ground truth, although it exhibited
reasonable restoration performance. However, the proposed model exhibited excellent restoration
results for all images.

4.4 Skip Connection vs. Hadamard Identity Skip Connection

We compared the performance of UFC-net with HISC and UFC-net with SC to validate the
effectiveness of HISC. In addition, we used the same conditions as in Sections 4.2 and 4.3 except
for the sketch condition. We concatenated sketches during both training and testing with a 50%
probability. Tab. 6 lists the evaluation results. The HISC outperformed the conventional SC in
most cases, particularly for irregular masks. Fig. § illustrates the actual visual effects of HISC
and SC in the UFC-net. The SC-based model generated an image in which the mask area and
its surroundings were visually separated. In addition, the model adopting the SC technique often
produced unintended shapes or colors, whereas HISC did so less often.

Table 7: Quantitative result comparison with 1, 2, 4, 8, and 16 latent fully connected layers

Number of layers in each latent network

Evaluation (%) 1 2 4 8 16
L1 loss 5.4 5.7 5.8 5.2 5.5
L2 loss 1.3 1.6 1.7 1.5 1.2
TV loss 24.0 23.9 234 23.1 24.5

Original image

Figure 9: Example of using a sketch (black line) in the erased gray area of the original image
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4.5 Effectiveness of the Latent Network and Sketch Input

In this experiment, we evaluated the accuracy of the model according to the number of
latent network layers and summarized the results in Tab. 7. Eight FC layers achieved the best
performance in L1 loss and TV loss. In contrast, 16 FC layers exhibited the lowest L2 loss. Fig. 9
illustrates the results of applying a sketch to our model. The image edges were determined along
with the sketch, which indicates that the proposed model can perform sketch-based interactive
image editing, like DeepFill v2 [15] and SC-FEGAN [19].

5 Conclusion

In this paper, we proposed an inpainting model by appending FC layers and HISC in the
U-net. Our model not only extended the scope of spatial support but also transformed the input
distribution to the output distribution smoothly using FC layers. In addition, HISC improved
the reconstruction performance and reduced the computational cost compared to the original
SC. Through extensive experiments using the Places2 dataset, we found that the proposed model
outperformed the state-of-the-art inpainting models in terms of L1 loss and TV loss through
diverse sample images. We also verified that HISC could achieve better performance than the
original SC for regular and irregular masks. In the near future, we will consider other datasets
for testing and improve the UFC-net to cover larger blank areas.
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