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Abstract: In the era of Big data, learning discriminant feature representa-
tion from network traffic is identified has as an invariably essential task for
improving the detection ability of an intrusion detection system (IDS). Owing
to the lack of accurately labeled network traffic data, many unsupervised
feature representation learning models have been proposed with state-of-the-
art performance. Yet, thesemodels fail to consider the classification error while
learning the feature representation. Intuitively, the learnt feature representa-
tion may degrade the performance of the classification task. For the first time
in the field of intrusion detection, this paper proposes an unsupervised IDS
model leveraging the benefits of deep autoencoder (DAE) for learning the
robust feature representation and one-class support vector machine (OCSVM)
for finding the more compact decision hyperplane for intrusion detection.
Specially, the proposed model defines a new unified objective function to min-
imize the reconstruction and classification error simultaneously. This unique
contribution not only enables the model to support joint learning for feature
representation and classifier training but also guides to learn the robust feature
representation which can improve the discrimination ability of the classifier
for intrusion detection. Three set of evaluation experiments are conducted
to demonstrate the potential of the proposed model. First, the ablation eval-
uation on benchmark dataset, NSL-KDD validates the design decision of
the proposed model. Next, the performance evaluation on recent intrusion
dataset, UNSW-NB15 signifies the stable performance of the proposed model.
Finally, the comparative evaluation verifies the efficacy of the proposed model
against recently published state-of-the-art methods.
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1 Introduction

Following a decade of rapid advances, networking technologies has driven dramatically the
global connectivity and online businesses worldwide. Apparently, this cyber dependency has
opened opportunities for cybercriminals to increase the odds of cyberattacks inflicting catastrophic
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damage against business continuity and eventually impacts the political economy [1]. As such,
the dire need for cybersecurity solutions takes a new crucial stand in safeguarding the cyberspace
from the fast-evolving threat landscape. Recently, IDS has become an indispensable part of
cybersecurity as it not only detects the anomalous activities from attackers but also monitors the
network for any attempts to break the cybersecurity and alerts with timely information to secure
the system [2]. For these reasons, IDS has gained momentous interest across the industries and
research communities.

The wide adoption of internet technologies is closely followed by massive increase of network
traffic volume which contains redundant and irrelevant network data. These undesired data make
the classification process increasingly complex in the existing IDS and limits the detection accuracy
for intrusion [3,4]. Consequently, efficient and effective approach for learning the most robust
feature representation from massive network data is of paramount importance to boost detection
accuracy of IDS.

In recent years, several research works have explored the potential of feature representation
learning (FRL) to handle massive amount of data and solve the classification problems in var-
ious fields with state-of-the-art performance. For example, to handle the arrival of information
explosion effectively in field of multimedia technology, Wang et al. [5] presented a number of
FRL approaches based on deep autoencoders and compared their efficiency for text categorization
process. Similarly, Tang et al. [6] embedded unsupervised FRL to make the feature selection
process robust to noises and improve the performance of data mining tasks on massive datasets.
In [7], the authors applied FRL within a multi-scale framework to learn more compact discrim-
inative descriptors for effective person reidentification in a video surveillance system. Apart from
the above applications, several researchers have reported the prime role of FRL in handling the
large volume of biological data to identify therapeutic peptides and serve as future benchmark
in designing promising tools for disease screening [8,9]. More potentially in recent studies, many
authors have claimed that the application of FRL can boost the performance of real-time analytic
tasks on massive IoT data [10–13]. Taking inspiration from these literatures, the impetus of this
work is to apply FRL and develop an efficient IDS which can be in pace with current trends to
handle the large volume of network traffic in a big data environment and display higher detection
accuracy for intrusion.

Deep learning (DL), a new version of machine learning has shown a series of breakthroughs
in recent years in wide range of applications [14,15]. More essentially, the recent research trends
are recognizing DL as a most promising approach for FRL deeming that the hierarchical non-
linear mappings via multiple activation layers in DL will facilitate to learn the robust feature
representation from the given raw data through successive transformations [16]. But as stated in
literature [17], the success of DL merely depends on the quality of the employed training set. The
increasing network size indeed may complicate the labeling process and may lead to error prone
training set. Owing to these reasons, unsupervised deep learning approaches has gained revival of
interest in the field of intrusion detection.

Amongst different unsupervised DL approaches, the autoencoder (AE) architecture has shown
immense potential for impressive feature representation and is under intensive research. For exam-
ple, the authors in [18] developed an online light weight AE model utilizing random forest to select
the effective features for representation learning and displayed improved accuracy for intrusion
detection. correspondingly, an AE model is designed in [19] combining the advantages of data
analytics and statistical techniques to extract strongly correlated features. The model gained better
intrusion detection performance for modern attacks. Musafer et al. [20] proposed a mathematical
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model to optimize the hyperparameters of sparse AE and enhanced the model capability for
feature representation learning. Besides these efforts on improving the performance of AE for
intrusion detection, few variants of AE are also put forward for intrusion detection. For instance,
in 2017, Yu et al. [21] introduced dilated convolutional AE combining the strength of AE and
CNN. The model proved its potential for learning robust feature representation from large volume
of raw network traffic and meeting high accuracy demand of modern network IDS. Following
this variant of AE, in 2018, [22] a non-symmetric DAE is proposed for unsupervised feature
representation learning, to increase the detection capability of random forest classifier for intrusion
detection. Yan et al. [23] designed a stacked sparse AE model based on unsupervised learning
strategy to learn useful feature representation of intrusive behavior and compared its performance
on three shallow learning classifiers. Al-Qatf et al. [24] presented an AE model based on self-
taught learning framework with SVM for classification to gain improved detection accuracy with
regard to attacks. In 2019, the authors in [25] developed a two-stage semi-supervised stacked AE
model to learn useful feature representation from large volume of network traffic data. Then,
used the learnt feature representation with softmax classifier to achieve increased detection rate for
unseen attacks. Recently in 2020, a convolutional AE [26] is proposed for multi-channel feature
representation learning and demonstrated that the class-specific features of network traffic can
improve the model accuracy significantly for intrusion detection. The model potentially accelerated
the intrusion detection process with good accuracy for attacks.

It is worth noting in these literatures, that the application of AE for FRL has contributed
to achieve better detection accuracy yet are confronted with two main issues while considering
their practical applications. First, due to system uncertainty, the abnormal network traffics are not
collected in large size. Intuitively, the available intrusion datasets are inherently imbalanced with
more normal traffic samples. The existing models trained under this scenario are biased towards
normal traffic behavior degrading the detection accuracy for intrusion. Second, the existing models
learn feature representation minimizing reconstruction loss on training sets. Instinctively, there is
no guarantee that the learnt feature representation is optimal for intrusion detection task.

Taking into account the aforementioned factors, this paper proposes a novel unsupervised IDS
model integrating DAE and one-class classifier within a joint framework for intrusion detection.
The joint framework guides the DAE to learn optimal feature representation and enhance the
discriminative ability of the classifier for intrusion detection. Further, to address the class imbal-
ance problem, both feature representation and one-classifier learning are trained only with normal
samples. In short, the major contributions of this work are highlighted below,

a. To the best of authors’ knowledge, this is the first study to propose a joint optimization
framework that simultaneously optimizes DAE for feature representation learning and one-
class classifier for intrusion detection.

b. Different from existing works, a unified objective function is defined combining the recon-
struction error and classification error to ensure that the learnt feature representation
is robust to minimize the classification error and achieve higher accuracy for intrusion
detection.

c. The proposed model is trained only with the given normal samples to address the class
imbalance problem and overfitting that may more likely occur due to the lack of insuf-
ficient intrusion traffic samples. This ensures and improves the generalization ability of
proposed model.

d. Extensive ablation experiments on benchmark intrusion datasets demonstrate the potential
of the proposed model to gain improved detection rate for intrusion through robust feature
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representation learning. The comparative analysis results manifest the effectiveness of the
proposed model against the state-of-the-art methods.

2 Proposed Methodology

The proposed unsupervised IDS model as shown in Fig. 1 includes two essential compo-
nents namely, DAE for normal traffic feature representational learning and one-class classifier
for intrusion detection. The two subsections that follow elaborates the technical details of the
two components, respectively. Subsequently, the objective function and training process of the
proposed model is presented.

Figure 1: Illustration of proposed IDS architecture

2.1 Deep Autoencoder for Feature Representation Learning
An AE is neural network that learns the intrinsic network traffic features reconstructing the

original network traffic at its output layer [27]. The general architecture of an AE consists of two
key networks, encoder and decoder connected in serial. As represented by Eq. (1), the encoder
network generates the feature representation by mapping the given input network traffic to hidden
layer using an activation function f parameterized by W and b.

H = f (WX + b) (1)

Similarly, the decoder network reconstructs the original input network traffic from the gen-
erated feature representation using the activation function g parameterized by W′ and b′ as
given below

Z= g(W ′H+ b′) (2)

The AE is trained jointly with given training samples to learn the parameter set θ =
{W, W′, b, b′} of two networks, encoder and decoder minimizing the reconstruction error which
is determined as follows,

Lr(X)=min
θ

1
2N
‖X −Z‖2 =min

θ

1
2N
‖X − g( f (X))‖2 (3)
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In general, AE demonstrates lower training efficiency and poor generalization ability while
dealing diverse and massive network traffic data, due to its simple network structure with single
hidden layer [28]. To address this limitation, this work constructs DAE stacking multiple AEs
successively such that the output of first AE is fed as input to next AE and so on as shown
in Fig. 2. Notably, this hierarchical structure benefits to drive deeper and learn more abstract
high-level features that can support better feature representation learning. The output of the kth
AE is computed as follows setting H0=X.

Hk = f (WkHk−1+ bk) (4)

Figure 2: Structure of general AE network

Figure 3: DAE network in the proposed IDS model consists of four AEs with hidden layer
dimension 35, 25, 15, 7 respectively
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The DAE network of the proposed model is formed by stacking four AEs with the hidden
layer dimension of 35, 25, 15 and 7 respectively to learn the most robust feature representation
hierarchically from input network traffic data in an unsupervised manner. The structure of DAE
of the proposed model is shown in Fig. 3. Here, the number of hidden layer and hidden units is
decided conducting practical experiments and utilizing best results without following the rule of
thumb defined in previous literature. This is due to the fact that no evidence of any kind exists
to confirm the validity of these rules for network generalization. Also, all hidden layers in our
DAE use Rectified linear unit (ReLU) activation function. And the number of input units is set in
concord to the dimension of input network traffic data. More specifically, the number of trainable
parameters is reduced using tied weights where parameter sharing is enforced to obtain decoder
weights transposing the encoder weights [29].

2.2 One-Class Classifier for Intrusion Detection
In most real networking environments, acquisition of network traffic with various anomalous

behavior is practically impossible. Therefore, this work focuses on unsupervised one-class classi-
fication (OCC) method for intrusion detection. Essentially, OCC methods aim to build classifier
model using only normal traffic behavior and detect a new incoming traffic as intrusion if its
behavior deviates from normal behavior [30]. Thus, OCC methods play significant role in success-
fully modeling the normal traffic behavior without any a priori knowledge about its underlying
distribution. Among different OCC methods, OCSVM method has attracted lot of attention in
recent literatures due to its several merits in solving OCC problems [31,32], such as its kernel trick
to deal with nonlinearity in input data, its ν trick to deal effectively the outliers in training set
and its sparseness of solution to deal effectively with massive input data.

Inspired by these merits, this work employs OCSVM method for intrusion detection. In real
scenario, the distribution of normal samples in training set are non-linearly separable. Hence,
OCSVM maps the given normal samples to feature space using ϕ(X) to make them linearly
separable and finds a decision boundary that separates all mapped normal samples from origin
with maximum margin solving the optimization problem [30] given below,

Lc (X)= min
ω∈F ,ρ, ξ

1
2
‖ω‖2−ρ+ 1

υN

N∑
i=1

ξi

s.t. ω.ϕ (X)−ρ+ ξi ≥ 0, ξi ≥ 0, ∀ i
(5)

Here, the mapping ϕ(.) is usually implicit and indefinite. Therefore, the inner product of
mapped data is generally specified by kernel function K(xi, xj) in practice. The most commonly
used kernel functions are linear, sigmoid, polynomial and radial basis (RBF). In this work, RBF
is chosen to achieve better performance. The RBF is given as follows,

K(x1, x2)= exp
(
−γ .‖x1−x2‖2

)
(6)

Further, in Eq. (5), F denotes feature space,
ρ

‖ω‖ denotes margin size, the term ξi models clas-

sification ‖w‖ error with respect to the ith sample and the regularization term ν ∈ (0, 1] is outlier
score that controls the tradeoff between maximizing the margin from origin and minimizing the
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classification error. Usually, the optimization problem in Eq. (5) is solved introducing Lagrangian
multiplier α and the final decision hyperplane of OCSVM is obtained as follows,

f (x)= sign
(

N∑
i=1

αiK(xi, x)−ρ

)
,

=
{
1, if x belongs to target class

0, otherwise
(7)

In the above equation, αi is obtained by solving its dual form as follows,

max
α
−1
2

N∑
i, j=1

αiαjK(xi, xj)

s.t.
∑N

i=1 αi = 1, 0≤ αi ≤ 1
νN

, ∀ i
(8)

Once the optimal solution for αi is obtained, the constant ρ is computed by selecting a sample

from the training set that satisfies 0≤ αj ≤ 1
υN

and that the sample is a support vector.

ρ =
N∑
j=1

αjK(xi, xj) (9)

Observing the decision function of OCSVM, it is evident that OCSVM can effectively detect
malicious activities just with knowledge of normal network traffic samples with an optimal hyper-
plane. Notwithstanding, the performance of OCSVM is sensitive to the data-dependent parameters
(γ , ν) that are difficult to tune. The subsection following will brief how these parameters are
fine-tuned during training process in an unsupervised manner through a unified objective function
defined in this work.

2.3 Unified Objective Function
In all existing IDS, AE and classifier are trained independently without joint optimiza-

tion [19,21,24]. In that case, the learnt feature representation does not guarantee strong discrimi-
native ability for intrusion detection task. The work here aims to combat this problem combining
the reconstruction loss in Eq. (3) with classification loss in Eq. (5), as given below,

L=Lr (X)+Lc(Hk) (10)

The above defined unified objective function guides the proposed model to learn robust feature
representation for an improved effective intrusion detection by integrating the feature representa-
tion and classification process into joint optimization framework. In doing so, the proposed model
reduces the reconstruction loss and at the same time ensures that the classification hyperplane
margin is maximized for improving detection accuracy of the proposed model.
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Algorithm 1: Algorithm of the proposed IDS model
Input: X-Training Set
Initialization:

1. DAE parameter θ = (W , b, W′, b′) using Xavier algorithm
2. OCSVM parameter {ν, γ } using grid search algorithm

Procedure:
Stage-I : Greedy Layer-wise Pretraining Process
for each pretraining epoch do
for each mini batch do
1. H←Feature representation using Eq. (1)
2. Z←Reconstructed Input using Eq. (2)
3. Lr←Reconstruction Loss using Eq. (3)
end for
end for

Stage II : Training for Fine tuning Process
repeat
Feature representation Learning:
1. H← Feature representation using Eq. (1)
2. Z← Reconstructed Input using Eq. (2)
3. Lr← Reconstruction Loss using Eq. (3)

Classifier Learning:
1. Obtain optimal kernel parameter γ using grid search
2. Transform H to kernel space applying Eq. (6)
3. Find the hyperplane computing αi as in Eq. (8) and ρ as in Eq. (9)

Optimization:
1. Compute the gradient minimizing the objective function in Eq. (10)
2. Update model parameter θ

until 〈Convergence of θ〉

2.4 Training Process
As advised in previous literature [33,34], the training of DAE comprises two stages, pretrain-

ing and fine tuning to avoid local minima and to ensure fast convergence. During pretraining,
each AE in the proposed DAE component is trained individually for its parameters minimizing
the reconstruction loss and then its encoding is used as input to the next AE.

After the weight and bias vector of all AEs are initialized through pretraining, first the
hyperparameter ν of OCSVM is optimized using grid search algorithm on the given training set.
Later, the two key components, DAE and OCSVM in the proposed model are trained jointly
in an unsupervised manner to fine tune their hyperparameter optimizing the unified objective
function defined in Eq. (10). During each iteration of fine-tuning process, the parameter γ of
OCSVM is optimized using grid search on the feature representation learnt during that iteration.
This sequence of training ensures for robust feature representation that not only demonstrates
ability for reconstruction of input network traffic but also in enhancing the discriminative ability
of OCSVM for intrusion detection.

Furthermore, Xavier algorithm is used to initialize the trainable parameters of DAE to keep
the gradient values and activation values within a reasonable range [35]. Also, adaptive moment



CMC, 2021, vol.68, no.3 3279

estimation (Adam) method [36] which is regarded as better gradient optimization method for deep
learning networks is chosen in this work to compute the gradient values of θ as it presents the
benefits of both AdaGrad and RMSProp algorithms. Notably, to obtain stabilized results, the
training process is terminated when the number of epochs exceed 15 and loss value of the model
falls below the threshold value of 0.005. The Algorithm-1 summarizes the training procedure
adopted for the proposed model.

3 Experimental Setup

This section first describes the experimental datasets. Then details the methods used for
preprocessing the datasets. Subsequently, the implementation details and the metrics used for
experimental evaluation are presented.

3.1 Datasets
A number of datasets are available publicly for IDS research evaluation. Nonetheless, these

datasets suffer from absences of traffic diversity and lack of sufficient number of sophisticated
attack styles. Therefore, in order to conduct a fair and effective evaluation of the proposed
model, an old benchmark NSL-KDD dataset and a new contemporary UNSW-NB15 dataset are
considered in this work. A brief description of these two intrusion datasets is given below.

A. NSL-KDD Dataset

The NSL-KDD dataset is an improved version of KDD’99 dataset, presented by Tavallaee et
in 2009 resolving the redundancy in KDD ‘99 dataset [37]. This dataset contains an optimal ratio
of 125,973 training samples to 22,543 testing samples. Thus NSL-KDD is regarded as one of the
most valuable benchmark resource in the field cybersecurity research for IDS evaluation. Each
sample in NSL-KDD contains 41 features and 1 class label to characterize whether the network
traffic is normal or belongs to attack category. The distribution of normal traffic samples in the
training and testing sets with regard to attacks are given in Tab. 1.

Table 1: Data distribution in NSL-KDD

Class Training set Testing set

Normal 67,343 9,710
Attack 58,630 12,833
Total 125,973 22,543

B. UNSW-NB15 Dataset

The UNSW-NB15 is a modernized dataset recently developed by ACCS with hybrid of real
normal and synthesized contemporary attack behavior from network traffic flow [38]. This dataset
includes 9 families of attacks namely DoS, Analysis, Generic, Fuzzers, Backdoors, Exploits, Shell-
code, Reconnaissance, and Worms. The dataset consists of 175,341 training samples and 82,332
testing samples, each characterized with 42 features and a class label to discriminate the network
traffic as normal or malicious activities. The distribution of samples against normal and attack
class is shown in Tab. 2.
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Table 2: Data distribution in UNSW-NB15

Class Training set Testing set

Normal 56,000 37,000
Attack 119,341 45,332
Total 175,341 82,332

3.2 Data Preprocessing
Data preprocessing is essentially crucial for providing quality input for model training and

boost the detection ability of the IDS. It includes two main operations namely, data encoding and
normalization.

a) Data Encoding: In this work, label encoding method is used to map all non-numeric
or nominal features to numeric values. This method maps a nominal feature with C
different values to an integer in the range of 0 to C − 1. For example, the NSL-KDD
dataset includes three nominal features namely, protocol_type, service_type, TCP status flag
with 3, 70 and 11 distinct nominal values respectively. After label encoding, the feature
protocol_type with three values is mapped as follows, tcp:0, udp:1 and icmp:2.

b) Normalization: Generally, the machine learning algorithms are biased by input features with
large numeric value. To combat this effect, min-max normalization is applied to adjust the
value range of all input features within the range [0, 1].

3.3 Implementation Details
All the experiments are conducted on a personal computer with the specifications as follows,

Intel Core i7-8565H@1.8 GHz, 128 GB RAM and Windows 10 operating system. The proposed
model is implemented in Jupyter development environment using Python 3 as programming
language. More specifically, the python libraries, Keras and Tensorflow are used to implement
various deep learning tasks [39]. Also, python Scikit-learn library is used to implement various
evaluation measures and data preprocessing tasks.

3.4 Evaluation Metrics
The effectiveness of the proposed IDS model is measured by analyzing four evaluation metrics

that are most commonly used in the field of intrusion detection. The relevant definition of these
four metrics are as follows,

a) Accuracy (ACC): measures the proportion of network traffic flows that are correctly
classified and is computed as follows,

Acc= TP+TN
TP+TN +FP+FN (11)

b) Detection rate (DR): Also called Recall or Sensitivity, measures the proportion of intrusion
traffic flow that are correctly classified as given below,

DR= TP
TP+FN (12)
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c) F1-measure (F1): Also termed as F1-Score, is considered as more effective measure than
accuracy to evaluate the performance of intrusion detection model especially for imbal-
anced datasets. It is an hormonic average of detection rate and precision as follows

F1= 2× (DR×Precision)
DR×Precision (13)

d) False alarm rate (FAR): Also termed as false positive rate, measures the proportion of
normal network traffic flows that are incorrectly classified. It is computed as follows,

FAR= FP
FP+TN (14)

4 Experimental Results and Discussion

The potentiality of the proposed model is demonstrated designing three set of evaluation
experiments. Specially, these experiments are designed with the following objectives

a) Validate the design decision of the proposed model on benchmark dataset NSL-KDD
b) Verify the stable performance of the proposed model on recent intrusion dataset
c) Compare the potential of the proposed model against recently published state-of-the-

art methods.

4.1 Ablation Evaluation
This study involves two sets of analyses, first the design decision of the proposed model

is validated, next the structural configuration of the DAE network is analyzed with regard to
intrusion detection performance. Both these analyze are conducted on the standard benchmark
intrusion dataset, NSL-KDD in terms of ACC, F1, DR and FAR. The subsections below describe
these two analyses in detail.

4.1.1 Ablation Analysis I
The aim of this analysis is to investigate the significance and contribution of different compo-

nents of the proposed model to the overall detection performance. For this purpose, the following
three variants of proposed model are developed to conduct the ablation analysis,

(a) OC: This variant is developed removing DAE components to demonstrate the significance
of feature representation learning in the proposed model

(b) DAE + Softmax: This variant is developed replacing the OCSVM component with Soft-
max layer as shown in Fig. 4. to demonstrate the significance of one-class unsupervised
classification in the proposed model

(c) DAE+OC: This version indeed is developed to demonstrate the significance of the training
jointly DAE and OCSVM through the defined unified objective function. To this purpose,
the DAE is first pretrained and fine-tuned to learn essential feature representation. Then,
the learnt feature representation is used to train OCSVM for intrusion detection.

In order to conduct a reasonable comparison, the above variants are developed under the
same environmental setup using the same parameter as the proposed model and the results
are reported in Tab. 3. The results clearly reveal the independent effects and relevance of all
components of the proposed model for the obtained performance improvement with regard to
intrusion detection. In particular, the results of the variant OC with high FAR value on training
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set and low DR value indicates that the DAE plays a very crucial role in learning the most
robust feature representation from network traffic and improves the discrimination ability of the
proposed model for intrusion detection. This in accordance to the claim of recent literature [24]
and provides a new insight for improving the intrusion detection accuracy.

Figure 4: Structure of the DAE + softmax variant

Table 3: Ablation analysis results on NSL-KDD dataset for different variants of proposed model

Variants Training set Testing set

DR FAR ACC F1 DAR FAR ACC F1

OC 95.80 6.28 95.75 95.45 87.2 12.2 87.11 88.51
DAE+Softmax 94.69 6.25 94.85 94.48 81.42 14.75 85.65 86.59
DAE+OC 97.88 5.00 95.97 95.52 93.20 12.89 87.99 89.83
Proposed model 96.55 5.02 95.71 95.44 94.53 12.03 91.25 92.93

Similarly, the significant drop in the evaluation results of the variant DAE+Softmax suggests
that the kernel trick of OCSVM classifier is more effective in contributing the compact representa-
tion of normal samples and improves the detection accuracy significantly without any knowledge
about the intrusion behavior.

Finally, the results of the variant DAE + OCSVM reveals the potential of the proposed
model over the three variants. The improved performance of the proposed model confirms the
significance of the unified objective function for joint training of DAE and OCSVM to learn the
robust feature representation that can enhance the discriminative ability of classifier for intrusion
detection. Importantly, the outcome of this analysis suggests that the proposed model will serve
as a new promising way for improving the intrusion detection accuracy in future studies.
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4.1.2 Ablation Analysis II
This ablation analysis aims to observe the influence of number of hidden layers (number of

stacking AEs) on intrusion detection performance exploring different structural configuration for
DAE. As claimed in previous literature [40], it is quite intuitive that adding more hidden layers
in DAE can improve the model performance. In tandem, a series of ablation experiments were
conducted to examine the increase in number of hidden layers on intrusion detection performance.
For this purpose, the number of hidden layers was varied from two to five and the corresponding
results are summarized in Tab. 4. It can be observed from the results that the proposed model
improved its performance with increase in number of hidden layers. But surprisingly, the perfor-
mance with five hidden layers was not significantly better compared to that displayed by four
hidden layers. In particular, it induced lower DR value indicating that the increase in number of
hidden layers above four leads to overfitting with the trained dataset.

Table 4: Ablation analysis results on NSL-KDD dataset for different number of hidden layers in
DAE network of proposed model

Number of filters Training set Testing set

DR FAR ACC F1 DAR FAR ACC F1

{35, 28, 21, 14, 7} 97.91 4.23 96.82 96.57 93.22 10.68 91.67 91.93
{35, 25, 15, 7} 98.29 4.41 96.62 95.75 97.11 2.43 91.58 92.87
{30, 15, 7} 97.53 5.01 95.65 95.39 91.76 11.98 90.29 90.53
{20, 7} 96.55 5.02 95.71 95.44 87.11 13.74 85.60 87.06

Added to, Fig. 5 illustrates the ability of DAE to learn the robust feature representation
that can reconstruct the original input with small variation, when the number of hidden layer
is 4 with dimension of 35, 25, 15 and 7 respectively. A similar observation is also reported in
previous literature that increasing the number of hidden layers deeper may weaken the classifier
performance [41]. Taking into account this observation, the number of hidden layers in the
subsequent experiments is set to 4 to achieve remarkable detection performance.

Figure 5: Illustration of reconstructed network traffic sample (b) by the proposed DAE network
from the original 1D network traffic (a)
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4.2 Performance Evaluation
In literature, it is stated that the change of datasets considerably affects and varies the

performance of detection process [42]. Accordingly, to investigate the stable performance of
the proposed model on different datasets, this experiment is conducted choosing a most recent
benchmark dataset, UNSW-NB15 that includes many new modern attack styles.

The confusion matrix delivered by the proposed model on UNSW-NB15 training and testing
datasets are shown in Fig. 6. The evaluation metrics computed using these confusion matrices
are presented in. Fig. 7. These figures demonstrate that the proposed model is very effective in
achieving a DR of 97.16, FAR of 6.6, ACC of 95.93 and F1 of 97.27 on training dataset.
Comparably a DR of 96.63, FAR of 2.61, ACC of 96.97 and F1 of 97.33 on testing dataset
clearly reveals the efficacy of the proposed model to generalize even on a complex dataset such
as UNSW-NB15 and at the same time confirms that the proposed model is very competitive for
modern attack detection.

Figure 6: Confusion matrix of proposed model on UNSW-NB15. (a) Training set (b) testing set

Figure 7: Performance analysis of proposed IDS model on UNSW-NB15

It is can be noted that, similar to the results on NSL-KDD, the performance improvement of
the proposed model on UNSW-NB15 dataset, also remains at a promising level. This consistent
performance of the proposed model is evidently attributed to the joint optimization of feature
representation and classification learning for intrusion detection task.

4.3 Comparative Analysis with Related Works
The effectiveness of the proposed model is further highlighted comparing with recent and

relevant IDS models based on deep learning approaches. Since its impractical to compare with all
latest approaches, only those approaches that have used both NSL-KDD datasets are considered
to have a rational comparison. Also, the results provided in their published papers are used to
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maintain fair comparison and the results of this comparison are presented in Tab. 5. Here, for
clarity purpose, the highest score is highlighted in bold for each metrics.

Table 5: Comparative evaluation of proposed model against recent IDS models

Recent IDS models NSL-KDD testing set

DAR FAR ACC F1

Non symmetric DAE [22] 85.42 14.58 85.42 87.37
SSAE+SVM [24] 76.56 NA 84.96 85.28
Statistical analysis+AE [19] 80.37 NA 87 81.98
ICVAE [43] 77.43 2.74 85.97 86.27
One-class ContAE [44] 89.23 13.66 87.98 88.41
SAVAER [45] 84.86 4.70 89.36 90.08
Proposed DAE+OCSVM 94.53 12.03 91.25 92.93

Now observing the results, it can be realized that the proposed model outperforms all the
recent IDS approaches for all metrics except for the model introduced in [44] with improved
conditional variational autoencoder (ICVAE) displays the very low FAR of 2.74. Though, ICVAE
model shows lower probability for FAR than the proposed model, its performance in terms of
DR, ACC and F1 metrics are very worst. This indicates that the proposed model is competitively
effective in displaying better performance than all other recent approaches. The reason is possibly
might be due to the introduced joint optimization framework that enables DAE to generate
feature representation with potential ability not only for reconstruction but also for enhancing the
classifier discriminative ability for intrusion detection.

In summary, it can be concluded that the superior performance of the proposed model
demonstrates that it has great potential to be a used as promising tool for intrusion detection.

5 Conclusion

This paper has proposed an unsupervised learning model for building an effective IDS. The
proposed model resolves the labelled data scarcity challenge associated with supervised learning by
integrating DAE and OCSVM within a joint optimization framework. Specifically, it has defined
a unified objective function for joint learning of feature representation and classification task.
This mechanism has guided the DAE to learn the most robust feature representation and at
the same time has ensured to improve the discriminative ability of OCSVM for any unknown
attacks. The outcome of ablation experiments has not only validated the design decision of the
proposed model but has also signified the crucial contribution of each component in the proposed
model in gaining improved detection rate for intrusions. Also, extensive comparative evaluation has
manifested the efficacy of the proposed model against recently published state-of-the-art baselines.
The proposed model will serve as a new sight for the research communities in the field intrusion
detection to explore on joint unsupervised learning and achieve excellent intrusion detection rate
for new modern attacks.
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