
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.017872

Article

Mobile Memory Management System Based on User’s Application
Usage Patterns

Jaehwan Lee and Sangoh Park*

School of Computer Science and Engineering, Chung-Ang University, Dongjak-gu, Seoul, 06974, Korea
*Corresponding Author: Sangoh Park. Email: sopark@cau.ac.kr

Received: 15 February 2021; Accepted: 24 March 2021

Abstract: Currently, the number of functions to improve user convenience
in smartphone applications is increasing. In addition, more mobile appli-
cations are being loaded into mobile operating system memory for faster
launches, thus increasing the memory requirements for smartphones. The
memory used by applications in mobile operating systems is managed using
software; allocated memory is freed up by either considering the usage state
of the application or terminating the least recently used (LRU) application.
As LRU-based memorymanagement schemes do not consider the application
launch frequency in a low memory situation, currently used mobile operating
systems can lead to the termination of a frequently executed application,
thereby increasing its relaunch time. This study proposes a memory manage-
ment system that can efficiently utilize the main memory space by analyzing
the application usage information. The proposed system reduces the appli-
cation launch time by leaving the most frequently used or likely to be run
applications in the main memory for as long as possible. The performance
evaluation conducted utilizing actual smartphone usage records showed that
the proposed memory management system increases the number of times the
applications resume from the main memory compared with the conventional
memory management system, and that the average application execution time
is reduced by approximately 17%.
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1 Introduction

Various types of mobile applications are emerging with the development and widespread use
of smartphones. Currently, the number of mobile applications registered in the application mar-
ketplace for mobile operating systems such as Android and iOS is approximately 2 million [1,2].
Smartphone users typically install dozens, and sometimes, even hundreds of applications on
their devices; additional features are being included in applications to improve user convenience.
Accordingly, requirements such as improvements in main memory capacity and computational
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processing performance are increasing. The increasing demand for main memory can be accom-
modated with the use of hardware or software. The hardware approach involves expanding the
main memory of the smartphone, whereas the software approach involves using the main memory
efficiently by following carefully designed memory management policies.

Mobile operating systems, such as Android or iOS, implement application life cycle man-
agement [3], which partially frees up memory used by applications based on the execution state
of the application and thus accelerates application launch requests under conditions of limited
main memory capacity. Moreover, it caches as many applications as possible in the main memory
so that they are loaded rapidly when switched or relaunched. To prevent main memory short-
ages, cached applications that are not frequently used are terminated. This prevents users from
experiencing reduced system performance when they relaunch frequently used applications. Swap
techniques that use secondary storage as part of the main memory space have been consid-
ered [4–6] to efficiently utilize the main memory of smartphones. However, owing to wear-out
problems of NAND flash memory-based storage devices, ZRAM [7], which compresses memory
space and uses it as swap space, or ZSWAP [8], which is used as swap cache, can be used
for smartphone memory management. In existing memory management techniques applied to
smartphones [9] it is difficult to distinguish between frequently and infrequently used applications,
because these techniques consider that the most recently executed application is more likely to be
executed again than other applications [10]; this problem is exacerbated as users install and use
more applications.

In this paper, we propose a memory management system to efficiently utilize the main memory
and swap space by analyzing the application usage patterns and application execution probabilities
of the user. The proposed system reduces the execution time of applications by keeping in the
main memory the applications that are frequently used or that present a high probability of
being relaunched. In low-memory situations, the main memory space allocated to applications is
reclaimed by terminating the least likely to be reused application. Consequently, frequently used
applications remain in the memory.

The remainder of this article is organized as follows. In Section 2, we summarize the existing
studies on memory management for mobile operating systems. In Section 3, we introduce the
proposed memory management system for efficiently managing the main memory of mobile
operating systems. In Section 4, we evaluate and analyze the application launch performance
of the proposed and existing memory management systems. Finally, in Section 5, we present
conclusions and future research directions.

2 Related Work

Unlike PC and HPC-based operating systems, mobile operating systems deployed in smart-
phones follow memory management policies that are suitable for mobile environments. Mobile
applications can be cached in the main memory to reduce their launch time without the need for
a high-performance processor or storage. The number of applications cached in the main memory
can be increased with the use of compressed memory. Currently, users typically install dozens, and
sometimes, even hundreds of applications on their smartphones [11]; some of these applications
are frequently used, such as messengers and browsers, whereas others are rarely used [12]. Mobile
operating systems allow users to switch screens by launching other applications, maintaining the
previously used application in memory for as long as possible; this ensures that the application
resumes from memory when launched again.
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Android is an operating system that holds approximately 70% of the mobile operating system
market share [13], making it one of the most installed operating systems on smart devices. It
includes an operating system and middleware for mobile devices and operates based on Linux
kernel. In addition to the existing functionalities for Linux kernel, Android specific functions such
as power management and memory management, are also included in this system.

Android can host applications written in Java and Kotlin in separate processes on the Android
runtime virtual machine. It implements an application life cycle management policy [3] that
performs memory allocation and release based on the execution state of the applications. Running
applications remain in the main memory with sufficient main memory unless explicitly termi-
nated. The application management service (AMS) in the Android framework manages and tracks
application status and records the status information in processes that host the application. When
the system experiences memory shortage, Android’s memory manager runs the low memory killer
(LMK) [14–16] driver to terminate the applications, executing the least recently used (LRU) [9]
method, thus reclaiming memory. This reclaiming task is repeated until sufficient free space has
been reclaimed by the system.

The commonly used LRU-based memory management policies assume that recently used
applications are likely to be launched again [12]. However, the effectiveness of these policies
decreases with the increase in the number of applications that a user installs. Frequently used
applications can be selected for termination if several infrequently but recently used applica-
tions are present. In this case, the application launch time will increase because frequently used
applications are launched from the device storage.

Other software approaches for memory management feature swap techniques utilize a part of
the main memory as compressed storage space. The swap techniques use a part of the free space
from the secondary storage as swap area. This allows for the use of memory resources beyond the
physical memory limit of the system. When the main memory space is not sufficient to allocate a
page, the memory manager migrates a page in the main memory to the swap area. The swapped-
out page is brought back to the main memory when a process refers the page again. Another page
is then selected to be swapped out. The swap-in and out task is frequently performed if the main
memory keeps running low. Therefore, NAND flash memory based mobile devices do not present
a swap feature that employs secondary storage to prevent storage wear-outs. Main memory-based
swap techniques, such as ZRAM or ZSWAP, are utilized to compress and store swap data using
a part of the main memory space as a block device. However, these swap techniques present
compression and decompression overhead; the overhead increases with the amount of swap out/in
data to/from the compressed area.

In a study using ZRAM and storage as the swap area [17], the swap cost of a page was cal-
culated to swap out frequently referenced pages into ZRAM while swapping out infrequently used
pages to storage. Taking compression ratio [18] or application behavior [19] into consideration to
estimate the cost of a page showed benefits for swapping out pages, extended storage lifespan
and higher application launch speeds. In a study that proposed memory management using
the average reuse distance [10,14], which indicates the number of times other applications were
launched between the launch and relaunch of an application, it was considered that an application
was more likely to be relaunched when its average reuse distance was smaller. Moreover, the
total number of swaps was reduced by preventing the swap out of applications with a small
average reuse distance and allowing swap out of applications with a high average reuse distance.
A cloud-based memory expansion scheme [20], which is a device-reserved memory management
scheme for mobile devices [21], was also investigated to accommodate the increasing memory
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demands. However, existing memory management techniques present limitations when reflecting
application usage patterns that are appropriate for the user. This is because they do not consider
the application launch data and the correlation between applications.

In this study, we present an approach for estimating the application launch probabil-
ity by collecting users’ application usage information and training a long short-term memory
(LSTM) [22–24] model considering the association between the various usage patterns of the
users. Based on the analysis of the usage pattern information, our proposed memory management
system predicts the application to be launched, such that the system can determine the application
that should be left in the main memory for a relaunch and that which should be terminated.
Our approach utilizes the main memory and swap space more efficiently than existing memory
management methods, when the least likely to be relaunched applications are terminated in low
memory situations.

3 AMMS: An Application-Prediction-BasedMemory Management System

In this paper, we propose AMMS, an application-prediction-based memory management
system that analyzes the user’s application usage patterns and launch probabilities. The overall
architecture of AMMS is shown in Fig. 1. The activity/process context generator is a module added
to the existing activity manager service to generate application launch information; it passes the
generated information to the context management module. When the application usage predictor of
the context management module receives the application launch information, it uses the LSTM
network to predict the launch probability of the next application. The application usage trainer is
a module that receives and stores application launch information and utilizes this information to
train the LSTM network. In addition, the launch probability of each application is recorded as
process information, which is managed by the process management module in the Linux kernel.
The AMMS interface inside file systemmanagement is the interface module that transfers data from
the Android framework to the Linux kernel. The AMMS reclaimer module of memorymanagement
searches for the process with the lowest launch probability when a main memory shortage is
experienced; then, it terminates the process and frees up memory space. This immediately increases
the resuming frequency of the most likely to be launched applications without removing them
from memory. In summary, AMMS improves the application launch speed by utilizing the main
memory more efficiently than existing methods.

3.1 Activity/Process Context Generator
The activity/process context generator generates contextual information when an application is

launched, paused, and terminated in a mobile operating system, by collecting usage information
such as the package name of the application, time of launch, process creation information
generated for the application’s execution, process ID, and application package name to which
each process belongs. This module is located in the activity manager service that is responsible for
launching and terminating applications. When an application is launched or a process is created,
the activity/process context generator delivers application usage information to the application usage
trainer and the application usage predictor in context management. In addition, when a process
creation task for launching an application occurs, the relevant context information is transferred
to the application usage predictor.
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Figure 1: System architecture

3.2 LSTM Network
The LSTM network is located within the context management module. It learns the user’s

application usage pattern and predicts application launch probability. The parameters associated
with the LSTM network are defined in Tab. 1. LSTM is designed to solve the problem of gradient
vanishing in recurrent neural networks (RNNs) and learn the correlation between long-term and
short-term data [25]. The functions forget gate ft, input gate gt, input gate it, memory cell ct, and
output gate ot constituting the LSTM model are defined, as follows, in Eqs. (1)–(6).

ft = σ(xtwx_ f + ht−1wh_ f + bf ) (1)

gt = tanh(xtwx_g+ ht−1wh_g+ bg) (2)

it = σ(xtwx_i+ ht−1wh_i+ bi) (3)

ct = ft ◦ ct−1+ it ◦ gt (4)

ot = σ(xtwx_o+ ht−1wh_o+ bo) (5)

ht = ot ◦ tanh(ct) (6)

The parameters used by the LSTM network for performing application launch probability
prediction are defined in Tab. 2. The launch probability of application ui at time t+1 with regard
to application launch history vt is defined as P(ui_t+1 |Vt). The data for the application launched
at time t can be converted into the input of the LSTM model using Eq. (7). The function lstm(xt),
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which performs operations according to the LSTM cell defined in Eqs. (1)–(6), can be expressed
as in Eq. (8).

xt =
{
xt_0, xt_1, . . . , xt_j, . . . , xt_m−1,

}
, where xt_j =

{
1, if i= j
0, otherwise

for (0≤ j ≤m− 1) (7)

ht= lstm(xt) (8)

The softmax function [26] presented in (9) is used to transform the outputs of lstm(xt) to a
probability for ui_t+1.

P(ui_t+1 |Vt)= eht_i∑m−1
j=0 eht_j

(9)

Table 1: Definition of parameters related to long short-term memory

Symbol Definition

t Time at which an input vector is fed to an LSTM
xt Input vector to an LSTM at time t
xt_k k-th element of an input vector xt
ht Output vector of LSTM at time t
ht_l l-th element of an output vector h
σ Sigmoid activation function
tanh Tangent hyperbolic activation function
ft Forget gate function at time t to control the amount of discarded stored data
ct Memory cell to store data in LSTM at time t
gt Input gate function at time t to generate data to be stored in ct
it Input gate function at time t to generate data to be stored in ct
ot Output gate function at time t to generate data to be stored in ct
wx_ f , wx_g, wx_i, wx_o Vector weighted to xt in functions ft, gt, it, ot, respectively
wh_ f , wh_g, wh_i, wh_o Vector weighted to ht in functions ft, gt, it, ot, respectively
bf , bg, bi, bo Bias constant for functions ft, gt, it, ot, respectively

3.3 Application Usage Predictor
The application usage predictor module estimates the launch probability of an application using

the LSTM network and delivers the obtained probability value to the Linux kernel; application
usage information is passed through the activity/process context generator, following which the
application usage predictor inputs the information to the LSTM network to obtain the application
launch probability.

The application usage predictor reads the application mapping tables stored in permanent stor-
age, using the format presented in Tab. 3 and then creates an application process information list
called AppInfo, as described in Tab. 4. Application launch time and application process creation
are different on mobile operating systems such as Android; therefore, the application usage predictor
receives application launch and application process creation information from the activity/process
context generator.
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Table 2: Definition of parameters related to application usage prediction

Symbol Definition

A Set of all applications installed on a smartphone
S Set of all applications that a user cannot launch
U Set of applications for which S∪U =A and S∩U =∅

R Set of cached applications that reside in system memory at time t
m Number of elements of U
ui i-th application of U
ui_t Launched application ui at time t
Vt Set of application launch history at time t
vt_ j j-th elementof Vt
lstm (xt) Fully connected LSTM network function
P (·) Probability of an event

Table 3: Mapping table of application name to ID

Name ID

Full package name of the application Unique id of the application

Table 4: AppInfo managed by application usage predictor

Field Description

name Full package name of the application
id Unique id of the application
prob Probability that the application is launched
pidlist List of pids of processes that belong to the application

Algorithm 1: Executed when an application has been selected to run
1: procedure on Application Launched (ui_t)
2: Generate xt according to (7)
3: ht← lstm (xt) according to (8)
4: for each ui ∈U do
5: ui’s AppInfo.prob←P(ui_t+1 |Vt) according to (9)
6: for each pid in ui’s AppInfo.pidlist do
7: if pid exists then
8: p← ui’s AppInfo.prob
9: i←�p×maximum_integer_value	

10: write i through procfs
11: end if
12: end for
13: end for
14: end procedure
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Algorithm 1 describes the task performed at time t when the application usage predictor
receives the application launch information. Application relaunch probability acquired from the
LSTM network as shown in lines 2–3 is stored in the prob field by traversing the AppInfo list as
shown in lines 4–5. If the application’s process has already been created, the probability value is
stored in the kernel’s process data structure through file systemmanagement, as in lines 6–14. Since
the Linux kernel does not support floating point operations, it converts the probability value to
an integer and stores it as in line 10.

Algorithm 2: Executed when a process for an application has been created
1: procedure on Process Created (ui_t, pid)
2: add pid in ui’s AppInfo.pidlist
3: for each pid in ui’s AppInfo.pidlist do
4: if pid exists then
5: p← ui’s AppInfo.prob
6: i←�p×maximum_integer_value	
7: write i through procfs
8: end if
9: end for
10: end procedure

Algorithm 2 describes the task performed when the created application process information
is received. When a process is created, the corresponding pid is stored in the pidlist of the
application’s AppInfo to which the process belongs.

3.4 Application Usage Trainer
The application usage trainer module trains the LSTM network using application usage infor-

mation; it receives and stores application launch information from the activity/process context
generator. The unique IDs corresponding to applications are stored chronologically. The LSTM
network is unfolded according to the length of the data and becomes a feed-forward network. A
backpropagation through time (BPTT) algorithm is used to update the weights of the network.
The LSTM network is trained to minimize the mean squared error (MSE), which is defined as
the difference between the predicted and actual values. MSE, in combination with the application
launch probability, is defined in Eq. (10).

MSE = 1
|VT |

|VT |∑
t=1

m−1∑
i=0

(P
(
ui_t |Vt−1

)− yt_i)2, where yt_i =
⎧⎨
⎩
1, if ui_t = vt_|VT |
0, otherwise

(10)

The training of the LSTM network by the application usage trainer requires a significant
number of computations. Therefore, it only trains the network when the smartphone is charging
and not in use.

3.5 AMMS Interface
The AMMS interface provides an interface for information delivery so that the application

usage predictor can provide application launch probability information to a process data structure
inside the Linux kernel. The information delivery interface is provided by procfs [27]. System
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information, such as process information, is presented in a file-like structure using procfs in Unix-
like operating systems; procfs is used to change system parameters at runtime through a common
file I/O interface. In the proposed system, the application usage predictor can record the launch
probability of an application in the process data structure managed by process management
via procfs.

3.6 Process Probability
Process probability is a data structure for recording the launch probability of an application’s

process. The prob field is added to the task data structure managed by process management as
shown in Tab. 5. The application usage predictor only estimates the probability of user launched
applications since the termination of a system process may cause system crash or failure. The
prob value for system processes is initialized with a negative integer value to exclude them from
memory reclaim candidates.

Table 5: Process information managed by process management

Field Description

. . . . . .

pid Unique id of the application
prob Integer probability value set by application usage predictor
. . . . . .

3.7 AMMS Reclaimer

Algorithm 3: Executed for low memory event
1: procedure on Low Memory
2: tgproc← null
3: minproc←minimum_integer_value
4: for each proc in running_process_list do
5: if 0≤ proc.prob and minprob≤ proc.prob then
6: tgproc← proc
7: minprob← proc.prob
8: end if
9: end for

10: terminate tgproc and reclaim memory
11: end procedure

AMMS reclaimer is a module that terminates the process of the application, which is least
likely to be launched next, when the available main memory starts becoming low. Algorithm 3
describes the memory reclamation process performed by AMMS reclaimer. The variables for
designating the process with minimum probability are initialized as shown in lines 2–3. The process
list is traversed as in line 4, followed by the selection of the process with minimum probability in
lines 5–8.
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4 Performance Evaluation

4.1 Design of LSTM Network
We designed an LSTM model for AMMS by changing its hyperparameters to identify the

most efficient structure for predicting mobile application usage. To establish an efficient structure
of the LSTM model, the number of computations as well as the prediction performance of the
model should be considered. The model validation accuracy was determined by changing the
number of layers of the LSTM network from 2 to 4 and the number of LSTM neurons per
layer from 10 to 100. The number of application usage records varied from 100 to 10000 in this
experiment that helped determine the robustness of the model prediction accuracy. The application
usage records were randomly selected from LiveLab Research’s real-world usage data [28].

The model validation accuracy and training loss for each number of layers and neurons is
shown in Figs. 2 and 3, respectively. As shown in Fig. 2, the validation accuracy increased as the
number of neurons increased. However, the accuracy decreased as the number of layers increased.
The accuracy of layer 2 was the highest with the number of neurons from 20 to 100. The training
loss for each number of neurons and layers was determined to identify if overfitting occurred. As
shown in Fig. 3, the training loss increased as the number of layers increased. If overfitting had
occurred, the training loss would have decreased along with the validation accuracy. Therefore,
it can be concluded that overfitting did not occur. The experimental results also show that the
deeper the LSTM network structure, the more difficult it will be to learn the application usage of
a user.

Figure 2: Comparison of validation accuracy

To consider a model for the mobile environment, it is necessary to identify the most computa-
tionally efficient model. We employ a method used in [29] to estimate the number of computations
required to perform a single prediction task of an LSTM network. The number of computations
is calculated in terms of L, N, m, which represent the number of layers, the number of LSTM
neurons, and the number of elements of xt, respectively.

Unlike the previous work, the number of application types in the usage dataset, represented
by m, varies depending on the dataset. The number of applications according to the number of
samples in a dataset is shown in Fig. 4. The number of applications increases with the number of
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samples in a dataset. Furthermore, the accuracy varies as the number of applications changes. The
validation accuracy according to the number of samples is collected for each number of layers
and neurons. Note that models with 4 layers are excluded since they have been shown to be not
appropriate for the application usage dataset. Figs. 2 and 5 show that the validation accuracy
tends to increase as the number of neurons is increased; however, the same trend is not observed
with increase in the number of layers. The accuracy is not always higher for one model compared
to another one, e.g., for the models l2n90 and l3n20. The accuracy for model l2n90 is lower than
that for l3n20 with the number of samples from 100 to 200, and it becomes higher for model
l2n90 when the number of samples is larger than 600.

Figure 3: Comparison of training loss

Figure 4: Number of applications vs. the number of samples in the dataset
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Number of samples Number of samples Number of samples

Number of samples Number of samples Number of samples

Number of samples Number of samples Number of samples

Number of samples

Figure 5: Validation accuracy of 2-layer model vs. the number of samples

Based on the experimental results presented in Figs. 2, 5, and 6, it is concluded that a model
should not be chosen unconditionally although the accuracy is higher for a specific sample range,
nor the number of computations is smaller. Therefore, we propose an evaluation method to
identify a model that provides high efficiency and good performance. The number of compu-
tations required to perform a single prediction task of an LSTM network is determined using
Eq. (11) [29].

p=L
(
4N2+ 5Nm+ 8N

)
+ 2m (11)
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Figure 6: Validation accuracy of a 3-layer model vs. the number of samples

Algorithm 4: Determination of model score
1: procedure get Model Score (l′, n′)
2: score← 0
3: for each ∀ l ∈ Layers, ∀n ∈Neurons, ∀ s∈ Samples do
4: m← the number of apps from Fig. 4 with s
5: compthis← l′

(
4n
′2+ 5n′m+ 8n′

)
+ 2m

6: accthis← validation accuracy of a model with l′, n′

(Continued)
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7: comptarget← l
(
4n2+ 5nm+ 8n

)+ 2m
8: acctarget← validation accuracy of a model with l, n
9: if compthis < comptarget then
10: if accthis ≥ acctarget then
11: score← score+ 1
12: end if
13: end if
14: end for
15: return score
16: end procedure

Algorithm 4 depicts the proposed method to evaluate an LSTM model considering its per-
formance and computational efficiency simultaneously. To evaluate a model with l′ layers and n′
neurons, its validation accuracy for each number of samples s is compared to that of all other
models. A model’s score indicates how many other models with higher complexity and lower
accuracy exist. Line 3 is executed to search through all other models with l layers, n neurons, and
s number of samples. The computation amount of the model for which we want to calculate the
score is expressed as compthis in line 4. The accuracy of the model is expressed as accthis in line
5. The computation amount and the accuracy of a model that needs to be compared with are
expressed as comptarget and acctarget, respectively, in lines 7–8. As shown in lines 9–13, if there is a
model for which the number of computations is larger than compthis and the accuracy is equal to
or lower than accthis, the score count is increased by 1. For example, with 200 samples, if accthis
of l2n10 is higher than acctarget of l3n10 and compthis of l2n10 is lower than comptarget of l3n10,
the score of l2n10 is increased by 1.

Fig. 7 shows the score of each model for different numbers of layers and neurons. Models
with 2 layers outperformed other models and the l2n20 model was rated a score of 261, the
highest score among all models. Score 261 means that there were 261 cases in which l2n20
performed more accurately and was computationally more efficient. In the case of l2n10, since it
involves the smallest number of computations, there were 167 cases in which the model performed
better. The score decreased as the number of computations increased. Therefore, the proposed
AMMS was implemented with the l2n10 model based on the model evaluation results.

Figure 7: Comparison of the number of computations
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4.2 Evaluation of AMMS
We implemented AMMS on an Android smartphone to evaluate the performance of the

proposed system. The launch time and characteristics of mobile applications were collected and
analyzed. The device used for performance evaluation was a Google Nexus 6P smartphone [30]
with a Snapdragon 810 processor, as shown in Tab. 6.

Table 6: Target device specification

Model Google Nexus 6P

Processor Qualcomm Snapdragon 810 MSM8994 SoC ARM
Cortex-A57 2 GHz+ARM Cortex-A53 1.55 GHz

Memory 3 GB LPDDR4 SDRAM
Display WQHD (2560× 1440) AMOLED touch screen display
Storage 32 GB flash storage
OS Android 7.1.2 (Nougat) with Linux Kernel 3.10.73

Algorithm 5: Determination of application launch type
1: procedure get Launch Type (ui_t)
2: type←WarmLaunch
3: time← ui_t’s launch time from Android framework
4: if time is null then
5: type←HotLaunch
6: else if ui_t’s AppInfo.pidlist is empty then
7: type←ColdLaunch
8: end if
9: return type

10: end procedure

There are three types of application launches: cold launch, warm launch, and hot launch [31].
Hot launch occurs when all the application processes have been already created and there is
no need to create new ones to execute the application. In warm launch, some processes have
been created, but additional ones need to be created to execute the application. In cold launch,
processes have not been created yet, so all the necessary processes need to be created. The
performance measurement data were randomly selected from the actual application usage data
collected by LiveLab Research [28]. The total number of applications in the application usage
history was 35 (see Tab. 7). Ten-fold cross validation was performed with 90% (4500) of the 5000
application usage records for training and 10% (500) of the records for validation.

Android logs the time interval from application launch to application screen rendering,
i.e., it provides cold and warm launch information. The time is not logged for hot launches
because the process is already created, and the application is already rendered. Therefore, we
compared the proposed and existing methods in terms of the application launch time informa-
tion provided by Android to measure the number of launch types. Algorithm 5 describes the
manner in which application launch type is determined. Hot launch occurs when the Android
framework does not provide the launch time of an application, as shown in lines 3–5. If the
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framework provides the launch time but no data is left in the main memory, cold launch occurs,
as shown in lines 6–7. Otherwise, warm launch occurs. The existing memory management system
is labeled Android+ZRAM+ LRU to indicate that the system is built from the source code of
the Android platform and its kernel, and the proposed memory management system is labeled
Android+ZRAM+AMMS.

Table 7: Tested package set for target platform

Original package name Tested package name Original package name Tested package name

com.apple.Preferences com.android.settings com.apple.MobileSMS com.android.messaging
com.apple.mobilephone com.android.dialer com.apple.compass com.vincentlee.compass
com.apple.weather com.weather.Weather com.apple.mobilemail com.google.android.gm
com.apple.mobilesafari com.android.chrome com.apple.mobileipod-

MediaPlayer
com.mxtech.videoplayer.ad

com.apple.calculator com.android.calculator2 com.apple.mobiletimer com.android.deskclock
com.apple.VoiceMemos com.splendapps.vox com.apple.stocks com.yahoo.mobile.client.

android.finance
com.apple.mobileslideshow-
Photos

com.android.gallery3d com.apple.mobileslideshow-
Camera

com.android.camera2

com.apple.youtube com.google.android.
youtube

com.apple.AppStore com.android.vending

com.apple.MobileStore com.google.android.music com.apple.MobileAddress-
Book

com.android.contacts

com.apple.mobilenotes com.socialnmobile.
dictapps.
notepad.color.note

com.apple.mobilecal com.google.android.calendar

com.apple.Maps com.google.android.apps.
maps

com.apptomic.bugspray com.alphapps.antiflysound

com.gothamwave.
SubwayMap

net.orizinal.subway com.myapps.NYSubwayApp uk.co.mxdata.newyorksub

com.google.GoogleMobile com.google.android.
googlequicksearchbox

com.google.b612 com.linecorp.b612.android

com.davaconsulting.ruler org.nixgame.ruler com.ihandysoft.carpenter.
level

com.ihandysoft.carpenter.level

com.johnhaney.Flashlight com.surpax.ledflashlight.
panel

com.oishan.DriversEd com.driversed.driversed

com.srividya.nycway com.ulmon.android.play-
newyork

com.pandora tunein.player

com.rhapsody.iphone.
Rhapsody

com.nhn.android.music com.trancreative.Speller com.nounplus.grammar
checkerenglish

com.Epocrates.Rx com.Epocrates.Rx com.espn.ScoreCenter com.espn.score_center

In order to evaluate application launch performance, the validation dataset of 500 application
records was executed in order, and the number of hot, warm, and cold launch occurrences was
measured for the existing and proposed systems. Tab. 8 shows the average number of launches of
each type. The average number of cold launches was 76.4 for Android+ZRAM+AMMS, which
was approximately 10% lower than the average of 85 for Android + ZRAM + LRU. Moreover,
Android+ZRAM+AMMS reduced the average number of warm launches, in which application
data and processes remained in the main memory, by approximately 11% (from 14.4 to 12.8),
in comparison with Android+ ZRAM+ LRU. These results indicate that our proposed memory
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management system predicts the application likely to be launched next, more accurately than the
existing system.

Table 8: Average launch time for each type

Hot launch Warm launch Cold launch

Android+ZRAM+LRU 400.6 14.4 85.0
Android+ZRAM+AMMS 410.8 12.8 76.4

Next, we measured application launch time, which is the time required to completely load an
application, create processes and activities, and render the initial screen; we evaluated how this
parameter is affected by the application prediction accuracy of the existing and proposed systems.
Application launch time was measured using the measurement tool provided by the Android
framework [30]. Since the measurement tool provides the launch time for cold and warm launches,
hot launches correspond to the data and processes cached in main memory; hot launch time was
not measured in this study and thus treated as 0 ms.

Tab. 9 shows the cumulative average launch times for cold and warm launches obtained using
the aforementioned validation dataset with 500 application records. The cumulative average launch
time for warm launches decreased by about 11% (from 7095.8 ms for the existing system to
6302.8 ms for the proposed system). In addition, the launch time for cold launches reduced by
about 18% (from 106128.6 ms for the existing system to 86810 ms for the proposed system). The
total cumulative launch time (including warm and cold launches) for the proposed system was
approximately 17% less than that for the existing system. Since warm and cold launches take more
time than hot launches [30], a decrease in the launch time for cold and warm launches implies a
decrease in the total launch time.

Table 9: Average launch time in milliseconds

Hot launch Warm launch Cold launch

Android+ZRAM+LRU 7095.8 106128.6 113224.4
Android+ZRAM+AMMS 6302.8 86810.0 93112.8

The results shown in Tab. 9 are graphically compared in Fig. 8a. An increase in the cumu-
lative launch time implies that warm or cold launches have occurred; otherwise, it implies that
hot launches have occurred. Fig. 8b depicts the difference of cumulative average launch times
between the existing and proposed systems. In Fig. 8b, there are sections where the cumulative
launch time increased rapidly, e.g., around the launch of the 100th application or the 200th
application. According to the results, application launch time improved in sections where warm
and cold launches occurred frequently. Applications that are likely to be launched again remained
in memory as much as possible on AMMS; warm and cold launches were turned into hot
launches so that the cumulative launch time decreased. However, there are sections where the
cumulative launch time for AMMS was more than that for the existing system. Since the memory
reclamation policy of AMMS is different from the existing systems’ LRU policy, a cold launch
occurred in the section where a hot launch occurred in the existing system. The increased launch
time in these sections is negligible compared to the increased time in other sections.
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Figure 8: Comparison of cumulative launch time performances

In summary, the proposed system reclaims the memory used by the applications with the
lowest launch probability in a low-memory situation, thus increasing the launch speed of more
frequently used applications. Consequently, the proposed system utilizes the main memory more
efficiently than the existing system.

5 Conclusion

As smartphone users install and use performance-demanding applications, significant amount
memory is needed. Techniques such as ZRAM swapping or swapping using storage were devel-
oped to accommodate main memory demands; however, these techniques present limitations such
as compression and decompression overhead for ZRAM and NAND flash memory wear-out
problems for memory swapping using storage, thereby rendering them relatively slower than the
main memory. Moreover, the performance of the existing application memory management system
using LRU decreases when the number of applications used increases.

In this paper, we proposed a memory management system—AMMS—that utilizes the main
memory more efficiently. The proposed system predicts application launch probability more accu-
rately by collecting and analyzing the user’s application usage information. Frequently used
applications reside in the memory for as long as possible, thereby reducing the average launch
time of the applications. Performance evaluation using actual smartphone usage records showed
that the proposed system increases the number of launches from main memory (hot launches) by
approximately 10%, while reducing the average launch time of applications by approximately 17%.
This indicates that the proposed system is superior to the existing system at resuming frequently
used applications from the main memory. In future, we plan to study an online learning version of
the prediction model and a generalized prediction model using application categories to improve
prediction performance.
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