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Abstract: Recently, the number of Internet of Things (IoT) devices connected
to the Internet has increased dramatically as well as the data produced by these
devices. This would require offloading IoT tasks to release heavy computation
and storage to the resource-rich nodes such as Edge Computing and Cloud
Computing. However, different service architecture and offloading strategies
have a different impact on the service time performance of IoT applications.
Therefore, this paper presents an Edge-Cloud system architecture that sup-
ports scheduling offloading tasks of IoT applications in order to minimize the
enormous amount of transmitting data in the network. Also, it introduces the
offloading latency models to investigate the delay of different offloading sce-
narios/schemes and explores the effect of computational and communication
demand on each one. A series of experiments conducted on an EdgeCloudSim
show that different offloading decisions within the Edge-Cloud system can
lead to various service times due to the computational resources and com-
munications types. Finally, this paper presents a comprehensive review of the
current state-of-the-art research on task offloading issues in the Edge-Cloud
environment.

Keywords: Edge-cloud computing; resource management; latency models;
scheduling; task offloading; internet of things

1 Introduction

Internet of Things (IoT) technology has quickly evolved in recent years, where the number of
devices that are connected to the internet (IoT) has increased massively. Some studies predict that
in the upcoming three years, more than 50 billion devices will be connected to the internet [1,2],
which will produce a new set of applications such as Autonomous Vehicles, Augmented Reality
(AR), online video games and Smart CCTV.

Thus, Edge Computing has been proposed to deal with the huge change in the area of
the distributed system. For enhancing customer experience and accelerating job execution, IoT
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task offloading enables mobile end devices to release heavy computation and storage to the
resource-rich nodes in collaborative Edges or Clouds. Nevertheless, resource management at the
Edge-Cloud environment is challenging because it deals with several complex factors (e.g., different
characteristics of IoT applications and heterogeneity of resources).

Additionally, how different service architecture and offloading strategies quantitatively impact
the end-to-end service time performance of IoT applications is still far from known particularly
given a dynamic and unpredictable assortment of interconnected virtual and physical devices.
Also, latency-sensitive applications have various changing characteristics, such as computational
demand and communication demand. Consequently, the latency depends on the scheduling policy
of applications offloading tasks as well as where the jobs will be placed. Therefore, Edge-Cloud
resource management should consider these characteristics in order to meet the requirements of
latency-sensitive applications.

In this regard, it is essential to conduct in-depth research to investigate the latency within
the Edge-Cloud system, the impact of computation and communication demands and resource
heterogeneity to provide a better understanding of the problem and facilitate the development of
an approach that aims to improve both applications’ QoS and Edge-Cloud system performance.
Also, efficient resource management will play an essential role in providing real-time or near real-
time use for IoT applications.

The aim of this research is to investigate and model the delay for latency-sensitive applications
within the Edge-Cloud environment as well as provide a detailed analysis of the main factors of
service latency, considering both applications characteristics and the Edge-Cloud resources. The
proposed approach is used to minimize the overall service time of latency-sensitive applications
and enhance resource utilization in the Edge-Cloud system. This paper’s main contributions are
summarized as follows:

• An Edge-Cloud system architecture that includes the required components to support
scheduling offloading tasks of IoT applications.

• An Edge-Cloud latency models that show the impact of different tasks’ offloading scenar-
ios/schemes for time-sensitive applications in terms of end-to-end service times.

• An evaluation of the proposed offloading latency models that consider computation and
communication as key parameters with respect to offloading to the local edge node, other
edge nodes or the cloud.

The remainder of this paper is organized as follows: Section 2 presents the system architec-
ture that supports scheduling offloading tasks of IoT applications, followed by the descriptions
of the required components and their interactions within the proposed architecture. Section 3
latency-sensitive applications. Section 4 presents the latency models, followed by experiments and
evaluation in Section 5. A thorough discussion of the related work is presented in Section 6.
Finally, Section 7 concludes this paper and discusses the future work

2 Proposed System Architecture

As illustrated in Fig. 1, the Edge-Cloud system from bottom to the top consists of three
layers/tiers: IoT devices (end-user devices), multiple Edge Computing nodes and the Cloud (service
provider). The IoT level is composed of a group of connected devices (e.g., smartphones, self-
driving cars, smart CCTV); these devices have different applications where each application has
several tasks (e.g., smart CCTV [3] application consists of movement dedication and face recog-
nition). These services can be deployed and executed in different computing resources (connected
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Edge node, other Edge nodes or Cloud), where the infrastructure manager and service providers
have to decide where to run these services.

Figure 1: An overview of edge-cloud system

In this proposed system, at the Edge level, each Edge Computing node is a micro datacenter
with a virtualized environment. It has been placed close to the connected IoT devices at the base
station or Wi-Fi access point. These edge nodes have been distributed geographically and could be
owned by the same Cloud provider or other brokers [4]. Note that, it has limited computational
resources compared to the resources in the cloud. Each edge node has a node manager that can
manage computational resources and application services that run on. All the edge nodes have
connected to the Edge Controller.

The offloading tasks can be achieved when the IoT devices decide to process the task remotely
in Edge-Cloud environments. Applications running on IoT devices can send their offloadable tasks
to be processed by the Edge-Cloud system through their associated Edge node. We assume that
each IoT application is deployed in a Virtual Machine (VM) in the edge node and the cloud.
IoT devices offload tasks which belong to a predefined set of applications, these tasks are varied
in term of the computational requirement (task length) and communication demand (amount of
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transferred data). It is assumed that tasks are already offloaded from the IoT devices, and each
task is independent; thus, the dependency between the tasks is not addressed in this paper. The
locations of IoT devices are important for the service time performance because it is assumed
that each location is covered by a dedicated wireless access point with an Edge node and the IoT
devices connect to the related WLAN when they move to the covered location.

The associated Edge can process IoT tasks and also can be processed collaboratively with
other edge nodes or the cloud, based on Edge orchestrator decisions. For example, if an IoT
application is located in an edge node faraway from its connected edge, its data traffic has to be
routed to it via a longer path in the Edge-Cloud system. At the cloud level, a massive amount
of resources that enable IoT applications’ tasks to be processed and stored.

The proposed architecture is just a possible implementation of other architectures in the
literature such as [2,5,6]. The main difference in the proposed architecture is the introduced layer
between the edge nodes and the cloud. This layer responsible for managing and assign offloading
tasks to the edge nodes. More details about the required components and their interactions within
the proposed architecture are follow.

2.1 Edge Controller
Edge Controller (EC) is designed similar to [7–9], some studies called EdgeOrchestrator, which

is a centralized component responsible for planning, deploying and managing application services
in the Edge-Cloud system. EC communicates with other components in the architecture to know
the status of resources in the system (e.g., available and used), the number of IoT devices, their
applications’ tasks and where IoT tasks have been allocated (e.g., Edge or Cloud). EC consists of
the following components: Application Manager, Infrastructure Manager, Monitoring and Planner.
The location of the Edge Controller can be deployed in any layer between Edge and Cloud. For
example, in [10], EC act as an independent entity in the edge layer that manages all the edge
nodes in its control. It is also responsible for scheduling the offloading tasks in order to satisfy
applications’ users and Edge-Cloud System requirements. The EC is synchronizing its data with
the centralized Cloud because if there is any failure, other edge nodes can take EC responsibility
from the cloud [11,12].

2.2 Application Manager
The application manager is responsible for managing applications running in the Edge-Cloud

system. This includes requirements of application tasks, such as the amount of data to be trans-
ferred, the amount of computational requirement (e.g., required CPU) and the latency constraints.
Besides, the number of application users for each edge node.

2.3 Infrastructure Manager
The role of the infrastructure manager is to be in charge of the physical resources in the entire

Edge-Cloud system. For instance, processors, networking and the connected IoT devices for all
edge nodes. As mentioned earlier, Edge-Cloud is a virtualized environment; thus, this component
responsible for the VMs as well. In the context of this research, this component provides the EC
with the utilization level of the VMs.

2.4 Monitoring
The main responsibility of this component is to monitoring application tasks (e.g., computa-

tional delay and communication delay) and computational resources (e.g., CPU utilization) during
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the execution of applications’ tasks in the Edge-Cloud system. Furthermore, detecting the tasks’
failures due to network issues or the shortage of computational resources.

2.5 Planner
The main role of this component is to propose the scheduling policy of the offloading tasks

in the Edge-Cloud system and the location where they will be placed (e.g., local edge, other edges
or the cloud). In the context of this research, the proposed approach for offloading tasks works
on this component and passes its results to EC for execution.

3 Latency-sensitive Applications

Latency-sensitive applications can be defined as applications that have high sensitivity to
any delays accrue in communication or computation during the interaction with the Edge-Cloud
system.

For instance, the IoT device sends data to the point that processing is complete at the edge
node or the cloud in the back end of the network, and the subsequent communications are
produced by the network in response to receive the results. There are many examples of latency-
sensitive applications and the acceptable service time varies depending on the application type,
which affected by the amount of transferred data and the required computation volume [13].
For example, self-driving cars consist of several services, the work presented in [14] classified
these services in categories based on their latency-sensitivity, quality constraints and workload
profile (required communication and computation). First, critical applications, which must be
processed in the car’s computational resources, for instance, autonomous driving and road safety
applications. Second, high-priority applications, which can be offloaded but with minimum latency,
such as image aided navigation, parking navigation system and traffic control. Third, low-priority
applications, which can be offloaded and not vital as high-priority applications (e.g., infotain-
ment, multimedia, and speech processing). Tab. 1 presents more examples of latency-sensitive
applications in different technology sectors [13].

Table 1: Latency-sensitive applications

Industry Applications

Industrial automation Industrial Control
Robot Control
Process Control

Healthcare Industry Remote Diagnosis
Emergency Response
Remote Surgery

Entertainment Industry Immersive Entertainment
Online Gaming

Transport Industry Driver Assistance Applications
Autonomous Driving
Traffic Management

Manufacturing Industry Motion Control
Remote Control
AR and VR Applications
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4 Latency Models

Investigating and modelling the various offloading decisions for IoT tasks that can increase
the Quality of Service (QoS) has attracted the attention of many researchers in the field. With
the increasing number of IoT devices, the amount of produced data, the need for an autonomous
system that requires a real-time interaction as well as the lake of support from the central Cloud
due to network issues; service time has been considered as one of the most important factors to
be handled in Edge Computing [15–17].

One of the main characteristics of Edge Computing is to reduce the latency level. Addi-
tionally, it has been proved through literature that using Edge Computing will enhance appli-
cation performance in terms of overall service time comparing to the traditional Cloud system
[18–20]. However, different offloading decisions within the Edge-Cloud system can lead to various
service time due to the computational resources and communications types. The current real-world
applications measure the latency between the telecommunication service provider and the cloud
services [21]. Also, a few existing works compare the latency between offloading to the edge or
the cloud. Yet, the latency between multiple edge nodes that work collectively to process the
offloading tasks are not considered. Consequently, investigating the latency of the Edge-Cloud
system is an essential step towards developing an effective scheduling policy due to the following
reasons. Firstly, task allocation in the Edge-Cloud system is not only two choices (e.g., either at
IoT device or in the cloud), but could be on any edge nodes. Moreover, edge nodes connected in a
loosely coupled way on heterogeneous wireless networks (i.e., WLAN, MAN and WAN), making
the process of resource management and the offloading decision more sophisticated. Secondly,
given that task processing is allocated among multiple edge nodes working collectively and the
cloud, it is challenging to make an optimal offloading decision.

Therefore, this paper introduces the latency models to investigate the delay of different
offloading scenarios/schemes. Also, it explores the effect of computational and communication for
each offloading scenario/scheme, which are: (1) offloading to the local edge, (2) offloading to the
local edge with the cloud and (3) offloading to the local edge, other available edge nodes and the
cloud. The list of the latency models’ parameters and their notations are shown in Tab. 2.

Table 2: Summary of notations

Symbol Meaning

tte_up Transmission Time between the IoT to the Edge node for uploading
tte_down Transmission Time between the IoT to the Edge node for Downloading
tce Computation time in the Edge node
ttc_up Transmission Time between the Edge node to the Cloud for uploading
ttc_down Transmission Time between the Edge node to the Cloud for Downloading
tcc Computation time in the Cloud
tteo_up Transmission Time between the Edge node to other nearby Edge nodes

for uploading
tteo_down Transmission Time between the Edge node to other nearby Edge nodes

for Downloading
tceo Computation time in the other nearby Edge node
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4.1 Latency to Local Edge
This is known as a one-level offloading system, which is basically offloading to “Cloudlet”

or “Local Edge”. It aims to provide a micro-data center that supports IoT devices within a
specific area such as a coffee shop, mall center and airport [22,23]. Thus, IoT devices can offload
their tasks to be processed on the edge or cloud, as an example. This offloading scenario/scheme
provides ultra-low latency due to the avoidance of network backhaul delays.

To clarify, IoT devices send their offloading tasks through the wireless network, and then the
tasks will be processed by the edge node and finally send the results to IoT devices, as shown in
Fig. 2. The end-to-end service time composed of two delays, network delay and computational
delay. The network delay consists of the time of sending the data to the edge and the time
to receive the output from the edge to the IoT device. The computation time is the time from
arriving the task to the edge node until the processing has completed. Therefore, the end-to-end
service time latency is the sum of communication delay and computational delay [24], which can
be calculated as follows:

LLocal_edge = tte_up+ tce+ tte_down (1)

Figure 2: Latency to local edge

4.2 Latency to Local Edge with the Cloud
In this offloading scenario/scheme, rather than relying on only one Edge node, the IoT tasks

can be processed collaboratively between the connected Edge node and the cloud servers. This
will combine the benefits of both Cloud and Edge Computing, where the cloud has a massive
amount of computation resources, and the edge has lower communication time [25]. In this
scenario/scheme, the edge can do part of the processing such as pre-processing, and the rest of
the tasks will be processed in the cloud.

As illustrated in Fig. 3, IoT sends the computation tasks to the connected edge and then part
of these tasks forwarded to the cloud. Once the cloud finishes the computation, it will send the
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result to the edge, and the edge will send it to the IoT devices. This scenario/scheme consists of
communication time (e.g., the time between the IoT device to the edge node and the time between
edge nodes to the cloud) and computation time (e.g., processing time in the edge and processing
time in the cloud). Thus, the end-to-end service time can be calculated as follows:

LL_C = tte_up+ tce+ ttc_up+ tcc+ ttc_down+ tte_down (2)

Figure 3: Latency to local edge with the cloud

4.3 Latency to Multiple Edge Nodes with the Cloud
This is known as a three-level offloading scenario/scheme [26], that aims to utilize more

resources at the edge layer and support the IoT devices in order to reduce the overall service
time. It adds another level by considering other available computation resources in the edge layer.
Basically, it distributes IoT tasks over three levels: connected edge, other available edge nodes and the
cloud. The edge controller (edge orchestrator) controllers all edge servers by Wireless Local Area
Network (WLAN) or Metropolitan Area Network (MAN), which have low latency compared to
Wild Area Network (WAN).

As illustrated in Fig. 4, IoT sends the computation tasks to the connected edge and then part
of these tasks transferred to other available resources in the edge level through the edge controller
and the rest to the cloud. This will help to decrease the dependency of cloud processing as well
as increase the utilization of computing resources at the edge [20]. This scenario/scheme consists
of communication time (e.g., the time between the IoT device to the edge node, the time between
edge node to other collaborative edge node and the time between edge nodes to the cloud) and
computation time (e.g., processing time in the edge, processing time in other collaborative edge
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node and processing time in the cloud). Thus, the end-to-end service time can be calculated as
follows:

Lthree−off = [tteup + tce+ tteoup + tceo+ ttcup + tcc+ ttcdown + tteodown + ttedown ] (3)

Figure 4: Latency to multiple edge nodes with the cloud

5 Experiments and Evaluation

5.1 Design of Experiments
A number of simulation experiments have been conducted on EdgeCloudSim in order to

obtain the results of different offloading scenarios/schemes, and their influence on overall service
time. EdgeCloudSim provides sufficient models to represent some specific situations. For example,
the service time model is designed to represent the several kinds of delay taking place in the
WLAN, MAN, and WAN as well as mobile devices and even the delay of processing in the
CPUs of VMs. Thus, experiments in this paper are practically conducted within this simulation
to investigate and evaluate the performance of IoT applications over the three different offloading
scenarios/schemes. All the experiments are repeated five times, and the statistical analysis is
performed to consider the mean values of the results to avoid any anomalies from the simulation
results. We assume that we have three edge nodes connected to the cloud. Each edge node has two
servers, and each of them has four VMs with a similar configuration. The number of edge nodes
does not matter in the context of this research as long it more than two, because one of our
aims to investigate the latency between two edge nodes. The cloud contains an unlimited number
of computational resources. We got inspiration from other related works such as [24,27] to design
the experiments and its parameters (e.g., number of IoT devices, edge nodes and the amount of
transferred data for each offloading tasks).
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Tab. 3 represents the key parameters of the simulation environment. The warm-up period is
used to allow the system to evolve to a condition more representative of a steady state before
getting the simulation output. A number of iterations are used to avoid any anomalies from the
simulation results.

Table 3: Key parameters of the simulation environment

Key parameters Values

Simulation Time 30 min
Warm-up Period 3 min
Number of Iterations 5
Number of IoT Devices 100–1000
Number of Edge Nodes 3
Number of VM per Edge Server 8
Number of VM in the Cloud not limited
Average Data Size for Upload/Download (KB) 500/500

5.2 Results and Discussion
The conducted experiments show the results of three different offloading scenarios/schemes,

offloading to the local edge (i.e., cloudlet), offloading to the local edge with the cloud and
offloading to multiple edge nodes with the cloud. The aim of these experiments is to investigate
and evaluate the processing delays, network delays and end-to-end service delays of the three
offloading scenarios/schemes. This will increase our understanding of the offloading decision in
the Edge-Cloud system in order to design an efficient Edge-Cloud resource management.

Fig. 5 presented the overall service time of the three offloading scenarios/schemes. Offloading
to one-level is has the lowest service time. This result is consistent with work in [24,28], this is
because of the avoidance of major latency between the end device and the cloud. Two-offloading
levels have lower service time performance than the three-offloading. This shows the overall service
time will never be truly minimized unless the network time is considered in the offloading process.
However, these results may be somewhat limited by the number of IoT devices and the system
load.

Also, the results presented in Fig. 6 have shown a significant difference in network time
between one level offloading and the others (two-level and three-levels). As mentioned earlier, this
is due to the avoidance of WAN and MAN delays. Two offloading levels lower than the three
offloading levels because of the further communications between edge nodes.

In terms of processing time, offloading to the edge and the cloud has the lowest service
time comparing to others, as depicted in Fig. 7. The reason is that the local edge has limited
computational resources; thus, if the number of IoT devices increases, the processing delays will
increase due to limited capacity. On the other hand, offloading to multiple edge nodes with
the cloud has the highest processing time. However, the result of processing time was not very
encouraging; thus, more investigation will be held on the impact of the parameter of processing
time (computational demand), as a part of future work.
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Figure 5: End-to-end service time for three offloading scenarios/schemes

Figure 6: Network time for three offloading scenarios/schemes

Figure 7: Processing time for three offloading scenarios/schemes

6 Offloading Approaches in Edge-cloud Environment: state-of-the-art

Computation offloading is not a new paradigm; it is widely used in the area of Cloud Com-
puting. Offloading transfers computations from the resource-limited mobile device to resource-rich
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Cloud nodes in order to improve the execution performance of mobile applications and the
holistic power efficiency. Users devices are evenly located at the edge of the network. They could
offload computation to Edge and Cloud nodes via WLAN network or 4G/5G networks. Generally,
if a single edge node is insufficient to deal with the surging workloads, other edge nodes or
cloud nodes are ready for assisting such an application. This is a practical solution to support
IoT applications by transferring heavy computation tasks to powerful servers in the Edge-Cloud
system. Also, it is used to overcome the limitations of IoT devices in terms of computation
power (e.g., CPU and memory) and insufficient battery. It is one of the most important enabling
techniques of IoT, because it allows performing a sophisticated computational more than their
capacity [29]. Thus, the decisions of computational offloading in the context of IoT can be
summarized as follows:

• First, whether the IoT device decides to offload a computational task or not. In this
case, several factors could be considered, such as the required computational power and
transferred data.

• Second, if there is a need for offloading, does partial offloading or full offloading. Partial
offloading refers to the part of the tasks that will be processed locally at the IoT device
and other parts in the Edge-Cloud servers. Also, factors such as task dependency and task
priority can be considered in this case. Full offloading means, the whole application will be
processed remotely in the Edge-Cloud servers [30].

In terms of the objectives of computation offloading in the context of Edge Computing,
it can be classified into two categories; objectives that focus on application characteristics and
objectives that focus on Edge-Cloud resources. Several studies [7,31–33] had aim to minimize
service latency, energy consumption and mandatory cost, as well as maximize total revenue and
resource utilization. In fact, scheduling offloading tasks is a challenging issue in the Edge-Cloud
Computing paradigm, since it considers several trade-offs form application requirements (e.g.,
reduce latency) and system requirements (e.g., maximize resource utilization). Thus, developing
an efficient resource management technique, that meets the requirements of both application and
system, is an active area of research.

In the following subsections, some of the studies conducted on task offloading in Edge-Cloud
environments to reduce the latency and maximize resource utilization, are reviewed and discussed,
as illustrated in Fig. 8.

Figure 8: Classification of the topics reviewed
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6.1 Task Offloading Based on Application Characteristics
As stated in [34–36], scheduling offloaded tasks that focused on application characteristics is

considered significantly important, especially, with the increase of IoT applications. Therefore, this
subsection presents the conducted studies on task offloading, which mainly focuses on application
characteristics including (computation and communication demands, and latency-sensitivity).

• Computation and Communication Demands

There are many ongoing research projects focusing on the task computation and com-
munication demands of IoT applications. For example, Wang et al. [37] proposed an online
approximation algorithm that mainly objective to balance the load and minimizing resource
utilization in order to enhance application performance. This work considers the attributes of
computational and communications for homogenous resources, without considering the service
latency. Rodrigues et al. [24], presented a hyper method for minimizing service latency and reduce
power consumption. This method aims to reduce the communication and computational delays
by migrating the VM to an unloaded server. The authors investigate the impact of tasks com-
putational and communication demands. They evaluate their approach under realistic conditions
by mathematical modelling. However, their method does not consider the application delay con-
straints as well as the offloading to the cloud. Deng et al. [16], proposed an approximate approach
for minimizing network latency and power consumption by allocating workload between Fog and
Cloud. However, their approach does not optimize the trade-off between all mentioned objectives
(e.g., computational delay and resource utilization).

Zeng et al. [38] designed a strategy for task offloading that aims to minimize the completion
time. In their work, both computation time and transmission time are considered. Also, the
authors investigate the impact of other factors such as I/O interrupt requests and storage activities.
However, delay-constraints applications and resource heterogeneity are not considered in their
work. Fan et al. [39] designed an allocation scheme that aims to minimize service latency for IoT
applications, by taking into account both computation and communication delays. Furthermore,
the authors investigate the impact of the overloaded VM on processing time, and they evaluated
their work with different types of applications. However, the proposed method does not show the
effectiveness of the heterogeneity of the VMs in terms of service time and also does not consider
the latency-sensitive application.

• Latency Sensitivity

In terms of application latency-sensitivity, a number of studies are conducted in order to
enhance the overall service time in the Edge-Cloud environment. For instance, Mahmud et al. [34]
proposed a latency-aware policy that aims to meet the required deadlines for offloading tasks.
This approach considering task dependency as well as the computational and communication
requirements. Also, the resource utilization at the edge level is considered. However, the issue of
resource heterogeneity dose not addressed in their work. Azizi et al. [40] designed a priority-based
service placement policy that prioritizes tasks with deadlines; thus, the nearest deadlines scheduled
first. Further, their work considers both computational and communication demands. However,
their evaluation does not address the issue when the system has multi IoT devices with different
resource utilization. Sonmez et al. [27] presented an approach for task offloading that targets
latency-sensitive applications. This approach is based on fuzzy logic, which focused on delay as a
key factor along with computational and communication demands. Nevertheless, in this approach
resource heterogeneity is not considered.
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6.2 Task Offloading Based on Edge-cloud Resources
This subsection presents the literature of offloading tasks and mainly focused on resource

utilization and resource heterogeneity as main objectives.

• Resource Utilization

Scheduling offloading tasks based on resource utilization or resource heterogeneity has
received considerable critical attention from many researchers. For example, Nan et al. [41] devel-
oped an online optimization algorithm for offloading tasks that aim to minimize the cost of
renting Cloud services by utilizing resources at the edge using the Lyapunov technique. Further,
their algorithm guarantees the availability of edge resources and ensures processing the task
within the required time. Yet, this algorithm does not consider the impact of computational and
communication demands for latency-sensitive applications. Xu et al. [6] proposed a model for
resource allocation that aims to maximize resource utilization and reduce task execution latency,
as well as, reducing the dependability on the cloud in order to minimize Cloud cost. However,
this work only considers resource utilization and does not refer to resource heterogeneity. Besides,
application uploading and downloading data are not addressed in their work, which plays a sig-
nificant role in overall service time. Li and Wang [42] introduced a placement approach that aims
to reduce edge nodes’ energy consumption and maximize resource utilization. They evaluated the
proposed algorithm through applied numerical analysis based on the Shanghai Telecom dataset.
However, their work does not provide any information regarding the application characteristics
(e.g., computation, communication and delay-sensitivity).

• Resource Heterogeneity

Resource heterogeneity for the offloading decision plays a critical role to enhance the perfor-
mance of service time in the Edge-Cloud environment. Thus, a number of studies have investigated
the impact of resource heterogeneity on service time. For instance, Scoca et al. [43] proposed
a scour-based algorithm for scheduling offloading tasks that considers both computation and
communication parameters. Furthermore, their algorithm considers a heterogeneous VMs and
sorts heavy tasks to be allocated to the most powerful VM. However, their algorithm does not
consider server utilization as key parameters, which could affect the performance of service time.
Roy et al. [44] proposed a strategy for task allocation that allocates different application tasks to
an appropriate edge server by considering resource heterogeneity. This approach aims to reduce
the execution latency as well as balancing the load between edge nodes. Yet, task communication
time is not considered in this approach. Taneja et al. [45] proposed a resource-aware placement
for IoT offloading tasks. Their approach ranks the resources at the edge with their capabilities
and then assigns tasks to a suitable server based on the task’s requirements (e.g., CPU, RAM and
Bandwidth). However, this method focused on improving the performance of application service
time, but without explicitly considering application latency-sensitivity.

Ultimately, with the dynamicity of IoT workload demands, Edge-Cloud service providers
aimed to find a balance between utilizing Edge-Cloud resources efficiently and satisfying QoS
objectives of IoT applications. Consequently, designing a new task offloading mechanism can
contribute to enhancing resource utilization and supporting the latency-sensitive application
requirements in the Edge-Cloud environment.

Section 6.1 has reviewed the related work on offloading tasks that are mainly focusing on
application parameters such as computation demands, communication demands and latency-
sensitivity in Edge-Cloud environments. The presented work in [24,38,39] considered these
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application parameters in order to minimize the service time. However, these works lack to
consider the impact of resource parameters such as server utilization and VMs heterogeneity.

Table 4: Comparison of the works addressing task offloading decisions

Criteria Objective Application Characteristics
Considerations

Edge-Cloud Resources
Considerations

Evaluation
Method

By Compute Network Delay Resource
Utilization

Resource
Type

Number of
Devices

[37] Minimize
Resource
Utilization

Considered Considered Not Con-
sidered

Considered Homogeneous - Simulation

[24] Minimize
Service
Latency

Considered Considered Not Con-
sidered

Considered Homogeneous Single Mathematical

Modelling
[16] Minimize

Network
Latency

Not Con-
sidered

Considered Not Con-
sidered

Considered Homogeneous - Simulation

[43] Minimize
Service
Latency

Considered Considered Not Con-
sidered

Not Con-
sidered

Heterogenous Multi Simulation

[41] Minimize
Cost

Not Con-
sidered

Not Con-
sidered

Considered Considered Homogeneous Multi Simulation

[44] Minimize
Execution
Time

Considered Not Con-
sidered

Not Con-
sidered

Not Con-
sidered

Heterogenous Single Direct
Experi-
ment

[38] Minimize
Completion
Time

Considered Considered Not Con-
sidered

Not Con-
sidered

Homogeneous Multi Simulation

[34], [27] Minimize
Service
Latency

Considered Considered Considered Considered Homogeneous Multi Simulation

[40] Minimize
Service
Latency

Considered Considered Considered Not Con-
sidered

Homogeneous Single Simulation

[45] Minimize
Service Time
&Maximize
Resource
Utilization

Considered Considered Not Con-
sidered

Considered Heterogenous Multi Simulation

[39] Minimize
Service Time

Considered Considered Not Con-
sidered

Not Con-
sidered

Homogeneous Multi Simulation

[6] Maximize
Resource
Utilization

Considered Not Con-
sidered

Considered Considered Homogeneous - Simulation

[42] Minimize
Energy
Consumption
&Maximize
Resource
Utilization

Not Con-
sidered

Not Con-
sidered

Not Con-
sidered

Considered Homogeneous Multi Data-
Driven
Analysis

As discussed earlier in Section 6.2, the work presented in [37,43,45] considered the resource
utilization and resource heterogeneity as key parameters to schedule offloading tasks in the
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Edge-Cloud environment. While, some related works such as [16,42,44] have considered application
requirements (e.g., computation or communication) but, without explicitly considering the latency-
sensitivity of IoT applications. Hence, there is still a need for an efficient resource management
technique that takes into account the application characteristics (competition, communication
and latency), as well as resource parameters (resource utilization and heterogeneity) in order to
meet the requirements of IoT applications (service time and task offloading) and utilize Edge-
Cloud resources efficiently. Tab. 4 provides a comparison summary of the closely related work
on offloading tasks that consider both application and resource parameters in the Edge-Cloud
environment.

7 Conclusion and Future Work

This paper has presented an Edge-Cloud system architecture that supports scheduling offload-
ing tasks of IoT application, as well as the explanation of the required components and their
interactions within the system architecture. Furthermore, it has presented the offloading latency
models that consider computation and communication as key parameters with respect to offload-
ing to the local edge node, other edge nodes or the cloud. This paper has concluded by discussing
a number of simulation experiments conducted on EdgeCloudSim to investigate and evaluate the
latency models of three different offloading scenarios/schemes, followed by a comprehensive review
of the current state-of-the-art research on task offloading issues in the Edge-Cloud environment.

As a part of future work, we intend to extend our approach by adopting the fuzzy logic
algorithm which considers application characteristics (e.g., CPU demand, network demand and
delay sensitivity) as well as resource utilization and resource heterogeneity in order to minimize
the overall time of latency-sensitive applications.
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