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Abstract: Malaria is a severe illness triggered by parasites that spreads via
mosquito bites. In underdeveloped nations, malaria is one of the top causes of
mortality, and it is mainly diagnosed through microscopy. Computer-assisted
malaria diagnosis is difficult owing to the fine-grained differences throughout
the presentation of some uninfected and infected groups. Therefore, in this
study, we present a new idea based on the ensemble quantum-classical frame-
work for malaria classification. The methods comprise three core steps: local-
ization, segmentation, and classification. In the first core step, an improved
FRCNN model is proposed for the localization of the infected malaria cells.
Then, the RGB localized images were converted into YCbCr channels to
normalize the image intensity values. Subsequently, the actual lesion region
was segmented using a histogram-based color thresholding approach. The
segmented images were employed for classification in two different ways. In
the first method, a CNN model is developed by the selection of optimum
layers after extensive experimentation, and the final computed feature vector
is passed to the softmax layer for classification of the infection/non-infection
of themicroscopicmalaria images. Second, a quantum-convolutionalmodel is
employed for informative feature extraction frommicroscopic malaria images,
and the extracted feature vectors are supplied to the softmax layer for classifi-
cation. Finally, classification results were analyzed from two different models
and concluded that the quantum-convolutional model achieved maximum
accuracy as compared to CNN. The proposed models attain a precision rate
greater than 90%, thereby proving that these models performed better than the
existing models.
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1 Introduction

Malaria is a bodily fluid infection transmitted by female Anopheles mosquito bites that spread
parasitized malaria parasites into the human body [1]. Information regarding malaria from the
World Health Organization (WHO) is a global platform that signifies that approximately half of
the global population suffers from this infectious disease [2]. Approximately 200 million malaria
outbreaks have resulted in 29,000 deaths annually, as per the World Health Report [3]. While
spending is steady as of 2021, there is no decline in the case of malaria. In 2016, US$ 2.7 billion
were spent by the governments of malaria-endemic countries and foreign countries to monitor
malaria [4]. To minimize the prevalence of malaria, the government plans to spend US$ 6.4 billion
annually by 2020 [5]. The density and thinness, including its blood smear images, are usually
analyzed by microscopists, and blood smears are checked with 100× expanded images according
to WHO classification [6]. Early diagnosis tests and therapy are sufficient to avoid the severity
of malaria. Owing to the lack of information and analysis by epidemiologists, the health risks
associated with the treatment of malaria have not yet been resolved [7]. To monitor deaths caused
by malaria, early evaluation of malaria is needed [8,9]. The numbers showed that there was
inadequate medical care for more febrile infants [10]. Computerized methods have been widely
utilized for malaria detection [11–13]. Although much work has been performed with regard to
malaria detection, there is still a gap in this domain due to several factors of microscopic malaria
images such as poor contrast, larger variations, variable shape, and sizes that minimize the precise
detection rate [14,15]. As a result, a novel concept for segmenting and classifying malaria parasites
is provided in this research article. The contributing steps of the proposed architecture are defined
as follows.

• An improved FRCNN model was designed and trained on the tuned parameters for more
precise localization of malaria lesions.

• RGB images are translated into YCbCr color space after localization, and the appropriate
area is segmented using histogram-based thresholding.

• The classification is performed on the segmented images by performing a complex feature
analysis using deep CNN and a quantum-convolutional model.

The organization of this article is: Section II discusses related work, Section III defines
suggested methodology phases, and Section IV discusses the obtained findings.

2 Related Work

While therapies for malaria are effective, early diagnosis and intervention are necessary for
good recovery. Therefore, disease identification is critical [16]. Sadly, even if they can be acute,
malarial symptoms are not distinct [17]. A blood examination accompanied by an analysis of
samples by a pathologist is critical [18]. Artificial intelligence assisting a pathologist in this
diagnosis is a game changer for clinicians in terms of time savings [19]. In recent decades,
many studies have been undertaken using statistical algorithms to offer premium solutions to
promote interoperable health services for disease prevention [20]. As it is least expensive or can
classify all species of malaria, the manual process for malaria diagnosis is commonly used. This
technique is widely utilized for detecting malaria severity, evaluating malaria medication, and
recognizing a certain parasite left after treatment. Two types of blood images were designed for
biological blood testing: dense smears and thinner smears [21]. Coated with a thin smear, a thick
smear can detect malaria more quickly and precisely [22]. Microscopy, in addition to having all
these advantages, has a major disadvantage of intensive preparation, and the correctness of the
outcome depends solely on the microscopist’s abilities. Other malaria extraction techniques such
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as polymerase chain reaction, microarrays, fast diagnostic testing, quantifiable blood cells, and
antibody immunofluorescent (IFA) testing exist [23,24]. In almost every automatic malaria medical
diagnosis, some primary processing phases have been completed. To eliminate noise and objects
from images, the first phase is to obtain blood cell images, preceded through preprocessing in the
second phase. Later features are computed on preprocessed images and transferred to classifiers
for the classification of infectious/non-infectious blood images [25]. The mean filter was applied
for noise reduction, and blood cells were segmented using histogram thresholding [26]. The LBP
features were extracted and transferred to an SVM for malaria classification [27]. Hung et al.
proposed a deep learning system for parasite malaria detection [28]. Faster R-CNN was used
for identification and classification, followed by the AlexNet model for better classification. Deep
learning has been utilized in malaria detection, as suggested in [29–32], which utilized morpholog-
ical approaches to distinguish between infected and uninfected microscopic malaria photographs.
Based on the features of texture and morphological structure, an SVM was utilized to classify
infected/uninfected cells of malaria [33]. Das et al. [34] used a mean geometric filter to process and
analyze images with light correction and noise reduction. Considerable work has been conducted
in the literature for the analysis of malaria parasite; but still a gap for more accurate classification.
Hence, we herein present a modified approach for malaria parasite classification into related class
labels such as infected and uninfected classes based on convolutional and quantum-convolutional
models [35–50].

3 Structure of the Proposed Framework

The proposed model comprises three core steps: localization, segmentation, and classification.
In the first core step, actual lesion images are localized using the FRCNN [51] model and localized
images are then supplied to the segmentation phase, where original malaria images are converted
into the YCbCr [52] color space and histogram-based thresholding is employed for the segmen-
tation of the malaria lesions. The segmented malaria images were supplied for classification. In
the classification phase, feature analysis is conducted on the segmented region in two distinct
ways: first, deep features are obtained through the proposed seven-layer CNN model with softmax;
second, complex features are analyzed using an improved quantum-convolutional model with a
2-bit quantum circuit with softmax to classify the input images. The major structured model of
the proposed steps is shown in Fig. 1.

In the proposed model, segmented malaria images are transferred to the improved frame-
work of the pretrained Resnet-34 and quantum variational models. resnet-34 [53] contains four
blocks: 17 convolutional, 17 ReLU, 36 batch-norm, 01 pooling, 01 adaptive pool, and pre- and
post-networks. Feature analysis is conducted using an average pool layer. The length of the
extracted feature vector 1 × 1000 is supplied to the quantum variational circuits for model
training/validation.

3.1 Localization of the Actual Malaria Lesions
Detection is the task of finding and labeling parts of an image [54–59]. R-CNN (regions

of artificial networks) is a computer vision technique that combines rectangular region proposals
with the features of artificial neural networks. The R-CNN method computes a two-step detection
process. The first phase identifies a subset of image regions where an object can be obtained. The
R-CNN applications of object detectors include face recognition and surveillance smart systems.
R-CNNs can be divided into three types. Each variant aims to improve the efficiency, speed,
and effectiveness of other procedures. Using a technique including Edge Boxes [60], the R-CNN
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detector [61] produces area proposals first. The picture was cropped and resized to include only
the proposal areas. The R-CNN [62], for example, produces area proposals that use an algorithm
similar to Edge Boxes. FRCNN pools features of the CNN corresponding to each feature map,
while an R-CNN detector. FRCNN is more effective than R-CNN because computations for
adjacent pixels are distributed throughout the FRCNN. Compared to external technique edge
boxes, FRCNN provides a regional proposal network (RPN) to create proposal regions located
inside the network. RPN utilizes anchor boxes for the detection of objects that generate proposal
regions in a network that are better and faster to tune the input data. Therefore, in this study,
a modified FRCNN model is designed for localization of the infected regions of malaria, which
comprises 11 layers, including 01 original malaria images, 02 2D-convolutional, 03 ReLU, 01
2D-pooling, 02 fully connected, 01 softmax, and final output classification layers. The improved
FRCNN model is shown in Fig. 2.

Phase1: Localization and Segmentation of the Malaria Parasite

Phase1I: Classification Using Convolutional Neural Network (CNN) Model

Phase1I: Classification Using Quantum- Convolutional Model

Conv2dPoolingConv2dConv2dFlattenDense

Softmax

Pre-trained ResNet-342-Bit Quantum Circuit

Original Image FRCNN 3D-Segmentation Binary-Segmentation

Drop-outDense

Figure 1: Proposed design of the malaria detection

FRCNN Model for Localization

Convolutional ReLU Convolutional ReLU
ReLU

Pooling

Fully-Connected Fully-ConnectedSoftmax
Final Output

Input Malaria

Localization

Figure 2: Proposed FRCNN model for localization
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The model is trained on tuned parameters such as the Adam optimizer solver, 16 mini-batch
size, and 100 training epochs. The research is conducted on a model trained on the parameters
given in Tab. 1.

Table 1: Selected parameters for localization model training

Solver Adam

Initial Rate of Learning 1e-6
Size of batch 16
Epochs 100

The FRCNN is trained on tuned parameters such as the Adam solver, 16 batch sizes, and
100 training epochs.

3.2 Malaria Parasite Images Segmentation Using Histogram
The RGB original malaria images are transformed into YCbCr color space, where Y denotes

the luminance channel and CbCr represents the blue and red color channels. The mathematical
representation of the selected color space is shown in (1).

Y′ =Kred.Red
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′
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1
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1
2
.
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The conversion of RGB images into the YCbCr color space is shown in Fig. 1. The real
infected area of the malaria parasite is segmented using histogram-based color thresholding, as
shown in Figs. 3 and 4.

Figure 3: Segmentation results (a) original malaria images (b) YCbCr color space (c) binary
segmentation (d) 3d-segmentation (e) histogram
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Figure 4: Segmentated malaria cells (a) input malaria cells (b) 3d-segmented lesions (c) binary
lesions

3.3 Malaria Classification
The discrimination among the malaria cells into two classes is performed using two proposed

models trained from scratch—convolutional model and quantum-convolutional model.

3.3.1 Classification Using Improved Quantum-Convolutional Model
The proposed model comprises five blocks of the pretrained resnet34 model and two layers

of the dress-quantum network as shown in Tab. 2.

The proposed quantum-convolutional model is trained on 2-qubit quantum circuit with
selected parameters, which are explained in Tab. 3.

3.3.2 Classification of the Malaria Cells Using Convolutional Neural Network
The segmented lesion images are classified into associated classes, and a new CNN model

is developed that comprises seven layers—two convolutional 2D layers, two dense with ReLU
activation and softmax layers, two maxpooling layers, and one flattened layers. A detailed model
description is given in Tab. 4.
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Table 2: Proposed quantum-convolutional model

Pre-trained ResNet-34 Dressed Quantum Network

Conv
Filter size: [64]
Kernel size: [77, 33, 11]

No of layers

17

Pre-net:
[Features In:512
Features Out:24]
Post-net
[Features In:24
Features Out:2]

Batch-normalization
Filter size: [64, 128, 256]
Epsilon: 1e-05
Momentum: 1 36

–

Max-pooling
Kernel size: [33]
Stride:2
Padding:1
Dilation: 01 01

–

Average adaptive pool layer
Size of the Output: [1, 1] 01

–

ReLU: [In-place] 17 –

Table 3: Learning parameters of the quantum-convolutional model

Quantum bits 2
Learning rate 0.0003
Size of mini-batch 14
Total epochs 100
Learning gamma schedular 0.1
Quantum delta 0.01
Seed number 4

Table 4: Layered architecture of the proposed CNN model

Model: Sequential Convolutional Neural Network

Type of the layer Shape of the output Parameters

Conv2D (None, 126, 126, 32) 896
Maxpooling (None, 63, 63, 32) 0
Conv2D (None, 61, 61, 32) 18496
Maxpooling (None, 30, 30, 64) 0
Flatten (None, 57600) 0
Dense (with ReLU activation) (None, 128) 7372928
Dense (with Softmax activation) (None, 02) 258
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As seen in Tab. 5, the system framework is trained using the following measures:

Table 5: Learning parameters of the proposed CNN model

Epochs Batch-size Optimizer

500 20 Adam

Tab. 5 shows the parameters of the proposed CNN model, where 500 epochs, 20 batch
size, and Adam optimizer solver are utilized for malaria classification. Tab. 5 shows the learning
parameters of the model that provide significant improvements in model training, ultimately
increasing the testing accuracy.

4 Benchmark Dataset

The malaria benchmark dataset contains two classe [63]. The description of the dataset is pre-
sented in Tab. 6. The proposed model was trained on five-, ten-, and fifteen-fold cross-validation
for malaria classification.

Table 6: Malaria images for classification

Number of images Infected/uninfected

Training 13779
Testing 13779

4.1 Experimentation
In this study, three experiments were implemented for malaria cell classification in terms of

metrics such as precision, sensitivity, and specificity. In the first experiment, the input malaria
images were localized using the improved FRCNN model. In the second experiment, the localized
images were segmented and transferred to the proposed CNN model. Similarly, in the third
experiment, classification was performed using the quantum-convolutional model.

4.2 Experiment#1 Localization of Malaria Images Using Improved FRCNNModel
The performance of the localization model is computed in a variety of measures such as

precision and IoU, as given in Tab. 7. The localization outcomes with the predicted scores are
shown in Fig. 5.

Table 7: Localization outcomes

IoU Precision

0.98 0.96

Tab. 7 shows the localization results, where the method achieved 0.98 IoU and 0.96 precision
scores.
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Figure 5: Localization outcomes (a) (c) localized malaria region (b) (d) predicted malaria scores

4.3 Experiment#1: Classification of Malaria Images Using the Proposed CNNModel
In this experiment, classification was performed on segmented images using the CNN model.

The proposed model is trained on different numbers of training and testing images, such as 0.5
and 0.7 cross-validation as shown in Fig. 6. The quantitative results are presented in Tab. 8.

Figure 6: Training and validation accuracy with loss rate (a) accuracy (b) loss rate
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The results in Tab. 8 show that the proposed techniques attained 0.9846, 0.9751, 0.9728,
0.9859, 0.0249, 0.0272, 0.0154, 0.9796, 0.9787, 0.9592 scores for Sey, Spy, Pry, Npv, Fpr, Fdr,
Fnr, AcY, F1e, and CCM, respectively. The classification outcomes for the 0.7 cross-validation are
stated in Tab. 9.

Table 8: Classification results on 0.5 hold validation using proposed CNN model

Measurement Quantitative assessment

Sensitivity (Sey) 0.9846
Specificity (Spy) 0.9751
Precision (Pry) 0.9728
Negative Predictive Value (Npv) 0.9859
False Rate of Positive (Fpr) 0.0249
False Discovery Rate (Fdr) 0.0272
False Rate of Negative (Fnr) 0.0154
Accuracy (AcY) 0.9796
F1-score (F1e) 0.9787
Correlation Coefficient of Matthews (CCM) 0.9592

Table 9: Infected and uninfected cells classification on 0.7 separately criteria using proposed CNN
model

Measurement Quantitative assessment

Sey 0.9890
Spy 0.9879
Pry 0.9868
Npv 0.9899
Fpr 0.0121
Fdr 0.0132
Fnr 0.0110
AcY 0.9884
F1e 0.9879
CCM 0.9768

The AcY achieved on the 0.7 cross-validation is 0.9884 and 0.0121 Fpr. The proposed model
achieved 0.980 accuracy on 0.5 and 0.985 accuracy on 0.7 separability criteria of the training and
testing images.

4.4 Experiment#2: Classification Outcomes Using the Quantum-Convolutional Model
The efficiency of the classification model was calculated using a variety of performance

metrics. The accuracy and loss rate of the training with respect to validation are graphically shown
in Fig. 7. A numerical assessment of the outcomes is presented in Tab. 10.
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Figure 7: Training accuracy with loss rate on quantum-convolutional model (a) accuracy of
validation (b) loss rate of the validation

Table 10: Quantitative outcomes using quantum-convolutional model

Measurement Quantitative assessment on 0.5 Quantitative assessment on 0.7
hold-out validation hold-out validation

Sey 0.9933 1.00
Spy 0.9949 1.00
Pry 0.9944 1.00
Npv 0.9939 1.00
Fpr 0.0051 0.00
Fdr 0.0056 0.00
Fnr 0.0067 0.00
AcY 0.9942 1.00
F1e 0.9939 1.00
CCM 0.9883 1.00

The model achieved 0.9942 AcY and 0.9883 CCM on a 0.5 hold validation. The classification
results for the 0.7 hold validation are listed in Tab. 10.

The results in Tab. 10 show that the method achieved a 1.00 score. Finally, the compu-
tation results show that the quantum-convolutional model achieved a better outcome than the
convolutional model. A comparison is presented in Tab. 11.

The proposed technique outcomes are compared to existing works such as [64–67]. The
capsule network has been utilized for discrimination among infected/uninfected cells of malaria
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with 96.9% accuracy [67]. However, the proposed quantum-convolutional model achieved 100%
accuracy.

Table 11: Proposed results comparison

Ref Year Outcomes (%)

[64] 2021 94.68
[65] 2021 95
[66] 2021 97.98
[67] 2020 96.9
Proposed model 100

The method was utilized for feature extraction with a classifier for malaria classification.
However, in this study, the classification of malaria cells was computed using a variety of
measures.

5 Conclusion

Parasite malaria detection is a great challenge because malaria cells are noisy and exhibit
large variations in shape and size. Therefore, this study investigated an improved framework for
detection and classification. Malaria parasite cells were localized using an improved FRCNN
model. The improved FRCNN model achieved a 0.96 precision score. Later, localized cells are
segmented using a histogram-based thresholding approach and transferred to a two-classification
model such as CNN and quantum-convolutional model. The proposed CNN model achieved an
accuracy of 0.98 on 0.7 hold and 0.97 on 0.5 hold validation, whereas the quantum-convolutional
model obtained 0.99 and 1.00 accuracy on 0.5 and 0.7 hold validation strategy, respectively.
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