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Abstract: From fraud detection to speech recognition, including price predic-
tion, Machine Learning (ML) applications are manifold and can significantly
improve different areas. Nevertheless, machine learning models are vulnerable
and are exposed to different security and privacy attacks. Hence, these issues
should be addressed while using ML models to preserve the security and
privacy of the data used. There is a need to secure ML models, especially
in the training phase to preserve the privacy of the training datasets and
to minimise the information leakage. In this paper, we present an overview
of ML threats and vulnerabilities, and we highlight current progress in the
research works proposing defence techniques against ML security and privacy
attacks. The relevant background for the different attacks occurring in both
the training and testing/inferring phases is introduced before presenting a
detailed overview of Membership Inference Attacks (MIA) and the related
countermeasures. In this paper, we introduce a countermeasure against mem-
bership inference attacks (MIA) on Conventional Neural Networks (CNN)
based on dropout and L2 regularization. Through experimental analysis, we
demonstrate that this defence technique can mitigate the risks of MIA attacks
while ensuring an acceptable accuracy of the model. Indeed, using CNN
model training on two datasets CIFAR-10 and CIFAR-100, we empirically
verify the ability of our defence strategy to decrease the impact of MIA on
our model and we compare results of five different classifiers. Moreover, we
present a solution to achieve a trade-off between the performance of the model
and the mitigation of MIA attack.
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1 Introduction

Artificial intelligence and machine learning (ML) make the headlines not only in scientific
journals but also in our daily life, an upscale debate on its advances and evolution is highlighted.
ML makes it possible, through algorithms, to analyse large amounts of data and provide answers
to challenging problems. The importance of ML technology has been recognized by companies
across a number of industries that deal with huge volumes of data. ML is used in several domains
such as financial services, marketing and sales, government, healthcare, transport, Internet of
Things and smart manufacturing [1,2]. Indeed, with the help of machine learning models, compa-
nies in the financial sector, for example, can predict changes in the market and even able to prevent
any occurrence of financial fraud. ML technology can be also used to analyse the purchase
history of customers to generate personalised recommendations for their next purchase. ML is
also becoming a trend in healthcare thanks to the evolution of wearable sensors and devices to
collect data from patients in real time [1]. It also empowers experts by tools that help providing
better diagnostics and treatments proposal.

Despite their wide applications, ML models present various security and privacy issues.
Research works have identified different attacks to leak the privacy of the data used in the models,
to inject false, or to impact the output of the model. Attacks on ML can be classified according
to whether they occur during training or testing/inferring stage [3]. Most known attacks against
ML models are poisoning, evasion, impersonate, inversion and inference attacks [4—8]. Poisoning
attacks consist on injecting adversarial samples to the training data in order to alter the model
prediction. Evasion attacks occur when a conflicting sample is injected in the network to impact
the accuracy of the classifier. This injected malicious sample is a carefully disrupted input that
looks and feels exactly the same to a human as its unaltered copy. Impersonate attack is a form
of fraud in which adversary imitates data samples from victims to pass as trusted person to dupe
the model. Inversion attacks try to infer some features about a hidden model input by looking at
the model output. Inference attacks target a model to determine whether a data sample was used
in the training data set by only looking at the output.

Malicious adversaries increasingly run attacks on ML models to execute automated large-scale
inference attacks [5]. An inference attack is an attack based on extracting and discovering patterns
by analysing output data in order to illegitimately gain knowledge about the training dataset. It is
a type of attack in which user sensitive information is inferred by the data disclosed by the user
and used to train the model.

In this paper, we focus on executing membership inference attacks (MIA) and we propose an
efficient mitigation technique to reduce the impact of these attacks. For instance, MIA seek to
infer whether a data sample was included in the training datasets used to train the model. These
attacks can be successful due to the fact that private data are statistically correlated with public
data, and ML classifiers can capture such statistical correlations. Knowing that a data sample was
used to train a model can lead to a privacy breach. For instance, in medical use cases, inferring
that a patient record was used to train a ML model that is designed to predict the existence of a
disease and its causes or to propose a suitable medication, can reveal that this patient is suffering
from this disease.

The purpose of this research is to study the different vulnerabilities of ML models and
to propose techniques to improve the security and privacy of such models especially against
membership inference attacks (MIA).
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Contributions: In this paper, we design a solution to protect the datasets used to train a
machine learning model, against membership inference attacks. The proposed solution aims to
train machine learning models while ensuring membership privacy. By using this countermeasure,
adversaries should not be able to distinguish between the prediction of the model on its training
dataset and other data samples which are not used on the training dataset. Our solution aims to
achieve membership privacy while ensuring an acceptable level of accuracy of the model.

Various research works have identified overfitting as the main cause leading to a successful
membership inference attack [8,9]. Overfitting occurs when the model is overtrained on the train-
ing component of the dataset, such that when the model encounters different data, it gives worse
results than expected. Therefore, the proposed solution is developed based on the combination of
dropout and regularization techniques to avoid overfitting.

In this paper, we first implement and test Membership Inference Attacks on Conventional
Neural Networks (CNN) model. Afterwards, we have tested our proposed defence technique to
show its effectiveness in improving the security of the model against MIA attacks. We show that
we have enforced the security of ML models by decreasing the model overfitting and we evaluated
the effectiveness of using L2 regularization and dropout as defence techniques to mitigate the
overfitting of the model which is the main cause of the leakage of information related to the
training dataset. We have tested our solution using CNN model trained on two datasets CIFAR-10
and CIFAR-100. Our evaluation showed that our defence technique is able to reduce the privacy
leakage and mitigate the impact of the membership inference attacks. However, experimental
results showed that the accuracy of the target model has been decreased when the privacy of the
data is achieved. Therefore, we have proposed a trade-off between the privacy preservation of the
model and its performance.

The paper is structured as follows. In Section 2, we briefly introduce the background of
machine learning. In Section 3, we review different attacks on ML, before detailing membership
inference attacks in Section 4. Next, we present state-of-the-art defence techniques against different
attacks on ML models in Section 5. The experimental setup and results are reported in Section 6.
In Section 7, we review related works before concluding in Section 8.

2 Machine Learning Background

ML techniques are usually divided into three classes, characterized by the nature of the data
available for analysis: supervised learning, unsupervised learning and reinforcement learning.

2.1 Supervised Learning

This is the most recurrent type, it provides learning algorithms with a training set in the
form of (X, Y) with X the predictor variables, and Y the result of the observation. Based on the
training set, the algorithm will find a mathematical function that transforms (at best) X into Y.

We can divide supervised learning into two categories:

e Classification: this type of algorithms is used to predict a discrete variable, the output
variable is a category, for example gender (male or female). For example, using a dataset of
human being photos, each photo is labelled as male or female. At this point the algorithm
has to classify the new images into one of these two categories. Some examples of these
algorithms are Naive Bayes (NB), Support Vector Machines (SVM) and Logistic Regression
(LR).
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e Regression: this supervised learning category is used for continuous data. The output vari-
able is a specific value. For instance, it can be used in predicting the price of a house given
input criteria such as the area, location, and number of rooms. Examples of regression
problems include Linear Regression (LR), Nonlinear Support Vector Machine (SVR) and
Bayesian Linear Regression (BLR).

2.2 Unsupervised Learning

In this type, the algorithm takes as input unlabelled data. The algorithm should find possible
correlation between given data. In short, there is no complete and clean dataset used as input,
unsupervised learning is a self-organized type of learning. This approach is called feature learning.
For example, by having the purchasing data of Internet users in an e-commerce site, the clustering
algorithm will find the products that sell best together. Unsupervised learning models include
K-means, DBSACAN and C-means clustering. There are two types of unsupervised learning,
clustering where the purpose is to discover clusters in the data, and association which aims is to
identify the rules that will define large groups of data.

2.3 Reinforcement Learning

In reinforcement learning, the model interacts with a dynamic environment in which it must
achieve a certain goal, for example driving a vehicle or facing an adversary in a game. The
apprentice program receives feedback in the form of “rewards” and “punishment” while navigating
the space of the problem and learning to identify the most effective behaviour in the context.
This ML method is used in particular for training the models on which autonomous vehicles are
based. These models can be trained in a virtual environment such as a car simulation, in order
to teach them to respect the Highway Code.

Tab. 1 presents a synthesis of the differences between ML classes based on various criteria
such as definition, type of data, type of problems, examples of algorithms and the target. The
research conducted in this paper focuses on supervised learning.

Table 1: Comparison of different classes of Machine Learning

Criteria Supervised learning Unsupervised learning Reinforcement learning
Definition Learns by using Trained using unlabelled Works on interacting with
labelled data data without any control to  the environment
find correlation between data
Type of data  Labelled data Unlabelled data No-predefined data
Type of Regression and Association and clustering Exploitation or exploration
problems classification
Examples of LR, LR, SVM, K-means, C-means, Q-learning, SARSA
algorithms KNN. DBSCAN.
Target Calculate Discover underlying patterns Learn a series of action
outcomes

ML follows a cyclic life-cycle process. The life cycle’s main aim is to find a solution to
the studied problem, it includes seven important steps: data gathering, data preparation, data
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wrangling, data analysis, model training, model testing, and model deployment [8]. These life-cycle
steps can be grouped in two phases: training and testing/inferring phase.

3 Security and Privacy Attacks on Machine Learning Models

Different classifications of attacks on ML have been introduced in the literature. Based on
the technical level, attacks can occur on two different stages: during training or testing/inferring
stage [3]. Chen et al. [7] classify attacks according to knowledge restriction. Indeed, adversaries
may have different restrictions in terms of the information about a target system, i.e., Black-box
and White-Box. In Black-box attack model, the adversary can only send a request to the system
and obtains a simple result, he does not know any information about the training set or the
model. However, in White-box system everything is known such as weights and data on which
this network was trained.

Yeom et al. [9] classify the attacks as being either Causative or Exploratory. Causative attacks
affect the training data. However, exploratory attacks strike the model at test time.

Another attacks classification can be done according to the real target of the attacker, which
can involve espionage, sabotage and fraud. Attacks on ML cover evasion, poisoning, trojaning,
backdooring, reprogramming, and inference attacks [10]. Tab. 2 presents classification of attacks
depending on the stage of ML and the goal of the attacker.

Table 2: Categories of attacks on ML models

Stage Espionage Sabotage Fraud
Training Inference by Poisoning Poisoning
poisoning Trojaning
Backdooring
Testing  Inference attacks  Adversarial reprogramming Evasion (False positive evasion)

Evasion (False negative evasion)

Liu et al. [3] range machine learning security issues according to two criteria depending on
whether the attack has been conducted in the training or testing/inferring phases. The authors
present a summary of different security threats on ML:

e Poisoning attack: is a type of causative attack aiming to impact the model availability and
integrity by injecting malicious data samples to the training data set which distorts the
model predictions.

e Evasion attack: in this attack, samples are changed at the inferring phase to evade detection.

e Impersonate attack: this attack consists in imitating data samples from victims. This attack
occurs in use case applications involving image and text recognition.

e Inversion attack: this attack aims to gain knowledge about a hidden model input by looking
at the model output.

3.1 Poisoning Attack

Poisoning attack is a security threat occurring during the training phase. Papernot et al. [11]
define poisoning attacks as an injection of false data in the training dataset by the adversary.
In order to do this, the adversary extracts and injects some data to reduce the precision of the
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classification. This attack has the potential to totally distort the classification mechanism during
its training so that the attacker can in some way define the classification of the system. The
magnitude of the classification error depends on the information that the attacker has chosen to
poison the training data.

3.2 Evasion Attack

Evasion may be the most frequent attack on machine learning models performed during
production. According to Polyakov [5], evasion attack aims at designing an input that appears
normal for a person but is wrongly classified by ML models. A common example is to vary
some pixels in the image before uploading, where the image recognition system fails to classify
the result.

3.3 Impersonate Attack

Polyakov [5] define the impersonate attack as the fact of imitating data samples, particularly
in application scenarios of image recognition, malware detection, and intrusion detection. Specif-
ically, the goal of such attack is to obtain specific conflicting samples so that machine learning
models outputs a wrong classification of the samples with different labels than those borrowed.

3.4 Inversion Attack

Liu et al. [3] define an inversion attack as an attack aiming at gathering basic information
about a target system model. This basic information will be then used in a reverse analysis that
target revealing the model data input such as images, medical records, purchase patterns, etc.

3.5 Inference Attack

An inference attack is an attack based on extracting and discovering patterns by analysing
output data in order to illegitimately gain knowledge about the training dataset [12]. It is a type
of attack in which user sensitive information is inferred by the data disclosed by the user and
used to train the model.

4 Membership Inference Attack

Membership Inference Attacks (MIA) are detailed according to definitions introduced differ-
ent research works presented in the literature [10,11,13-15].

Membership Inference Attacks (MIA) were presented at the first time by Shokri et al. in
2017 [8]. MIA consists of quantifying how much information a machine learning model leaks
about its training data, which could contain personal and sensitive information. The proposed
mechanism examines the predictions made by machine learning model to determine whether a
particular data record was used in its training set [8]. The susceptibility to this form of attack
stems from the tendency for models to respond differently to inputs that were part of the
training dataset. This behaviour gets worse when models are over-adapted to the training data.
An overfitted model learns external noise that is only present in the training dataset. When this
occurs, the model makes very good predictions about training data records, while records from
outside of the data collection can generate poorer predictions. These predictions from training set
and non-training set data records generate two distributions that are learned by the attack model.

The lifecycle of the membership inference attack from training to testing is summarized in
the following steps presented on Fig. 1.
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Figure 1: The lifecycle of membership inference attack

The key concept about MIA attack is to use several ML models where each model is used
for a prediction class. These attacks that are called attack models facilitate inferring membership
over the output of the model. In their proposal, Shokri et al. [§] used a black-box model where
different shadow models are constructed to imitate the target model behaviour and to enable
extracting the required features.

In their paper, Shokri et al. [8] first developed a shadow training technique to create the attack
models. Second, the authors construct several “shadow models” that mimic the target model’s
actions, where the training datasets are known which means that the membership is also known.
Afterwards, the attack is trained on the shadow models inputs and outputs. Shokri et al. [8]
utilises three different methods to generate training data for the shadow models. These methods
are defined as follows:

e Model-based synthesis: this method relies on using black-box to access target model.

e Statistic-based synthesis: the adversary can know some statistical information about the
training data used in the target model.

e Noisy real data: the adversary can access some noisy data that are similar to the training
data used in the target model.

Shokri et al. [8] presented the issue of deducing correlation between the model output and
the training data set as a binary classification. However, Salem et al. [13] relied on three different
types of attacks based on the shadow models design and the used training datasets. These attacks
are defined as follows:

e The first attack relies on using datasets coming from a similar distribution to the training
data used in the target model. This attack also relies on using only one shadow model to
reduce the MIA execution cost.

e The second attack relies on using data different from the training data used in the target
model. In this attack, the structure of the target model is not known to the attacker.
The use of the shadow model facilitates capturing the membership of data samples in the
training dataset without imitating the target model.
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e The third attack does not rely on using shadow models. Instead it exploits the target model
outcomes when querying it with target data points.

Salem et al. [13] applied statistical methods, such as maximum and entropy, on the target
model’s outputs to differentiate member and non-member data points.

More recently, Nasr et al. [14] proposed membership inference attacks against white-box ML
models. For a data sample, they calculate the corresponding gradients over the white-box target
classifier’s parameters and use these gradients as the data sample’s feature for membership infer-
ence. While most of the previous works concentrated on classification models, Hayes et al. [15]
studied membership inference against generative models, in particular generative adversarial net-
works (GANSs). They designed attacks for both white and black-box settings. Their results showed
that generative models are also vulnerable to membership inference. Tab. 3 details different MIA
attack models.

Table 3: Summary of membership inference attacks

Shokri et al. [§] Salem et al. [13] Nasr et al. [14] Hayes et al. [15]

» Uses various » Uses one shadow » Uses one shadow  « Uses one shadow

shadow models. model: attack 1 et 2, model. model

* Attacks a black * No shadow model + Attacks a white * Designed attacks for

box target classifier. used in attack 3. box target classifier. both white and black
 Attacks a black box box target models.
target classifier * Membership inference

against GANS.

5 Countermeasures Against Attacks on ML

Although there are a variety of security threats to ML models, one can note a lack of
research works that shed light on the issues of security for ML models. Basically, most of the
existing robustness indicators are a quantitative evaluation of the ML algorithms’ performance
rather than an evaluation of the security level. Indeed, security is important in ML systems
because they often include confidential information, i.e., the data that will be used and/or the ML
model itself. In this section, we discuss research works that focus on ML security and privacy
attacks countermeasures.

According to the survey introduced by Xue et al. [16] we can classify the countermeasures
into two classes: those who secure the model in the training phase such as principal component
analysis PCA-based or Data sanitization and the ones that mitigate the vulnerability of ML
models at the testing or the inferring phase. Homomorphic encryption and differential privacy
are two effective solutions to upgrade the data security and privacy of the data used in machine
learning models.

Different defence techniques can be established against machine learning attacks. Indeed,
Liu et al. [3] group defence techniques against security and privacy issues in machine learning
into four categories: security assessment mechanisms, countermeasures in the training phase,
countermeasures in the testing or inferring phase, and data security and privacy. However, Qiu
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et al. [17] identified various adversarial defence methods which can be divided into three main
groups: modifying data, modifying models and using auxiliary tools.

Salem et al. [13] propose two defence mechanisms to prevent overfitting which is, according to
the authors, the main cause of membership inference attacks. These mechanisms are: dropout [18]
and model stacking. An overfitting model is a model that cannot be generalized from the training
data to unseen data. This is due to learning the noise instead of the signal, it is considered
“overfit” because it fits the training dataset but has poor fit with new datasets. A general defence
strategy, approved by Yeom et al. [19], is to prevent overfitting using regularization which is a
technique that forces the model to be simple. Lomnitz et al. [20] recommend the use of L1
and L2 regularization for the adversarial regularization. Normalization and Dropout can be used
as countermeasure, according to Hayes et al. [15]. Likewise, two sets of defence strategies are
proposed by Nasr et al. [14]. The first includes simple mitigation techniques, such as restricting
the predictions of the model to top-k classes, therefore reducing the precision of predictions, or
regularizing the model (e.g., using L2-norm regularizers).

The Differential Privacy (DP) mechanisms are used for the second major set of protection
against ML security and privacy issues. These two approaches deal with protecting machine learn-
ing models against black-box membership inference attacks. The authors present their contribution
which is the min-max privacy game.

In the next section, we outline techniques that avoid attacks against ML models in the training
and in the testing/inferring phase. Defence techniques in the testing/inferring phase mainly focus
on the improvement of learning algorithms’ robustness. However, those that deal with the attacks
of the training phase, are concerned with eliminating the poisoning data.

5.1 Defence Techniques Against Attacks in the Training Phase

Lomnitz et al. [20] found that at training level, maintaining the reliability of training data
and improving the robustness of learning algorithms are two key countermeasures towards such
adversaries. Huang et al. [21] propose a Principal Component Analysis (PCA) based detection
against poisoning attacks to improve the robustness of learning algorithms. This defence technique
is called Antidote, it is based on statistics to minimise the impact of outliers and can illuminate
poisoned data. However, Yeom et al. [9] use bagging classifiers to minimize the impact of the
added outliers with the poisoning attack which is an ensemble method. Ensemble method is a
paradigm of machine learning in which we train and combine several models in order to produce
better results to solve the same problem. The key hypothesis is that we can obtain more accurate
and/or robust models when weak models are correctly combined.

Chen et al. [4] present Kuafudet technique to secure malware detection systems against
poisoning attacks. This security technique incorporates a system for self-adaptive learning and uses
a detector for suspicious false negatives. Another defence technique is purifying the data. Nelson
et al. [22] and Laishram et al. [23] use data sanitization to ensure that training data is filtered
by extracting the inserted data, by the poisoning attack, from the original ones and then deleting
these malicious samples.

All the defence techniques described above are against poisoning attacks. However, there are
other attacks in the training phase such as evasion attack. Ambra et al. [24] propose a secure SVM
called Sec-SVM to provide an efficient protection against evasion attacks with feature manipula-
tion by enhancing the linear classifiers” protection relying on learning uniformly distributed feature
weights.
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5.2 Defence Techniques Against Attacks in the TestinglInferring Phase

Xue et al. [16] suggest invariant SVM algorithms that uses the min-max approach to deal with
the testing phase with the feature manipulation operations (i.e., addition, deletion and modifica-
tion). To make the learning algorithms more robust, Briickner et al. [25] uses Stackelberg Games
for adversarial prediction problems and a Nash SVM algorithm based on the Nash equilibrium.
Rota Bulo et al. [26] propose a randomised prediction game base on probability distribution
specified over the respective strategy set by considering randomized strategy selections. Besides,
Zhao et al. [27] propose to incorporate full label adversarial samples into training data in order
to provide more robust model training.

Cryptographic techniques can also be used to secure ML models [28,29]. Chen et al. [30]
assess the effectiveness of using Differential Privacy as a genomic data protection mechanism to
minimize the danger of membership inference attacks.

Table 4: Defence techniques against attacks in the training and testing/inferring phase

Phase of the Attack Defence technique Paper
attack
Training Poisoning attacks PCA-based detection Benjamin et al. [31]
Use of bagging classifiers Biggio et al. [32]
Kuafudet technique Chen et al. [4]
Data sanitization Nelson et al. [22] and
Laishram et al. [23]
Evasion attacks Secure SVM called Sec-SVM Ambra et al. [24]
Testing/inferring  Adversarial attacks  Invariant SVM algorithms Globerson et al. [33]

Attacks against
data privacy and
security

using the min-max method
Stackelberg Games for
adversarial prediction
problems

A Nash SVM algorithm based
on the Nash equilibrium
Randomized prediction game
Introduce adversarial samples
with full labels into training
data to train a more robust
model.

Min-max privacy game

Differential privacy (DP)
Homomorphic encryption is a
technique to provide data
privacy via data encryption

and Teo et al. [34]
Briickner et al. [25]

Facchinei et al. [35]

Rota Bulo et al. [26]
Zhao et al. [27]

Nasr et al. [14]

Chen et al. [30]
Biggio et al. [32]

We presented the main existing countermeasures against machine learning attacks, as shown
in Tab. 4. Defence techniques can be summarized as follows: in the training phase, the
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countermeasures are working against poisoning attacks that aims to purify the data, it is often
called data sanitization during which the anomalous poisoned data is filtered out first before
feeding into the training phase. Within the test phase, the defence techniques against sensitive
information leakage consist of the adversarial training and ensemble method. To avoid data secu-
rity and privacy issues, differential privacy and homomorphic encryption are two cryptographic
techniques used to address data security and privacy issues.

6 Contribution and Experimental Evaluation

In this section, we detail our implementation of MIA then we propose our defence technique
against this attack before evaluating our results. Our proposed solution focuses on securing CNN
models against MIA attacks. The purpose of this research is to empirically show the robustness
of our privacy-preserving model against MIA attacks.

6.1 Description

Our defence technique is based on the fact that MIA attack exploits the data leakage of the
ML model due to overfitting [8]. To this end, we present our solution to mitigate overfitting that
consists on using a combination of two techniques which are: dropout and L2 regularization.

Dropout is an efficient method to decrease overfitting based on empirical evidences [18]. The
key idea is to randomly drop units from the neural network during training. This prevents units
from co-adapting too much. In fact, it is executed by randomly deleting in each training iteration
a fixed proportion (dropout ratio) of edges in a fully connected neural network model. We can
apply dropout for both the input layer and the hidden layer of the target model. Dropout is
specific to neural network.

L2 regularization penalizes the loss function to discourage the complexity of the target model.
A is the penalty term or regularization parameter which determines how much to penalizes the
weights. L2 regularization forces the weights to be small but does not make them zero and does
non sparse solution. In L2 regularization, regularization term is the sum of square of all feature
weights (01-2) as shown in the equation below:

L(x,y) = Z i — ho(x)* + )»291'2
i=1 i=1

To find the best dropout ratio, we measure the impact of varying the dropout ratio of our
defence. We test different dropout ratios for both input and fully connected layers when tracking
the results of the performance of the MIA attack and the accuracy of the target model. We note
that raising the dropout ratio leads to, the lower attack performance. On the other hand, we have
obtained very low accuracy of the target model. This means that the accuracy of the target model
is stronger when the dropout ratio is mediated. We decide then to use 0.5 and 0.4 as dropout
ratios to our defence strategy to maximize our target model accuracy.

As we decide to use regularization technique to overcome overfitting of our model. We test
L2 regularization with various values for the regularization factor A to discourage the complexity
of the target model. It achieves this by penalizing the loss function. Furthermore, A is the
penalty term or regularization parameter which determines how much to penalize the weights. L2
regularization forces the weights to be small but does not make them zero and does non sparse
solution.
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In L2 regularization, regularization term is the sum of square of all feature weights as shown
in the equation below:

LoGY) =Y, 0i— he(x))?+ 1 Y. 62

i=1

n
where Y (y;i— ho(x;))* is the loss function
i=1

n
and 1 )" 6?7 is the regularization term
i=1
We need to find an optimal value of A leading to a smaller generalization error. To find the
optimal value of A we test our training model with different values (0.05, 0.02, and 0.01). We
obtained best result with A = 0.01. That’s why in all the next experimentation, we have kept the
penalty term fixed at 0.01.

In this experimentation, first we investigate the vulnerability of our model against MIA on
two trained models on CIFAR-10 and CIFAR-100 datasets, and evaluate the effectiveness of
combining Dropout and L2-regularization as a new defence mechanism.

We train a simple image classification model on the CIFAR-10 and CIFAR-100 datasets [36],
and then we use the “membership inference attack™ against these models to assess if the attacker
is able to “guess” whether a particular sample belongs to the training set. Next, we train our
model using dropout and L2 regularization to mitigate the leakage of sensitive data of the model.
Then, we retest the MIA attack against the model to verify if the attack was mitigated.

« Train the model
the MIA on the 2 models

‘ 3 ' Use MIA on the model ‘

Figure 2: Steps of our experimentation

b p—
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Fig. 2 presents the steps of our experimentation, first we start with loading the datasets
(CIFAR-10 and CIFAR-100), then, once we have read and normalized the data, we define our
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model. We use a Convolution Neural Network (CNN) with 3 convolution layers, and we use the
Rectified Linear Unit (ReLU) [35] as an activation function because it is the most widely used
activation function in neural networks and presented the advantage that it does not activate all
neurons at the same time. It only activates a node if the input is above a certain level, while
the input is below zero, the output is zero, but when the input rises above a certain threshold, it
has a linear relationship with the dependent variable. Next, we train the models and calculate its
accuracy using the two datasets (CIFAR-10 and CIFAR-100) to evaluate the performance. Once
we trained the model, we tested the MIA attack before defining the defence strategy to verify the
privacy vulnerabilities of our model. After defining our strategy of defence based on dropout and
regularization, we re-test the MIA attack to show if the defence strategy has mitigated the attack.

6.2 Datasets

We began our experimentation by training our network to classify images from CIFAR-10
and CIFAR-100 datasets [37] using CNN built in TensorFlow environment [38]. Tensorflow is a
framework developed by Google, it is an open source library used to facilitate the process of
acquiring data, training models, serving predictions, and refining future results.

CIFAR-10 is a standard machine learning dataset consists of 60000 32 x 32 colour images
in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images.
The test batch contains exactly 1000 randomly-selected images from each class. The training
batches contain the remaining images in random order, but some training batches may contain
more images from one class than another. Between them, the training batches contain exactly 5000
images from each class.

CIFAR-100 dataset is like CIFAR-10. However, it has 100 classes containing 600 images each,
the global number of data is then 60000. There are 50000 training images and 10000 testing
images. i.e., 500 training images and 100 testing images per class. The 100 classes in the CIFAR-
100 are grouped into 20 superclasses. Each image is marked with two labels: first label indicates
the class to which it belongs and the second specifies the superclass to which it belongs.

6.3 The CNN Model

We use a CNN with three convolution layers followed by two densely connected layers and an
output layer dense layer of size respectively 10 and 100 for CIFAR-10 and CIFAR-100 datasets.
Then, we use ReLLU as the activation function for hidden layers and sigmoid for the output layer.
As, we use the standard categorical cross-entropy loss. Fig. 3 shows the CNN architecture for
CIFAR-10.

6.4 Model Training

First, we define the CNN model for the CIFAR-10 and CIFAR-100 datasets, then we train
it. To evaluate our model, we used accuracy metrics. Figs. 4 and 5 show respectively the accuracy
curve of the model with different value of epochs (38 and 100) for CIFAR-10 dataset and (50
and 100) for CIFAR-100, respectively. We notice that when we increase the number of epochs
during the training of the model, it overfits.

6.5 Membership Attack Testing

We use an open-source library of MIA to conduct MIA attack on our trained models [38]. We
build one shadow model on the shadow dataset to imitate the target model, and we generate the
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base to train the attack model. The attack dataset is constructed by concatenating the probability
vector output from the shadow model and true labels. If a sample is used to train the shadow
model, the corresponding concatenated input for the attack dataset is labelled ‘in’, and ‘out’
otherwise.

2x32x3 30x30x32

13x13x32

6x32
/ 4x4x32
Ax2x32 1x1x128 1x1x10

3
¥

@ convolution+ ReLU
[' 71 max pooling
1 fully connected+RelL.U

1 softmax

Figure 3: CNN architecture for CIFAR-10 dataset
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Figure 4: Accuracy curve of the model

Afterwards, we execute a MIA against the previously models trained on the two chosen
training datasets CIFAR-10 and CIFAR-100. As it was defined in Section 4, MIA consists of
quantifying how much information a machine learning model leaks about its training data, which
could be personal and sensitive. The main idea of MIA consists on the examination of the
predictions made the model to guess if a particular data sample was used in the training dataset
or not.
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Figure 5: Accuracy curve of the model

Shokri et al. [8] first developed the idea of using shadow models, where multiple shadow
models with varying in/out splits were used to train a single attack model. We only used a single
shadow model in the same way as used the paper presented by Salem et al. [13].

To evaluate our MIA attack, we choose to use Area Under the Curve (AUC) metric. This
is one of the popular metrics which measures the ability of a classifier to differentiate between
classes. It is used as a summary of the ROC (Receiver operating characteristic) curve.

The ROC curve is the plot between sensitivity and (1-specificity). Sensitivity is also known as
True Positive rate and (1-specificity) is also known as false positive rate. The biggest advantage of
using ROC curve is that it is independent of the change in proportion of responders.

An AUC of close to 0.5 means that the attack wasn’t able to identify training samples, which
means that the model doesn’t have privacy issues according to this test. However, higher values
indicate potential privacy vulnerabilities.

Fig. 6 exposes the AUC of the execution of MIA on our model trained on CIFAR-10. We
noticed that the first curve with epoch = 100 presents higher values (i.e., AUC = 0.741) which
indicates much privacy vulnerabilities than the second one for epoch = 38 leading to an AUC
equal to 0.625. Indeed, the closer this curve is to the upper left corner, the more efficiently the
classifier behaves. This can be explained by the early stopped of the model trained (i.e., epoch =
38 vs. epoch = 100).

Fig. 7 exposes the evaluation of the MIA attack on the model trained on CIFAR-100. The
two curves present a very near values (0.774 and 0.718), this can be explained by the fact that at
the training phase of the model there was no degradation of the results when using the test data
(the curve was almost constant).



4912 CMC, 2022, vol.70, no.3

10 { — AuC. 0.741 10 { — AUC: 0.625
08 08
06 i
(-4 (-4
B E
04 1 0.4 -
02 a3
00 0.0 1
00 02 04 06 08 10 00 02 04 06 08 10
FPR FPR
Epoch =100 Epoch =38

Figure 6: AUC of MIA attack on model trained on CIFAR-10
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Figure 7: AUC of MIA attack on model training on CIFAR-100

6.6 Evaluating the Solution Performance Against Membership Inference Attacks

The purpose of this section is to empirically show the robustness of our privacy-preserving
model against Membership Inference Attacks. As we mentioned in previous sections, the main
cause of the success of MIA attack is overfitting, therefore we propose to use techniques that
mitigate it. Overfitting occurs when the model is overtrained on the training component of the
dataset, such that when the model encounters different data, it gives worse results than expected.

There are various ways to prevent overfitting. We are focused on two techniques: dropout and
L2-regularization. In addition, we have discussed as shown in Fig. &, the early stopping which is
a technique consisting in the interruption of the training when the performance on the validation
set starts dropping.

On the other hand, regularization is a technique intended to discourage the complexity of a
model by penalizing the loss function. It assumes that simpler models are better for generalization,
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and thus better on unseen test data. L2 regularization is known as Least Square Error. It
minimizes the square of the sum of the difference between target values and estimates values.
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Figure 9: Degradation of MIA on CIFAR-10
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The main idea of dropout is to randomly drop units from the neural network during training,
which prevents units from co-adapting too much. Dropout is introduced by Hinton et al. [39] to
prevent co-adaption among the training data. In our experimentation we use respectively 0.5 and
0.4 as dropout rate for the CIFAR-10 and CIFAR-100 datasets.

Experimental results show that the attack performance using L2-regularization and dropout,
in the training phase, is lower than the same attack without introducing neither dropout nor L2-
regulrization. Figs. 9 and 10 show the degradation of the performance of MIA after applying
L2 regularization and dropout (from AUC = 0.741 to AUC = 0.573 with CIFAR-10 also an
improvement of 22.6% for epoch = 100% and 9.92% for epoch = 38) but the accuracy of the
target model decreased (i.e., the model accuracy of test dataset is decreased of 22.16% from 0.6643
to 0.4427 for CIFA10 with epoch = 100 as shown in Fig. 10.
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Figure 10: Degradation of MIA on CIFAR-100
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6.7 Discussion

After loading datasets on which we trained the target model, we defined the CNN model that
we will try to optimize its accuracy. We measure the CNN model vulnerability against MIA. We
tested our attack on two datasets CIFAR-10 and CIFAR-100, and we compared the results of our
attack on the two trained models, we notice that the attack is more efficient on the second dataset
(with 10 times more classes), that matches the results announced by Shokri et al. [§]. This shows
that models with more efficiency classes should be able to remember more about their training
datasets, and therefore they can leak more data about them. As we found that by reducing the
number of epochs when training the models on the same dataset, the performance of the attack
was reduced. This is can be explained by the fact that when we early stopped the training of the
model, we reduce its overfitting.

We investigate the dropout and L2-regularization to mitigate overfitting of the target model in
order to avoid the privacy leakage. We verify that the modified model is more resistant to the MIA
attack. Indeed, our results show an improvement in preserving membership privacy of 22.67% for
the CIFAR-10 with epoch = 100% and 9.92% for the same training dataset with epoch = 38.
However, there is a degradation of the accuracy of the target model (from 68.92% to 39.67%,
i.e.,, a degradation of 29.25% with epoch = 38 after adding dropout and L2 regularization as a
defence technique.

Tab. 5 shows that bigger accuracy gaps between the training and testing datasets are associ-
ated with higher precision of membership inference.

Table 5: The accuracy of the target model and the performance of the attack

Training dataset Training accuracy Testing accuracy Attack AUC
CIFAR-10 epoch = 38  Without defence 0.7896 0.6892 0.625

With defence 0.3800 0.3967 0.563
Degradation of MIA 9.92%
CIFAR-10 Epoch = 100 Without defence 0.8713 0.6643 0.741

With defence 0.4261 0.4427 0.573
Degradation of MIA 22.6%

After applying our defence strategy, we notice that the performance of the attack was mit-
igated for the two models trained on CIFAR-10 and CIFAR-100. We achieve a degradation of
22.6% and 11.56% of the attack on respectively CIFAR-10 and CIFAR-100 with epoch = 100.
However, we observe a degradation of the accuracy of the trained models which fell by 22.16%
and 16.49% for the two models trained on respectively CIFAR-10 and CIFAR-100 with epoch
equal to 38 and 50.

Experimental results show that the accuracy of the target model is decreased when we try to
preserve privacy of the data. That is why we have to find a trade-off between preserving privacy
of the model and its performance (as it is shown in Fig. 11).
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Figure 11: Degradation of the accuracy of the target model

7 Related Works

Membership inference attacks seek to infer whether a particular data record was used in the
model training dataset or not. An adversary can have black-box access to a machine learning-
as-a-service API [13]. Various countermeasures are defined in different research works to mitigate
the leakage of information and enforce the privacy of the target model.

Differential Privacy (DP) is a privacy preserving technique that can be implemented in train-
ing algorithms in a multitude of fields. It was developed in data processing with relation to privacy
concerns. DP is often obtained by applying a procedure that introduces randomness into the
data. DP has been the most widely used method, according to Chen et al. [30], to assess privacy
exposure relating to persons. In addition, Chen et al. [30] has evaluated DP uses and its efficiency
as solution to MIA in genomic data. The authors presented a trade-off between securing the
model against MIA and the accuracy the of target model using various settings of DP. Moreover,
DP was applied by Dwork [29], to explain group statistics while preserving participants records
within the training datasets. DP enables achieving a similar outcome of two different datasets
processing where only one record is different between the two datasets.
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The min-max privacy game proposed by Nasr et al. [14] introduces a specific setting in which
the adversary wants to achieve the maximum inference advantage and the defender has to find
the classification model that not only minimises his loss, but also minimises the maximum gain
of the adversary. This is a Stackelberg min-max game [40]. To mitigate the information leakage
of machine learning, Nasr et al. [14] have offered a new privacy mechanism against membership
inference in training datasets, through their predictions. The authors have proposed a trade-off
to both increase privacy and accuracy. The solution consists in a model where its predictions on
its training data cannot be distinguished from its predictions on any other data sample from the
same distribution.

Salem et al. [13] present another defence technique, namely model stacking, which works
independently of the used ML classifier. This solution consists of training the model using
different subsets of data which makes the model less prone to overfitting.

We can classify the existing defence techniques into two major groups. The first group consists
on including simple mitigation techniques, consisting of reducing the accuracy of predictions, or
regularizing the model (e.g., using L2 regularization). These techniques may incur a negligible
utility loss to the model. The second group is composed by differential privacy techniques.

8 Conclusion

In this paper, we have presented our implementation of MIA on CNN model, then we have
introduced our defence technique to evaluate its effectiveness in increasing the security of the
model against these attacks. We evaluated the effectiveness of using L2 regularization and dropout
as a defence technique to mitigate the overfitting of the model which is considered as the main
cause of the information leakage related to the training dataset [8]. Indeed, we reached a decrease
of the AUC of the attack from 0.625 to 0.563 (with epoch = 38 for CIFAR-10) and from 0.741
to 0.573 (with epoch = 100 for CIFAR-10). Our evaluation showed that our defence technique is
able to reduce the privacy leakage and mitigate the impact of the membership inference attacks.
However, experimental results showed that the accuracy of the target model was decreased when
we tried to preserve privacy of the data. That is why we have presented a trade-off between
preserving privacy of the model and its performance. The problem will then be transformed
to find the optimal solution to maintain the performance of the target model while raising his
membership privacy. As future work, we aim to enhance the proposed solution to achieve better
accuracy of the model while preserving membership privacy.
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