
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.020318

Article

EEG-Based Neonatal Sleep Stage Classification Using Ensemble Learning

Saadullah Farooq Abbasi1,2, Harun Jamil3 and Wei Chen2,*

1School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
2Center for Intelligent Medical Electronics, Department of Electronic Engineering, Fudan University, 200433, China

3Department of Computer Engineering, Jeju National University, Jejusi, Jeju Special Self-Governing Province, 63243, Korea
*Corresponding Author: Wei Chen. Email: w_chen@fudan.edu.cn

Received: 19 May 2021; Accepted: 15 July 2021

Abstract: Sleep stage classification can provide important information regard-
ing neonatal brain development and maturation. Visual annotation, using
polysomnography (PSG), is considered as a gold standard for neonatal sleep
stage classification. However, visual annotation is time consuming and needs
professional neurologists. For this reason, an internet of things and ensemble-
based automatic sleep stage classification has been proposed in this study. 12
EEG features, from 9 bipolar channels, were used to train and test the base
classifiers including convolutional neural network, support vector machine,
and multilayer perceptron. Bagging and stacking ensembles are then used to
combine the outputs for final classification. The proposed algorithm can reach
a mean kappa of 0.73 and 0.66 for 2-stage and 3-stage (wake, active sleep,
and quiet sleep) classification, respectively. The proposed network works as a
semi-real time application because a smoothing filter is used to hold the sleep
stage for 3 min. The high-performance parameters and its ability to work in
semi real-timemakes it a promising candidate for use in hospitalized newborn
infants.

Keywords: Internet of things; machine learning; convolutional neural net-
work; artificial intelligence

1 Introduction

Sleep is an important human phenome. In neonates, maturation and development of cortical
pathways, structural development, and optimal physical growth occurs during sleep. Therefore, it is
important to monitor neonatal sleep in a neonatal intensive care unit (NICU). Visual assessment
of electroencephalogram (EEG) is considered as a gold standard for neonatal sleep. Neonatal
EEG has been classified into four stages: Awake, Intermediate Sleep (IS), Active sleep (AS), Quiet
Sleep (QS). The time spent in these sleep states is directly associated with brain maturation [1–3].
The distribution changes from 80% AS and 18% QS at an early Gestational Age to 60% AS and
30% QS at full-term. Since visual labelling is time-consuming and needs a professional neurologist,
automatic sleep stage algorithms using machine and deep neural networks is of great interest for
clinicians.
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Recently, internet of things and machine learning algorithms have been a great deal of
attention for biomedical signal applications, such as, EEG seizure detection [4], medical image
analysis [5] etc. In the past two decades, growing body of researchers has investigated auto-
matic sleep staging algorithms using artificial neural networks. However, the existing algorithms
amalgamate AS II and Awake stage into low voltage irregular (LVI) stage. This results in the
misclassification of almost 40% of the sleep EEG.

In this paper, an ensemble-based algorithm using CNN, MLP and SVM has been proposed to
classify neonatal EEG into three stages i.e., AS, QS and Awake. The proposed method used 8-time
and 4-frequency domain features from multichannel EEG for training and testing the networks.
Finally, bagging and stacking ensemble methods are used to combine the outputs of CNN, MLP
and SVM. This study can reach an accuracy of 81.99% for three-stage classification i.e., AS, QS
and Awake. The main contributions of this paper are as following:

• Traditional neonatal sleep stage classification algorithms amalgamate AS II and Awake into
LVI. This study classified sleep EEG into three separate sleep stages i.e., Awake, AS and
QS.

• NicoletOne IoT device has been deployed to extract EEG recordings from 19 healthy
neonates. The proposed study used this dataset for further preprocessing and classification.
No neonatal dataset is available online thus, it can be considered as a great contribution
for healthcare.

• This is the first time an ensemble-based machine learning algorithm has been used for
neonatal sleep stage classification. Traditional algorithm classified sleep stages using single
machine/ deep learning algorithm.

• From literature, it is quite evident that a neonate spends at least 3-min in one sleep stage.
Therefore, a delay filter is used to halt the sleep stage for 3-min. This helps to increase the
accuracy by 4%–5%.

Rest of the paper is arranged as: Section 2 presents the background; Section 3 presents the
preliminaries; Section 4 proposes the methodology whereas results and discussion are presented in
Sections 5 and 6, respectively. Finally, Section 7 concludes the paper.

2 Background

Over the past two decades, machine learning has been exponentially employed in the field
of healthcare, image encryption and neonatal sleep. Automatic sleep stage classification using
machine/deep learning has become a hot topic for researchers now a days. Some maturational
changes can only be seen during QS. For this purpose, Turnbull et al. [6] detected a distinguished
EEG-pattern, Trace Alternant (TA), in 2001. The proposed scheme can classify TA efficiently
still, it is challenging to detect entire QS with this method. Some brain developments can only
be administered in QS, reflecting changes in brain function [7–9]. For this purpose, Dereymaeker
et al. [10] proposed an automatic QS detection algorithm using cluster based adaptive sleep
staging (CLASS). The main benefit of CLASS is that it can efficiently detect QS in preterm
neonates. Quiet sleep detection using radial basis function support vector machine (RBF-SVM)
was propounded by Koolen et al. [11]. A total of 57 features were used for training and testing
the network. RBF-SVM based algorithm can reach an accuracy of up to 85% for QS detection.

In 2018, researchers further classified neonatal EEG into four sleep states: anterior dys-
rhythmia or AS I, low voltage irregular (LVI) or AS II, high voltage slow (HVS), and Trace
Alternant (TA)/Trace Discontinue (TD). To classify these sleep states, Pillay et al. [12] presented
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a generative modelling approach using Hidden Markov models (HMMs) and Gaussian mixture
models (GMMs). The proposed models were trained using a large 112 feature set. This scheme
achieved a cohen’s kappa of 0.62 for 4-stage classification. In 2020, a convolutional neural network
(CNN) based algorithm outperformed all the existing algorithms with a kappa of 0.64 [13]. The
convolutional neural network used raw-EEG data from 113 EEG recordings.

Some brain development and maturation can only be seen during AS, whereas the existing
set of framework amalgamates AS II and Awake into LVI. The current methods of separate sleep
stage classification are limited. In 2017, Fraiwan et al. [14] proposed an algorithm based on deep
autoencoders. The deep autoencoder can reach an accuracy of 80.2% for AS still, it is limited to
only 17% for Awake. To overcome this problem, an automatic algorithm was propounded using
multilayer perceptron (MLP) neural network by Abbasi et al. in 2020 [15]. MLP achieved an
accuracy of 82.53% for sleep-wake classification. However, the MLP-based network only works
well for 2-stage classification.

3 Preliminaries

3.1 Dataset
A total of 19 bipolar EEG recordings were obtained using NicoletOne IoT device. EEG

recordings were obtained at the NICU of Fudan children hospital shanghai, China. Approval
was issued by Research Ethics Committee of the Fudan Children’s Hospital (Approval No. (2017)
89) [16–18]. At least one sleep cycle was recorded in each EEG recording. 9 bipolar EEG channels
i.e., F4–C4, C4–T4, F3–C3, C3–T3, T3–C3, T4–P4, P3–F3, P4–F4, T3–P3 were recorded using
NicoletOne device. Electrodes of the NicoletOne IoT device were placed according to the standard
10–20 system of electrode placement [19] (Fig. 1). Among the 19 EEG recordings we recorded,
15 include all the given electrodes except “T5–6,” “F7–8” and “O1–2” (11 electrodes). In the
remaining 4 recordings “T5–6,” “F7–8,” “Cz” and “O1–2” were not recorded, leading to 10
electrodes included. EEG extraction and visual annotation was performed using NicoletOne IoT
system.

Figure 1: Electrode placement. (a) Standard 10–20 system for electrode placement. (b, c) System
used for proposed paper
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3.2 EEG Visual Sleep Labelling
The NicoletOne IoT system was used by two professional neurologists from Fudan children

hospital Shanghai, China. The primary rater (CL) classified sleep signals into three stages: Awake,
AS, QS and artifacts. The secondary rater (LW) verified the sleep stages annoted by CL. Physi-
ological signals i.e., EEG, ECG and EMG were used for visual sleep scoring. Videos were also
considered where needed.

3.3 Pre-Processing
The EEG recordings are processed on their original sampling frequency i.e., 500 Hz. While

recording, EEG signals got contaminated with noise and artifacts. These artifacts should be
removed before training and testing the network. The pre-processing is divided into three
steps:

• Finite Impulse Response (FIR) filter was used, with cutoff frequencies 0.3–35 Hz, to remove
baseline noise, powerline noise and motion artifacts from neonatal EEG.

• After removing these noises and motion artifacts, the EEG recordings were segmented into
4560 30-s epochs and their respective label.

• Finally, epochs with label “artifacts” were removed manually.

3.4 Feature Extraction
8-time and 4-frequency domain features were extracted from 9-EEG channel to form an input

vector of size 108. Time-domain features were amplitude mean, amplitude median, skewness,
kurtosis, standard deviation, variance, minima and maxima whereas, frequency-domain features
were the mean amplitude value of delta (0.5–3 Hz), theta (3–8 Hz), alpha (8–12 Hz) and beta
(12–30 Hz) bands. Tab. 1 illustrates the features used in the proposed scheme.

Table 1: Features extracted from each 30-s epoch with references to the previous applications in
sleep

Feature category Feature description References

Time domain Mean, median Skewness, kurtosis Standard
deviation, variance, minima, maxima

[20–24]

Frequency domain Delta band
Theta band
Alpha band
Beta band

[25–27]

3.5 Ensemble Learning
In Ensemble learning, multiple learner modules are applied on a dataset to extract predic-

tions [28,29]. These presages are then accumulated into a singular compound forecast. In this
procedure, two steps are involved. Primarily, a base learner series is acquired from the training
data, which are then ensembled to materialize the combined prediction model. Hence, various
forecasts relying on the base learners are then amalgamated into a compound model, which
behaves with an enhanced accuracy as compared to its constituent base learners.
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The success of the ensemble learning is based on three important determinants. The primary
consideration is its statistical nature, in which the models determine the most suitable hypothesis
after scrutinizing the hypothesis space H. In this pursuit, a prominent bottleneck is the presence
of multiple suitable hypothesis in H as well as the limitation of the dataset, which makes it
difficult to locate the most optimum one. The employment of ensemble methods potentially avoids
this issue by utilizing various models to produce the pertinent unseen hypothesis. The secondary
consideration is its computational ability, in contrast to the conventional local search by multiple
existing models having the startling drawback of getting stuck in the local optima. The ensemble
on the other hand enhances the efficiency and approximation by initiating the local search from
multiple points. The last but not the least is its representational capacity. In most of the scenarios,
the unknown may not be inhabited within the H. Hence the fusion of several hypothesis obtained
from H can widen the space of representable functions, which can potentially hold the unknown
true entity.

The proposed paper used bagging and stacking ensemble for neonatal sleep stage classifica-
tion. In bagging, several models are built, the results are then combined using a combiner i.e.,
majority voting, uniform voting or weighted voting. In stacking, multiple models are built at level
1 and then a combiner algorithm is trained, at level 2, using predictions generated by the base
model. This combiner can be any deep or machine learning algorithm.

4 Proposed Framework

Fig. 2 shows the proposed block diagram for neonatal sleep stage classification. In this
section, we explained the proposed ensemble system for neonatal sleep stage classification. The
proposed ensemble system is divided into two modules: base-level learning module and metadata
combination module. In the following subsection, we explained these modules briefly.

Figure 2: Block diagram of the proposed ensemble method
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4.1 Base-Level Learning Module
The main purpose of this module is to construct base learners using training set to produce

metadata for final classification. To achieve high neonatal sleep classification accuracy and high
interpretability, we used CNN, MLP and SVM as our options for constructing base learners. It
is widely recognized that diversity which measures the difference of the base learners is one of
the pivotal ingredients for a good ensemble. With the intention of procuring high discriminative
metadata for classification, the learned module should be as diverse as possible. Metadata gener-
ation is the second task of the base-level learning module. For this purpose, we used 4-fold cross
validation process in which the original dataset is divided into 4 disjoint sets with same size.

The network hyper parameters of the proposed base learners are illustrated in Tab. 2. It is
important to note that these parameters are set manually by hit and trial rule. Parameters with
which we achieved highest accuracy are reported in this study.

Table 2: Parameters of the base learners

Network Input
layer

Hidden Layer Output
layer

Learning
Rate

Epochs

MLP 256 256-128-64 3 0.001 5
CNN 1 ∗ 9 ∗ 12 Conv (50)-Relu-Conv (30)-

Relu-Maxpool
3 0.001 50

4.2 Metadata Combination Module
Model combination is of great importance in ensemble learning. Proper selection can enhance

the classification ability of the selected models. In this paper, we propose to utilize bagging
and stacked generalization scheme for constructing ensembles. For stacking, the output of base
learners can serve as input to a second-level meta-learners to learn the mapping between outputs
of the base learners and final class. In this study, majority voting is determined to play the role
for bagging ensemble whereas SVM is used for stacking generalization.

Fig. 3 shows the learning process of the proposed scheme with base learners of convolu-
tional neural networks (Fig. 4), multilayer perceptron (Fig. 5) and support vector machine and
the combination method for stacking and bagging ensemble. CNN, SVM and MLP are used
for metadata generation at base level. Then, majority voting and SVM are used at top level
for pre-final classification. These results are then passed from a smoothing filter for final sleep
stage classification. All the parameters were set after running the preliminary experiments on the
proposed neonatal data. Moreover, to overcome the possible representation limitation of SVM,
we have used NNs, which can handle non-linear learning very well. RMSprop [30] algorithm was
used for training the neural networks.
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Figure 3: Proposed ensemble architecture for sleep staging

4.3 Evaluation Parameters
Performance metrics used to assess and compare the proposed network were Accuracy,

Precision, Recall, F1 score and Kappa. Mathematically, these metrics are given as:

Accuracy= TP+TN
TP+TN +FP+FN

(1)

Sensitivity= TP
TP+FN

(2)

Specificity= TN
TN +FP

(3)

Kappa= PAgree−PChance
1−PChance

(4)
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Figure 4: CNN architecture for base learner

Figure 5: MLP architecture for base learner

TP→ true positives, TN→ true negatives, FP→ false positive whereas FN→ false negatives.
PAgree is the proportion of results in which network and annotation agrees whereas, PChance is



CMC, 2022, vol.70, no.3 4627

the proportion which are expected due to chance. To validate the proposed scheme, 4-fold cross-
validation was used. The neonatal dataset is divided into 4 folds. One-fold is used for testing
whereas the other three will be for testing.

5 Experimental Results and Comparison

All the networks were processed on Intel Core i5-8400, RAM 16 GB. TensorFlow and Keras
were used to implement the proposed ensemble network. Features were extracted on MATLAB
2019b. The results of the proposed methods are divided into two parts. 1) Two-stage classifica-
tion 2) Three-stage classification. The following subsections present and discuss the classification
results.

5.1 Two Stage Classification
The proposed network achieved an accuracy of 94.27% ± 3% for QS detection. The test

performance of this study and the existing algorithms is compared in Tab. 3. Kappa, accuracy,
sensitivity, and specificity are calculated for evaluation. The proposed ensemble-based algorithm
outclasses the existing algorithms for neonatal QS detection. It is important to note that not all
the algorithms work on the full range of neonates i.e., 37 ± 5. The proposed scheme can work
for the whole range of neonates.

Table 3: Performance comparison of the proposed algorithm for QS detection

Classifiers Performance parameters on 4-folds cross validation

Sensitivity (%) Specificity (%) Kappa (%) Accuracy (%)

SVM 79.26 84.54 64 82.19
CLASS 72 96 66 84
FBD [31] 77 92 69 –
Bagging ensemble 78.44 96.49 73 94.27
Stacking ensemble 77.84 95.89 72 93.98

According to our assiduous research, the existing algorithms for neonatal sleep-wake classifi-
cation is limited. Existing algorithms amalgamates awake and AS II into LVI stage. The proposed
algorithm can also be used for neonatal sleep-wake classification. Tab. 4 shows the performance
of the proposed algorithm and the comparison.

5.2 Three Stage Classification
Fig. 6 shows the confusion matrix of the proposed ensemble schemes. The proposed network

achieved an accuracy of 81.99% and 78.81% for bagging and stacking ensemble, respectively. The
standard error of the proposed scheme is 0.76. Fig. 7 shows the overall test performance of
the proposed SVM, MLP, CNN and ensemble algorithms. From the results, it is evident that
the ensemble algorithms can increase the accuracy by 7%–8%. Here, it is important to note
that each network is tuned to their best and the highest accuracy is reported in the proposed
manuscript.
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Table 4: Performance comparison of the proposed algorithm for awake classification

Classifiers Performance parameters on 4-folds cross validation

Sensitivity (%) Specificity (%) Kappa Accuracy (%)

Fraiwan et al. 46.6 96 – 17
CLASS 72 96 0.66 84
MLP 82.29 81.73 0.65 82.53
Bagging ensemble 85 83.4 0.68 84.2
Stacking ensemble 85.59 84.1 0.69 85.66

Figure 6: Confusion matrix (a) bagging ensemble, (b) stacked ensemble

Accuracy Specificity Sensitivity Cohen's kappa

CNN 68.01 70.16 69.57 42

MLP 73.4 73.17 74.33 55

SVM 72.3 74.84 73.95 49

Bagging Ensemble 81.99 82.22 81.23 66

Stacking Ensemble 78.81 79.67 78.96 64
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Figure 7: Performance metrics of the proposed networks

Not all the NICU is equipped with multichannel EEG. Therefore, the test performance of
the proposed scheme with different number of channels is shown in Tab. 5. From the table, it is
evident that by reducing the number of EEG channels the accuracy decreases. The most relevant
EEG channels for sleep staging are F4, C4, C3 and F3.
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Table 5: Accuracy comparison with different number of channels

Channel names Bagging ensemble Stacking ensemble

1 F4–C4 64.72% 66.42%
4 F4–C4, C4–T4, F3–C3,

C3–T3
73.22% 73.15%

9 F4–C4, C4–T4, F3–C3,
C3–T3, T3–C3, T4–P4,
P3–F3, P4–F4, T3–P3

81.99% 78.81%

According to our assiduous research, the algorithms for three stage neonatal sleep classifica-
tion are limited. For this reason, the proposed study implemented different machine (K nearest
neighbor (KNN), XgBoost, SVM) and deep learning (MLP, CNN, Random neural network
(RaNN), Recurrent neural network (RNN)) algorithm to have an unbiased comparison. It is
important to note that all the networks are highly tuned, and the best results are reported in
this comparison. Fig. 8 shows the comparison of the proposed scheme with machine and deep
learning algorithms.

Figure 8: Performance comparison

The proposed ensemble network used a smoothing filter to enhance the accuracy of the
network. In literature, it is believed that the neonate spends at least 3 min in one sleep stage
either it be Awake, AS or QS. Thus, after ensembling the outputs of SVM, CNN and MLP, a
smoothing filter is used which holds the sleep stage for 6 epochs (6 * 30 s = 3 min). Tab. 6 shows
the performance of the proposed network with and without post-processing step.

6 Discussion

To the best of our knowledge, this is the first ensemble-based study for neonatal sleep staging.
We show that the proposed ensemble can increase the accuracy of neonatal sleep staging to
81.99%. The proposed study outperforms the existing networks for all sleep stage classification
i.e., Awake, QS detection and three-stage classification. This network can be called as a “semi”
real-time application. We call it “semi” because it uses a smoothing filter which holds a sleep
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stage for 3-min. One major advantage of this scheme is that this algorithm works for the whole
range of neonates i.e., 37 ± 5. The high-performance metrics of the proposed study along with
its real-time application makes it a promising candidate for a real-time NICU.

Table 6: Accuracy of the proposed scheme with and without smoothing filter

Bagging ensemble Stacking ensemble

With filter 81.99% 78.81%
Without filter 78.65% 77.67%

This study uses multichannel bipolar EEG for classification. 9 bipolar EEG channels were
used for neonatal sleep stage classification. Not every NICU is equipped with multichannel EEG
therefore we investigated the proposed scheme with less number of channels. Tab. 5 shows the
performance comparison pf the proposed scheme with different number of EEG channels. It is
important to note that the accuracy decreases with reducing channels.

The proposed study uses 12 most important features from 30-s epochs. These features are
divided into two categories: time domain and frequency domain. Time-domain features are
amplitude mean, amplitude median, skewness, kurtosis, standard deviation, variance, minima and
maxima whereas, frequency-domain features are delta, theta, alpha and beta bands. Out of these
12 extracted features, the most prominent features are frequency domain features. These features
can improve the overall frequency by 10%–15%.

To access the performance of the proposed study, accurate visual annotation is required.
For this reason, two neurologists were used for annotation. The primary rater (CL) classified
sleep signals into three stages: Awake, AS, QS and artifacts. The secondary rater (LW) verified
the sleep stages annoted by CL. Physiological signals i.e., EEG, ECG and EMG were used for
visual sleep scoring. Videos were also considered where needed. The performance of the ensemble
algorithm is described in section 4. The existing algorithms for three stage classification i.e., AS,
QS and Awake are limited. For this reason, the proposed study applied different machine and
neural networks on neonatal dataset and reported the performance matrices.

Ensembling has not been employed for neonatal sleep stage classification. This is the first time
an ensemble-based algorithm has been proposed. In this study, two ensemble algorithms are used
for neonatal sleep stage classification i.e., bagging and stacking. In bagging, CNN, MLP and SVM
are used as base classifiers. The final classification is then obtained by combining their outputs
using majority voting. In stacking, CNN, MLP and SVM are used for base classification. The
outputs of these classifiers are then used to train level 2 classifier i.e., SVM. The proposed scheme
can reach a mean accuracy of 81.99 and 78.81 for bagging and stacking ensemble algorithms,
respectively.

In this study, there are some limitations that should be taken into consideration: first, the
proposed study uses 19 neonates for sleep staging. Larger dataset can increase the implicitness
of the study. Second, the existing algorithms for three stage classification are limited therefore
we applied different machine and neural networks on our dataset and compared the results in
this study. Third, the proposed study removes artifacts manually using visual annotation. These
artifacts can contaminate the EEG recording, in real time applications, and may decrease the
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accuracy of the proposed network. An automatic artifact removal technique should be used to
use this algorithm directly in NICU.

As a future work, we aim to classify one more stage i.e., intermediate sleep (IS). In addition,
both AS and Awake contains LVI and Mixed EEG signals. Thus, we aim to use EOG, EMG and
ECG along with EEG to increase the performance of neonatal sleep stage classifier. In addition,
larger neonatal sleep data will be collected to have more accurate and implicit results.

7 Conclusion

In this study, an IoT and ensemble-based machine learning algorithm is proposed for neona-
tal sleep stage classification. NicoletOne IoT system is used for neonatal data extraction and
annotation. This is the first time an ensemble-based sleep staging has been proposed. 12 EEG
features were extracted from 9 bipolar EEG channels to train and test CNN, SVM and MLP
as base classifiers. Then, two ensemble algorithms i.e., bagging and stacking were deployed for
final classification. The performance results shows that the proposed study outclassed existing
algorithms for 2-class and 3-class sleep classification. To conclude, we can say that the high-
performance results and its ability to work in semi real-time makes it a promising candidate for
use in NICU.
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