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Abstract: The modern paradigm of the Internet of Things (IoT) has led to a
significant increase in demand for latency-sensitive applications in Fog-based
cloud computing. However, such applications cannot meet strict quality of
service (QoS) requirements. The large-scale deployment of IoT requires more
effective use of network infrastructure to ensure QoS when processing big
data. Generally, cloud-centric IoT application deployment involves different
modules running on terminal devices and cloud servers. Fog devices with
different computing capabilities must process the data generated by the end
device, so deploying latency-sensitive applications in a heterogeneous fog com-
puting environment is a difficult task. In addition,when there is an inconsistent
connection delay between the fog and the terminal device, the deployment of
such applications becomes more complicated. In this article, we propose an
algorithm that can effectively place application modules on network nodes
while considering connection delay, processing power, and sensing data vol-
ume. Compared with traditional cloud computing deployment, we conducted
simulations in iFogSim to confirm the effectiveness of the algorithm. The
simulation results verify the effectiveness of the proposed algorithm in terms
of end-to-end delay and network consumption. Therein, latency and execution
time is insensitive to the number of sensors.

Keywords: IoT; fog-cloud computing architecture; module placement;
latency sensitive; application; resource aware placement

1 Introduction

The Internet of Things (IoT) makes it possible to connect everyday devices to the Inter-
net. The large amount of data generated by these connected objects causes computational and
network load on the system and requires a large amount of storage space. In the near future,
we will have billions of interconnected IoT devices that will generate large amounts of data for
processing and storage. For example, the author estimated in [1] that there will be approximately
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1 trillion IoT devices by 2025. According to this approximation, the potential economic impact
of the IoT industry will be almost equal to 11% of the world economy [2]. Currently, most IoT
applications are deployed using cloud servers, because cloud servers provide centralized large-scale
processing and storage resources to process massive amounts of data generated by large-scale IoT
applications. For the realization of IoT applications, the most reasonable architecture available
is the cloud computing paradigm [3]. IoT applications generate a large amount of diverse data.
However, because the end-to-end latency increases in proportion to the amount of data to be
processed on the cloud server, the cloud architecture limits the large-scale implementation of IoT
applications [4]. Therefore, when designing large scale IoT applications on the cloud paradigm, it
will cause high network consumption and delays. Many applications require real-time processing
of sensing data with strict latency requirements, so the traditional cloud computing paradigm
cannot meet these strict Quality-of-Service (QoS) requirements of these IoT applications.

Various application program designs require application modules to be placed on multiple
heterogeneous nodes with different processing and storage functions. Cloud computing provides
high storage and processing capabilities for the centralized implementation of IoT applications.
The cloud paradigm has many advantages, such as mobility, reliability, ease of deployment,
cost-effectiveness, and so on. Compared with the traditional cloud architecture, the distribution
and mobility of sensor devices in future applications require the distribution of resources in a
distributed manner throughout the network. On the other hand, Fog-cloud computing is emerging
as a new paradigm to be used with cloud computing to deploy most of the upcoming IoT
applications. The fog computing architecture can solve the above challenges through its additional
advantages, such as dynamic scalability, reduced latency, and low consumption costs on cloud
servers [5]. The data arrival rate towards these devices depends on the sensing interval of the edge
node/IoT device. When the arrival rate of the input becomes higher, it will increase the overhead
on the parent node. However, fog devices are energy-constrained devices, and their computing
resources are limited, so they cannot bear such a large overhead for a long enough time [6].

The fog and edge computing paradigm are of much interest in the design and development
of IoT applications. The fog paradigm transfers computing power at the edge of the system,
and needs to be modified during the design process for the design and implementation of IoT
applications. Applications that are sensitive to latency require processing capabilities near the edge
of the network. Due to the centralization of resource provision, this specific function is missing
in the cloud computing architecture. Fog computing provides a new resource layer in the entire
network between the cloud and edge devices in a distributed manner. By using these limited fog
layer resources to preprocess the sensing data from IoT devices, the delay can be minimized.
A strategy and algorithm need to be designed to ensure the best use of available resources to
implement latency-sensitive applications on the fog cloud paradigm. In this article, we propose an
algorithm that can effectively allocate application modules by effectively using the network, so as
to achieve the lowest delay while effectively consuming network resources. The module placement
method proposed in this paper attempts to maintain a balance between the load generated by
the edge node and the resources available in the parent fog devices. In addition, the proposed
algorithm allocates application modules in a way that achieves the minimum latency time of the
application.

The main contributions of this research are summarized as follows:

• We propose a module placement algorithm for the fog cloud architecture, which can
handle the dynamic configuration of different parameters. We deploy the application in a
heterogeneous fog environment in a way to achieve effective use of network resources.
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• We suggest allocation of application modules on the heterogeneous fog nodes according
to their processing capacity and load from edge devices. We place application modules on
selective nodes to implement mandatory delay requirements for delay-sensitive applications.
• The algorithm was compared with cloud-based systems of different scales to verify the
efficiency of its implementation for latency-sensitive applications. The parameters to be
considered during the evaluation are latency, network consumption and the execution cost
of cloud computing.

The structure of this article is as follows. Section 2 summarizes the related works. Section 3
presents the system model and formulates the problem. Section 4 describes the proposed module
placement algorithm. Section 5 discusses the simulation results. In the last section, we draw
conclusions.

2 Related Works

This section introduces the previously designed related work and algorithms related to
application placement and module allocation strategies in the fog cloud architecture.

In [7], the author proposed an IoT application placement algorithm that has a dualistic
approach to improve overall system performance, but it needs to be weighed against a slight
increase in power consumption. In this method, the priority considerations for IoT application
placement requests such as environment runtime context, application usage and user expectations,
and QoS violations are regarded as feedback. After prioritizing the application placement request,
the modules are placed on the appropriate atomization device based on their computing resources,
proximity and response time.

The deployment of IoT applications [8] and the use of fog computing paradigms in large-scale
IoT applications [9] and context-aware applications [10] are still in their infancy. In [11], we can
find a model for optimizing the energy consumption of fog computing. In [12], the author pro-
posed a strategy to allocate workload to energy-constrained fog devices. Literature [13] proposed
an optimized service allocation strategy in fog cloud deployment to improve performance. In [14],
a QoS-conscious placement strategy was proposed, which placed delay-sensitive services on devices
located at the edge of the network to reduce costs and delays in the fog cloud network. In [15],
the author proposed a strategy to manage delay-sensitive applications through module placement
and resource optimization without violating the QoS of application. In this article, the author
proposes two algorithms. The first algorithm performs application module placement to meet the
latency requirements of the application, and the second algorithm performs resource optimization
to achieve the QoS of the application.

We can find the concept of fog colony first proposed in [16]. This concept has been copied
in many related works. The fog colony consists of multiple fog cells and acts as a micro data
center. A fog cell is an application module placed on a physical device to provide services and
resources for IoT devices connected to it. In [17], the authors proposed a distributed application
placement strategy for fog computing architecture based on contextual information. The contex-
tual information used by their proposed algorithm is based on the location of the fog device,
network status, service type, and QoS deadline for each application to provide resources for IoT
applications. The authors use the IBM CPLEX solver to solve their optimization problems. The
experimental results reduce the delay and maximize the efficiency of the fog network. However,
when the number of fog nodes increases under the solution proposed in [17], the calculation time
of the proposed solution increases exponentially.
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In [18], the authors use sEMG sensors to monitor patients in a persistent vegetative state
from a remote location. In [19], a system model to reduce the delay in medical applications based
on the Internet of Things is proposed. Similarly, in [4], a comparison of implementations of a
cloud and fog-based remote pain monitoring system is proposed, which uses sEMG signals for
pain detection. All these systems are compared between the different parameters of deploying
multi-purpose applications on the fog and cloud paradigm. In Tab. 1 we briefly compare the
qualitative characteristics of our proposed system with existing systems. Literature [20] proposed
a module placement strategy of the fog-cloud computing paradigm, which effectively utilizes
network resources and places modules according to the available capacity of network nodes. This
algorithm searches for eligible network nodes to meet the module placement requirements, and
places modules on eligible fog nodes unless the fog layer is exhausted. Tab. 2 shows the com-
parison between the algorithm and previous module placement schemes in terms of observation
parameters and application service placement.

Table 1: Qualitative comparison of our proposed system with the existing systems

Reference Paradigm Latency Execution
cost

Network
usage

Sensing
interval

Sensor/
Actuator
latencies

[1] Cloud Moderate High High Static Static
[3] Fog-cloud High Medium Low Static Static
[4] Fog-cloud Low Medium Low Static Static
[20] Fog-cloud Medium Medium Medium Static Static
∗Proposed Fog-cloud Low Low Low Variable Variable

Table 2: Comparison of the proposed algorithm with the existing module placement schemes

Reference Observed parameters during application module placement

Latency Sensing rate Capacity Deadline

[14] ✗ ✗ � �
[16] ✗ ✗ � �
[20] ✗ ✗ � ✗
∗Proposed � � � ✗

In [21], the authors proposed a heuristic algorithm that supports heterogeneous nodes in a
distributed manner and provides effective consumption of network resources in a manner that
achieves the minimum delay of application diversity. In [22], the authors proposed an extension
of the fog computing architecture based on the Hungarian algorithm, in which the role of the
fog layer is to manage resource supply issues to obtain minimal delay and sustainable services.
The experimental results verify the reduction of coupling problems and the effective use of
resources. In [23], the authors proposed a resource allocation strategy for the multi-region fog layer
architecture to ensure low energy consumption and reduce latency. Simulation results confirmed
with the existing solution, the delay was reduced by 16.81%, and the energy usage was reduced



CMC, 2022, vol.70, no.3 6061

by 17.75%. An algorithm for placing heterogeneous modules on different fog devices is proposed
in [24], which improves network consumption and reduces total execution time. In [25], the authors
proposed two cascading algorithms for application module segmentation based on throughput and
application allocation on area-based organizations. The result of the experiment is to confirm
that the performance of the proposed solution is improved compared to other solutions available
in this situation. In [26], the authors proposed a location-aware framework which records the
locations of fog devices exist in the network. Compare the proposed algorithm with the existing
framework and observe the reduction in latency, RAM and CPU consumption.

3 System Model and Problem Formulation

Applications designed based on the integrated fog and cloud paradigm gain the advantages
of both architectures, and as a centralized unlimited processing and storage service through the
cloud, it provides low-latency and large-scale distributed resource allocation. This integration
of the two computing paradigms achieves many benefits, such as mobility, heterogeneity, and
interoperability.

Fig. 1 shows the general integration of fog computing functions in the cloud architecture
to provide distributed computing closer to the edge of the network. The three layers shown in
the figure consist of devices with different resources and configurations. The first layer of the
architecture consists of IoT devices that connect sensors and actuators. The fog layer contains
fog devices that provide limited computing and storage resources in a distributed manner for
preliminary processing. The cloud server on the third layer provides a large amount of storage
and computing resources for processing and storing the data of all atomization devices connected
to it. Each layer deals with specific components of the application, which will be further defined
in the next section.

Each device in the infrastructure can accommodate application modules [27]. Among the
various types of devices available in the network, our main concern is the smart gateway device
located on the second layer, which links the first and third layers and provides resources for
the basic processing of tasks. Each device belongs to a specific layer with different computing
capabilities, and the specific layer contributes and defines the overall resource capacity of the layer.
Multiple fog devices with predefined limited computing and storage capabilities constitute a fog
layer. The cloud server at the other end is a resource-rich device, and its resource capacity is larger
than any device available in the entire network.

In a heterogeneous IoT environment, all the types of devices related to resources are different.
The devices available in the network consist of fog nodes and IoT devices with different computing
capabilities. The latency time of the device to its parent node depends on the distance between
the two communicating nodes. We can characterize the constraints that limit the fog node based
on resource capacity and communication delay. The general function of the fog device is limited
by the above constraints, which include basic parameters, namely CPU, RAM, storage and delay.
The proposed algorithm is flexible enough to include more parameters when required by the
application.

Let fi denotes the ith fog device in the network, and the capacity of this node is expressed as:

C(fi)=<CPUi,RAMi,Bandwidthi > (1)
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Figure 1: Fog-cloud architecture

The set of computing resources that define the entire network is the sum of the resources of
all available devices in the network, expressed as,

N = {fi} (2)

Each device in the network passes some communication delay to its parent device, which
depends on the distance between the communication devices, called latency. Let Lti is latency
of the ith node to its parent node where t is the tier in which the ith device is located. The
design method used in the application deployment based on the fog paradigm in this paper is the
Distributed Data Flow Model (DDF) [6]. The DDF method can better understand the various
components of the application and is the best way to deploy the application in a distributed
computing environment.

As shown in Fig. 2, the application developed for simulating and evaluating the algorithm
has three application modules as task processing elements and the interconnection between these
application modules (used to deploy the application) is modeled as Directed Acyclic graph (DAG).
In the DAG model, the vertex represents the task processing element of the application that
processes the incoming data from the previous module. Arcs represent data dependencies between
modules, and the flow of data from any module to another is also defined by arcs. The mathe-
matical representation of our DAG model D of the application consists of vertices (V ) and arcs
(A), defined as,

D= 〈V ,A〉 (3)
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Figure 2: Directed acyclic graph of latency sensitive game deployed and modules are depicted
using color-coding pairing in the graph

Each application module requires a certain amount of resources (i.e., CPU, RAM, bandwidth,
and storage) to process tasks. Therefore, if mi represents the ith module of an application, then
the requirement of that module is expressed as:

Req(mi)=<CPUi,RAMi,Bandwidthi > (4)

The set M shows all the modules of the application.

M = {mi} (5)

The edges between application modules represent the data flow in the application. If ei
represents the edge originating from one module mito another, then the set containing all the
edges of the application is denoted by E as in the following,

E = { ei|ei =<mi,mj > } ∀mi,mj ∈M (6)

The arcs connecting the vertices in the DAG model are periodic and event-based. The tuples
generated by periodic edges are regularly performed after a specified time interval and event-based
edges generate tuples if the source module receives a specific type of tuple according to the defined
selectivity model.

We can calculate the latency offered by ith fog device at any time t in the proposed Fog-Cloud
architecture as follows,

Lfit =LtSensor+Ltedge+Ltfog (7)
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where, LtSensor is the time consumed by the sensors in sensing EEG signals and Ltedge is the delay

caused by the end devices in transmitting signals to the fog nodes and Ltfog is the latency offered

by the ith fog device to transfer the processed data to the parent node.

The module mapping function F indicates the placement of application modules on a network
device that meets the requirement as defined in the following,

F :V→N (8)

∀(mi, fi) ∈ F |
⇒ Req(mi) < C(fi)

∀mi ∈M
∀fi ∈N

|
⇒ Φ

childs

fi
≤ Φ

Threshold

fi
∀mi ∈M
∀fi ∈N

|
⇒ L

fi
t ≤ L

mi
App

∀mi ∈M
∀fi ∈N

(9)

where, Φ childs
fi

and ΦThreshold
fi

represents the sensing rate of the sensors deployed on the end devices

connected to the ith fog device and the threshold value of the ith fog device to handle sensed data
to achieve optimum performance, respectively. In the above equation Lmi

App is the threshold value of

the latency defined by the application for the deployment of the application module to maintain
latency requirements of the application. In the traditional process of deploying applications on the
cloud paradigm, all modules are used on the cloud server, which leads to the high cost of cloud
computing, and brings more delay and network consumption. Moreover, in the homogeneous
fog paradigm that includes fog devices with equal resources, modules are statically distributed
on the cloud and fog devices to provide services closer to edge devices. On the other hand,
the heterogeneous fog network includes fog devices with different resources and different load
conditions. In the heterogeneous fog paradigm, the application module is placed on a fog device
that meets the requirements of the module.

We observed that the simulations are performed in the iFogSim toolbox developed for model-
ing and simulation of cloud and fog networks. This paper designs and redefines the EEG tractor
beam game [28] to prove the effectiveness of this method. The application is based on the sensing
process actuation model, where the sensed data is transmitted to the parent device in the form
of a data stream for further processing by the application program module, and the generated
instructions are sent to the actuator.

The DAG of the application model implemented in our simulation is shown in In Fig. 2,
which contains five application modules including EEG, client, concentration calculator, coordi-
nator and display. EEG stands for an IoT device that can sense the EEG signal of the player and
send EEG-type tuples to the client module. In order to visualize the current state of the game to
the user, the display module is placed on the actuator. In the computing environment, a tuple is
the basic unit of communication between modules, and its characteristic is the specific length of
data and processing requirements encapsulated in it. Tuples are defined by specific types, source
modules and target modules, as shown by the DAG edge. The colored circles on the arc in the
DAG represent the tuple mapping. For example, passing in a tuple of type _SENSOR on the
module “Concentration Calculator” will result in an emission of tuple type CONCENTRATION.
The client module is placed on the end device connected to the sensor and the actuator. The
processing of all signals from all players requires a lot of processing and storage resources, so the
coordinator module will be placed on the cloud server.
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4 Proposed Solution

We propose two integrated algorithms here to place application modules in a heterogeneous
Fog-Cloud environment to ensure reduced network consumption and latency to edge nodes. Our
proposed algorithm will carefully check the fog nodes in the entire network and place application
modules based on the available capacity, the sensitivity of the sensor, and the overall delay to the
parent node.

The first algorithm is a module placement algorithm that takes fog nodes and application
modules to place as input and returns the efficient placement of modules on suitable nodes. Set
of heterogeneous fog devices F are first sorted in ascending order according to available capacity
per node. After that, each fog node is examined to check its eligibility to handle the module to
be placed. For every eligible node LOADCOMP algorithm is called that calculates the number of
edge devices connected to that specific node and calculates the load on that fog device.

Algorithm 1 is a module placement algorithm, which places fog nodes and application mod-
ules as inputs, and returns the effective placement of the modules on the appropriate nodes. First,
sort a group of different atomization devices F in ascending order according to the available
capacity of each node. After that, each fog node will be checked to see if it is suitable for
handling the modules to be placed. For each qualified node, Algorithm 2 (LOADCOMP) counts
the number of edge devices connected to that specific node and calculates the load on the
atomization device. A check is performed to confirm whether the ability of the fogging device is
sufficient to handle the load provided by the edge device. The module is placed on the fog node
to ensure the minimum latency threshold defined for the module. If the device is not suitable for
placing the corresponding module, then the module is placed on the parent device. Fig. 3 shows
the procedures involved in placing delay-sensitive modules on network nodes in the form of a
flowchart.

Algorithm 1: Module Mapping Algorithm: Fog-Cloud Placement
Input: Set of Fog devices F and Application modules M
Output: Placement of application modules on network nodes

1: function MODULEPLACEMENT (Fog Devices fi ∈ Layer 2, Application Module to place
mi ∈M)

2: Sort (fi); 
inascendingorder
3: placedmodules← {};
4: for each fi do
5: while (Cap (fi) > Req (mi)) do
6: int i= LOADCOMP (fi,mi)
7: if (i != −1) then
8: Cap(fi)=Cap(fi)−Req(mi);
9: end
10: else
11: Place module on the Parent device
12: add the module to placedmodules
13: end
14: end while
15: end for
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Algorithm 2: LOADCOMP algorithm for comparison of total processing load on Fog Device with
available capacity
1: function LOADCOMP (Fog device x)
2: Edges = {}
3: for End device d ∈ Tier 3 do for all End devices
4: if (Parentd == x)
5: ΦSensingLoad =ΦSensingLoad +Φd

SensingLoad
6: Childrenx=Childrenx + 1
7: add d to Edges
8: end
9: end for
10: if (

ΦSensingLoad
Childrenx

≤ Φ
x

capability)
11: for Child deviced ∈ Edges do for all Child devices
12: if ((Φx

latency
+ Φd

latency
+ Φsensor

latency
)≤ (Latencyx−module

Threshold
))

13: Place module on device x
14: add the module to placedmodules
15: end
16: else
17: return -1;
19: end
20: end
21: end
22: else
23: return -1;
24: end
25: end function

5 Results and Discussion

We simulated the EEG tractor beam game application to verify the effectiveness of the
proposed algorithms. Our simulation environment has different numbers of sensor nodes with
heterogeneous configurations in cloud and fog cloud paradigms. In our scheme, there are five fog
nodes connected to the gateway node. Initially, each fog device was connected to two edge devices.
We created the sensor in the simulation according to the strategy of [19]. In the simulation, we
increased the number of sensors connected to each fog device to calculate latency and network
usage. The graphical view of one of the scenarios created in iFogSim is shown in Fig. 4. In
Tabs. 3–5, we have summarized the network parameters, tuple types and simulation settings used
in our simulation scenarios.

The tuple emission rate of sensors rate is randomly selected between 10 and 30 milliseconds.
We compared the proposed method with traditional cloud computing deployment in terms of
latency, network usage, and cost of execution on the cloud. Several simulations were performed to
equate the performance of the proposed fog-cloud method with the conventional cloud computing
paradigm. Fig. 5 shows the network consumption of both paradigms in each simulation scenario.
We observe large network consumption in the cloud-based implementation compared with the
fog-cloud approach. In the proposed architecture, processing and storage functions are distributed
throughout the system in the form of fog nodes. The network consumes less resource, because
the fog node subsequently reduces the network load. On the contrary, in the cloud structure, all
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the detected data is transmitted to the cloud server for further processing, resulting in a large
consumption of network resources.

Figure 3: Flow diagram of proposed latency aware module placement algorithms

Figure 4: Initial topology in iFogSim for the evaluation of the proposed approach
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Table 3: Network parameters used in simulations

Parameter Cloud Proxy Fog node End device

Level 0 1 2 3
Rate Per MIPS 0.01 0 0 0
RAM (GB) 40 4 4 4
Downstream bandwidth (MB) 10000 10000 10000 10000
CPU length (MIPS) 44800 2800 2800 2800
Upstream bandwidth (MB) 100 10000 10000 10000

Table 4: Tuple types and parameters used in simulation

Tuple type Tuple CPU length (MIPS) Network length

EEG 3000 500
_SENSOR 3500 500
PLAYER_GAME_STATE 1000 1000
CONCENTRATION 14 500
GLOBAL_GAME_STATE 1000 1000
SELF_STATE_UPDATE 1000 500
GLOBAL_STATE_UPDATE 1000 500

Table 5: Latency values used in simulations

Source Designation Latency (ms)

Cloud Proxy server 100.0
Proxy server Fog node 5.0
Fog node End device 1.0–10.0
Device Sensor 1.0–10.0
Device Actuator 5.0–10.0

Fig. 6 shows a comparison between the latency provided by the cloud for each simulation
scenario and the proposed fog cloud example. The latency provided by the cloud paradigm
increases in proportion to the increase in the number of sensors connected to the cloud. In a
cloud-centric architecture, the reason for the increase in latency is that the cloud server must
process the data sensed by all sensors, while in the proposed fog-cloud method, the fog nodes
process less data sensed by the sensors. The key feature of the proposed fog cloud algorithm is to
provide fast response by using locally available resources at the fog node, thereby minimizing the
processing load on the cloud server to the terminal device by executing tasks at the fog node close
to the edge of the network and so reducing delay. The adaptability of the proposed algorithm in
the fog cloud architecture reduces the amount of data to be executed to the cloud for processing,
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which reduces the execution cost on the cloud, as shown in Fig. 7. This is due to the reduction
in execution costs on the cloud, which provides additional processing power in the form of fog
nodes between the cloud and edge devices.

Figure 5: Network consumption in proposed fog-cloud vs. conventional cloud architecture

Figure 6: Latency in proposed fog-cloud vs. cloud computing architecture
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Figure 7: Execution cost in proposed fog-cloud vs. cloud-based implementation

6 Conclusions

In this article, we propose a module placement algorithm that can take into account the
IoT applications and effectively place application modules in the Fog-Cloud computing paradigm.
The proposed algorithm selects application modules and assigns them to appropriate devices to
implement delay-sensitive IoT applications in a heterogeneous environment. In order to reduce
the workload on the existing architecture, our proposed algorithm effectively places application
modules on heterogeneous devices to reduce network usage. We used the proposed algorithm to
develop a latency-sensitive game application to test the results. We have observed that compared
with cloud architecture, using this algorithm under the fog cloud paradigm can significantly reduce
the execution cost, end-to-end latency and network usage on the cloud. Our algorithm is equally
applicable to all types of IoT applications. In the future, a new efficient scheduling algorithm for
fog-cloud computing applications will attract widespread attention. We plan to implement more
applications and further enhance algorithms for multiple features, and study the drawbacks and
problems caused by node failures in the network.
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