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Abstract: COVID-19 is a growing problem worldwide with a high mortality
rate. As a result, the World Health Organization (WHO) declared it a pan-
demic. In order to limit the spread of the disease, a fast and accurate diagnosis
is required. A reverse transcript polymerase chain reaction (RT-PCR) test is
often used to detect the disease. However, since this test is time-consuming, a
chest computed tomography (CT) or plain chest X-ray (CXR) is sometimes
indicated. The value of automated diagnosis is that it saves time and money
by minimizing human effort. Three significant contributions are made by our
research. Its initial purpose is to use the essential finetuning methodology
to test the action and efficiency of a variety of vision models, ranging from
Inception to Neural Architecture Search (NAS) networks. Second, by plotting
class activationmaps (CAMs) for individual networks and assessing classifica-
tion efficiency with AUC-ROC curves, the behavior of these models is visually
analyzed. Finally, stacked ensembles techniques were used to provide greater
generalization by combining finetuned models with six ensemble neural net-
works. Using stacked ensembles, the generalization of the models improved.
Furthermore, the ensemble model created by combining all of the finetuned
networks obtained a state-of-the-art COVID-19 accuracy detection score of
99.17%. The precision and recall rates were 99.99% and 89.79%, respectively,
highlighting the robustness of stacked ensembles. The proposed ensemble
approach performed well in the classification of the COVID-19 lesions on
CXR according to the experimental results.
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1 Introduction

The coronavirus (COVID-19) was first noted in December 2019 in Wuhan City (Hubei,
China). The viral infection quickly spread worldwide, eventually causing a global pandemic.
Following a detailed study of its biological properties, the virus was found to be of zoonotic
origin and consists of a single-stranded ribonucleic acid (RNA) genome with a strong capsid.
Based on this survey, it was concluded that the virus belongs to the coronaviridae family and
was subsequently named 2019-novel coronavirus (nCOV). A person infected with 2019-nCoV may
have no symptoms or develop mild symptoms, including sore throat, dry cough, and fever. If the
human body hosts the 2019-nCoV for a long period, the virus can cause severe respiratory illness
and, in the worst case, it can lead to death. There are four stages that are used to assess the
virus’s virulence in the human body. During the first four days of the infection, the patient is often
asymptomatic. The second stage is the progressive stage which generally occurs between the fifth
and eighth day following the infection, whereby the patient may develop mild symptoms. Stage
three is known as the peak stage, which occurs between nine and thirteen days. The final stage is
the absorption stage, whereby the load of the virus exponentially increases [1]. These observations
were reported with clinical experimentation in Fig. 1 [2].

Figure 1: An upsurge in the number of cases and death rate from January to July 2020 is depicted.
The infection and death rate increased by approximately 105 within six months

Due to the rapid surge in cases, healthcare systems are finding it increasingly difficult to cope
with the demand and to provide timely vaccination [3]. This problem is being further exasperated
by the shortage of medical supplies globally. In order to reduce the burden on healthcare systems,
several preventive measures such as social distancing, proper sanitization, the mandatory wearing
of masks in public places, and lockdowns have been implemented worldwide to reduce the spread.
Despite the implementation of all these measures, the mortality rate from the disease is still
high in various countries. According to the Chinese National Health Commission (NHC), as of
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February 4th, 2020, the mortality rate from the disease was 2.1% in China and 0.2% outside of
China. The mode of spread of the virus in asymptomatic cases remains controversial [4,5]. In
order to identify COVID-19 in an asymptomatic person, precise and proper diagnostic tests are
required. The diagnostic tests are typically performed by collecting samples from the individual
patient for testing in a laboratory or at a point of care testing center [6]. Manual testing is time
consumes and labor-intensive. Therefore this method is not suitable to obtain a fast diagnosis
during a pandemic. Computed tomography (CT) and chest X-ray (CXR) can be used to detect
and assess the severity of the lung damage caused by the viral infection. However, a radiologist
needs to analyze these images manually, which is time-consuming. Artificial intelligence (AI) can
be used to develop algorithms to automatically assess the lung damage caused by the virus [2,7].
The findings for the COVID-19 infection in CXR or chest CT vary from person to person.
However, two common hallmark imaging features observed in infected patients were bilateral
and peripheral ground-glass opacities and peripheral lesions with a rounded morphology [2].
These distinct features facilitate the use of machine vision learning models to automatically detect
COVID-19 lesions on either CXR or CT images. However, traditional methods do not preserve
the contextual information of CT scan images. In view of this, this study aimed to develop a
robust diagnostic model for COVID-19 detection on CXR images. The objectives of this study
were to:

• analyze the behavior and performance of various vision models ranging from inception to
Neural Architecture Search (NAS) networks followed by appropriate model finetuning,
• visually assess the behavior of these models by plotting class activation maps (CAMs) for
individual networks,
• determine the classification performance of the model by calculating the area under the
curve (AUC) of a receiver operator curve (ROC),
• improve the generalization of the model by combining the finetuned model deep learning
with the shocked model (stacked ensembles technique).

2 Previous Works

Numerous studies evaluated the use of deep learning methods for the automatic detection,
classification, feature extraction, and segmentation for COVID-19 diagnosis from CXR and CT
images. This study discusses the relevant applications of pre-trained deep neural networks that
prompt the key aspects to impact COVID-19 detection and classification. Fan et al. [8] pro-
posed the use of the deep learning network Inf-Net for the segmentation of COVID-19 lesions
on transverse CT scan images. This network architecture utilized Res2Net as a backbone and
obtained a dice score of 0.682. A similar semi-Inf-Net model attained a higher dice score of
0.739. Oh et al. [9] implemented two different approaches, global patch matching, and local patch
matching, for segmentation and classification. Their method used ResNet-18 as the backbone
to classify four different types of lung infections similar to that of COVID-19. Their algorithm
obtained an accuracy score of 88.9% and specificity of 0.946 on randomly cropped patches using
a local approach. Rahimzadeh et al. [10] constructed the 8-phase training concatenating Xception
and ResNet-50 architectures. In each phase, samples were trained using a proper stratification
to overcome class imbalance for 100 epochs. This model attained an overall accuracy score of
91.4% by five-fold cross-validation. Ozturk et al. [11] proposed a Dark-CovidNet model for binary
and tri-class classification of CXR images infected with COVID-19. This model was trained by
constructing a deep neural architecture with a series of convolutional layers and max-pooling
layers. This method attained accuracy scores of 98.3% for the binary classification and 87.2% for
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the tri-class classification on five-fold cross-validation. Apostolopoulos et al. [12] applied transfer
learning using diverse pre-trained architectures on two different datasets for the classification
of COVID-19 CXR images. Their transfer learning methodology attained an accuracy score of
98.75% using VGG-19 pre-trained weights for binary classification and an accuracy of 94.7% for
the MobileNet-V2 CXR images classification consisting of three classes. Li et al. [13] proposed
the CovNet network by training a deep learning model with ResNet-50 as a backbone for sharing
weights and attained an accuracy of 96%. Khan et al. [14] designed the CoroNet-architecture with
Xception as an underlying weight-sharing model. This model achieved an accuracy score of 99%
through binary classification, 95% when using three non-identical classes (one class belonging to
COVID-19), and 89.6% for four variant classes following a four-fold cross-validation framework.
Wang et al. [15] proposed the use of COPEL-Net to segment COVID-19 pneumonia lesions
from CT images. The novel dice loss combined with a MAEloss for generalization was used
to reduce noise and minimize the foreground and background imbalance for the segmentation
task. This diagnostic frame obtained a dice score of 80.72± 9.96. Most COVID-19 classification
and segmentation on CXR and CT images described in the literature are based on deep neural
networks. The advantage of deep neural networks is that they provide a versatile weight-sharing
mechanism, thus improving the performance of the algorithm. Therefore, this study aimed to
develop a robust diagnostic COVID-19 model using CXR images. The objectives of the study
were to:

• examine the behavior and efficiency of different deep learning vision models ranging from
Inception to NAS networks, using the proper finetuning procedure,
• visually assess the behavior of these models by plotting class activation maps (CAMs) for

individual networks,
• determine the classification performance of the model by calculating the area under the

curve (AUC) of a receiver operator curve (ROC),
• improve the generalization of the model by combining the finetuned model deep learning

with the shocked model (stacked ensembles technique).

3 Methodology

3.1 Dataset Description
A total of 2905 CXRs were obtained from various databases, including the Italian Society

of Medical Radiology (SIRM), ScienceDirect, The New England Journal of Medicine (NEJM),
Radiological Society of North America (RSNA), Radiopaedia, Springer, Wiley, Medrxiv, and
other sources Fig. 2. The complete source list of the COVID-19 CXR image samples is available
in the metadata file [16]. These images were reviewed by an expert radiologist. Eight percent (n =
219) of these images were from patients infected with COVID-19%, 46% (n= 1341) of the images
were from healthy persons, and the rest of the images were from patients suffering from either
bacterial or viral pneumonia (n = 1345) [16]. The data was then divided into 75% training (Dtrain)
and 25% testing datasets (Dtest). Due to the small number of CXRs with COVID-19 lesions,
stratified random sampling was used to ensure that all three diagnoses were equally represented
in both training and testing datasets and hence minimize the risk of introducing class imbalance
in the data distribution.
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Figure 2: Pie chart illustrating the CXR sources

3.2 Convolutional Neural Networks for Feature Extraction
Convolutional neural networks (CNNs) are increasingly being used in computer vision to

detect, classify, localize, and segment normal and pathological features from medical images [17].
The use of CNN increased widely following its application in large-scale image recognition chal-
lenges (ILSVRC-2010). In this challenge, AlexNet [18] made use of a deep CNN and resulted
in the lowest detection error rate. This motivated researchers to make use of this technology
to develop multidisciplinary high-end applications [19]. The CNN architecture can be modified
significantly by manipulating the width, depth, and channels (activation-maps) to further improve
the performance of the model with appropriate generalizations. Furthermore, the model’s perfor-
mance can be further improved through the manipulation of parametric weight sharing from one
network to another network. This technique facilitates the feature extraction procedure in most
networks, eventually reducing the computational and training cost [20,21]. Following the successful
implementation of AlexNet, numerous other CNNs were developed. In the following section, the
advantages and limitations of each CNN are discussed.

3.3 Inception
The Inception architecture is designed with a novel ideology module. This network archi-

tecture is trained by widening layers to increase the depth of the network depth with a few
computational parameters. There are two versions of the architecture, including a naive and
a dimensionality-reduced. The Inception module consists of three levels. The bottom levels of
inception feed into four different layers stacked by width. The intermediate layers extract spa-
tial information individually and correlate with each layer. The top layer concatenates all the
intermediate layer’s feature maps to maintain a hierarchy of features to improve the perceived
performance of the network [22].
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3.4 VGG-Nets
After Inception, VGG networks were developed by a sequential convolutional layer with a

pooling layer. The sequential depth of the models ranged from 11 to 19 layers. The appropriate
use of the max-pooling layers in 16 and 19 layered VGG-Nets is essential for spatial sub-sampling
and the extraction of generic features at the rearmost layers. VGG-Nets use small receptive
fields of 5x5 and 3x3 to capture small features, eventually improving their detection precision
accurately. The generalizability of the model for highly correlated inputs can be further improved
by finetuning the learning application schedules to decrease the learning rate [23].

3.5 Res-Nets
The Res-Nets were developed to address the problem of vanishing gradients by imparting

identity mapping in large-scale networks. They reformulated deep layers by aggregating learned
activations from a prior layer to form a residual connection. This residual learning minimizes the
problem of degrading and exploding gradients in the deeper networks. These residual connections
help in addressing learned activations from preceding layers, maintaining a constant information
flow throughout the network, and eventually reduce the computational cost [24–26].

3.6 Inception-Res-Nets
This network was inspired by the Inception network modules and identity mappings from

ResNets. This method integrates dimensionality-reduced Inception modules with sequential resid-
ual connections hence increasing the learning capability of the network while reducing its com-
putational cost. This provides better generalization ability when compared to various versions of
the ResNet and Inception Networks [25].

3.7 Xception
This network was proposed to compete with the Inception network to reduce its flaws.

The simultaneous mapping of spatial and cross-channel correlations guides allows for improved
learning with small receptive fields and improves perceptive ability. The depth-wise separable
convolutional layers enhance the learning through detailed feature extraction. These networks are
computationally less expensive and perform better than the Inception network [27].

3.8 Dense-Nets
These densely connected CNNs are motivated by the residual connection of Res-Nets and

imposed long-chained residual connections to form dense blocks. In Dense-Nets, for N layers,
there are N(N+1)/2 connections (including residual connections) that enhance the network’s capa-
bility for extracting detailed features while reducing image degradation. The sequential dense
and transition blocks provide a collection of knowledge, and a bottleneck receptive field of
3x3, eventually improving its computational efficiency. The finetuning of larger weights improves
generalization in deeper networks with a depth ranging from 121 to 201 layers [28].

3.9 Mobile-Nets
Mobile-Nets were designed for mobile applications under a constrained environment. The

main advantage of this network is the combination of inverted residual layers with linear
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bottlenecks. The constructed deep-network accrues a low-dimensional input, which eventually
expands by elevating dimensional space. These elevated features are filtered via depth-wise sep-
arable CNNs and are further projected back onto a low-dimensional space using linear CNNs.
This contribution reduces the need to access the main mobile application memory, thus providing
faster executions through the use of a cache-memory [29].

3.10 Nas-Nets
Nas-Nets make use of convolution cells by learning from distinct classification tasks. The

design of this network is based on a reduced depth-wise stacking of normal cells, hence providing
an appropriate search space by decoupling a sophisticated architectural design. This adaptability
of Nas-Nets enables it to perform well even on mobile applications. The computational cost is
significantly reduced, and its performance can be improved by enhancing the depth [30].

4 Deep Stacked Ensemble Method

This deep-stacked ensemble method was evaluated by classifying COVID-19 database inputs
into a tri-class and a binary class, as shown in Fig. 3.

Figure 3: The complete methodology of the deep-stacked ensemble method

Various samples were first considered and pre-processed to a specific resolution of 224×224×3
of the COVID-19 dataset. These pre-processed images were then fed into a variety of deep
networks that use different paradigms to extract features from latent dimensions. The extracted
feature vectors are then evaluated, and the two best-performing models are selected to form a
stacked ensemble. The COVID-19 class is given more weight in this ensemble, which was assessed
by classifying the feedback into a tri-class and a binary class.
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Algorithm-1: Fine-Tuning the Neural Networks

1. Procedure Training (Dtrain, NN)
2. Xtrain, ytrain←Dtrain;
3. α0← 16278; �Parametric Initialization
4. β0← 10; �Parametric Initialization
5. ε0 ← 10−5; �Parametric Initialization
6. iters ← [0, 1, 2];
7. L ←∑

v
max(0, 1

2 − y(v)
pred ∗ y(v)

true); �Hinge2 Loss

8. for i in iters do
9. if i== 0 then �1st Iteration
10. α← α0; β← β0; ε← 10 ∗ ε0;
11. opt←Ad(ε);
12. NN.train(Xtrain, ytrain, opt, L , α, β);
13. else if i== 1 then �2nd Iteration
14. α← 2 ∗α0; β← β0+ 10; ε← 100 ∗ ε0
15. opt←Ad(ε);
16. NN.train(Xtrain, ytrain, opt, L , α, β);
17. else if i== 2 then �3nd Iteration
18. α← 1.857 ∗α0; β← β0+ 15; ε← 100 ∗ ε0
19. opt←Ad(ε);
20. NN.train(Xtrain, ytrain, opt, L, α, β);
21. else
22. break �Halt Training
23. return NN
24. Model ←TRAINING(Dtrain, Nv−16)
25. Predictions ←Model.Predit(Dtest)

4.1 Finetuning of Neural Networks
Deep learning algorithms can accurately detect pathology from bio-medical imaging to

human-level precision. The CNNs provide numerous advantages for feature detection in medical
imaging. There are two methods that can be used to design neural architectures for medical
imaging. The first method involves designing a novel architecture by overhauling loops in existing
architectures by training it end-to-end. The second method involves model finetuning by either
transferring the weights of a pre-trained model (transfer of weights) or by retraining an existing
pre-trained architecture.

The training of an end-to-end CNN requires proper initializations, which can be computa-
tionally expensive. On the other hand, the transfer of weights from the pre-trained models for
a similar problem statement can be useful to reduce the computational cost. However, they may
not extract the invariances if the class samples in the problem statement are not trained at least
once. For example, a pre-trained network on Imagenet may not be able to extract the invariances
in CXRs if these samples are never seen or trained. This means that the model may end up
capturing unwanted features on the CXR, leading to an inaccurate classification. In order to
overcome this problem, the model is fine-tuned to obtain the appropriate features. Fine-tuning
of the model is extremely important in medical imaging when the sample size is small, leading
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to class imbalance [31]. Hence, the existing models, starting from VGG-Nets to Dense-Nets,
were all finetuned to extract invariant features and discriminate the COVID-19 class from the
remaining. The fine-tuning for individual models were performed as per Algorithm-1. The major
parameters considered for finetuning in our methodology were learning schedules and batch sizes.
The algorithms were finetuned by constricting the noise caused during the training process to
reduce the risk of misleading the model if not trained with appropriate initializations.

The Dtrain and Dtest samples were inserted into each model to capture latent feature vectors.
A feedforward neural network was built to classify the extracted feature vectors, and all models
were fine-tuned using Algorithm 1. The final extracted feature vector consisted of different three-
dimensional shapes according to the model. These latent representations were then classified by
attaching a dense layer consisting of 256 neurons followed by dropout [32] and batch normaliza-
tion [33] of the layers for regularization. The final layer consisted of a softmax activation layer
with “c” neurons, whereby “c” represents the number of classes. The dropout percentage was set
to 30%. A generalization assessment was performed for all individual models. ReLU [34] was used
for the non-linearity construction of the model architecture for all the layers except the final layer,
whereby feed was forwarded by softmax. Glorot-normal was used for the initializations of most
of the layers [35]. The initializations with appropriate activations resulted in the extraction of the
following intricate, deep feature layers.

All models were carefully finetuned, and their performance was evaluated using various
performance metrics. The generalizations provided by the finetuned models are summarized in
Tab. 1. All the models performed well and had a similar overall performance Tab. 2. The classwise
performance of the model is also summarized in Tab. 2. The classes are coded as C-0, C-1, and
C-2, indicating COVID-19, normal, and pneumonia, respectively.

In the design of medical diagnostic prediction models, receiver operating characteristics (ROC)
analysis is essential for analyzing the model performance. The area under the curve (AUC) of
the ROC of a classifier determines the diagnostic stability of the model. This AUC-ROC curve
is insensitive to the alterations in the individual class distributions [36]. A ROC curve for each
model was therefore plotted, as shown in Fig. 4. The feature extraction ability of models varied
widely, as not all models were capable of recognizing features pertaining to COVID-19 lesions.

A prediction model for medical imaging needs to have a high sensitivity and specificity.
A clinically useful COVID-19 model based on CXR needs to be able to differentiate between
COVID-19 from other infections. However, the distinction of CXR lesions caused by COVID-
19 as opposed to other infections can be quite challenging. CAMs were therefore applied to all
CXR input images [37]. CAMs apply global average pooling for bottleneck activations in CNNs
and provide a visual understanding of discriminative image regions and/or the region of interest.
CAMs provide a visual illustration through the use of heat maps of the features extracted by
the models to make predictions. Therefore CAMs provide a clear understanding of whether the
acquired features are distinctive of a COVID-19 lesion, as illustrated in Fig. 5.

The CAMs analysis shows that some of the models extract the peripheral and bilateral
ground-glass opacities while some of the other models also extracted the rounded morphology
typical of COVID-19 lesions [38]. Since both features were deemed essential for an accurate
diagnosis, the models that provided the highest generalization and extracted different features
according to the CAMs analysis were used to develop the neural model averaging or neural
stacked ensembles models.
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Table 1: Variables used with their description

Variables Description

Dtrain Training data
Dtest Test data for generalization
Xtrain; Xtest Training feature set; Testing feature set
ytrain; ytest Training label set; Testing label set
Ao The initial number of iterations
Bo The initial number of batches considered to fit into a NN
Ad(lr) Adam optimizer with learning rate as a parameter
Eo Initial learning rate
L Loss function considered (Squared-Hinge)
ypred Predicted labels during training or testing
ytrue Ground truth labels
Nv−16; Nv−19 Altered VGG16 VGG-19 network architectures designed for classification
Pv−16; Pv−19 Trained network architectures (VGG-16 and VGG-19)
f (.) A dense feedforward network with two parameters whereby one represents

the input, and the other one shows the number of hidden neurons:
f (x, n) = W .x + b (W:weight matrix;b:bias; n:no.of neurons determining
shape of W,b)

Act(.) Activation function softmax: Act(xi)= exi∑
i e
xi

Table 2: Individual models performance

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

C-0 C-1 C-2 C-0 C-1 C-2 C-0 C-1 C-2

VGG-16 93.94 90.9 91.86 96.82 81.63 96.58 92.96 86.02 94.16 94.85
VGG-19 89.95 57.14 97.00 91.81 97.95 83.19 96.02 72.180 89.570 93.87
Xception 97.11 97.91 97.86 100.0 95.91 99.71 96.02 96.90 93.85 94.19
InceptionV3 93.53 74.46 93.50 96.31 71.42 94.30 96.02 72.91 93.90 96.17
InceptionResNet 94.77 92.30 94.19 95.71 73.46 97.15 95.41 81.81 95.65 95.55
ResNet-50 93.12 98.26 87.26 95.92 81.63 96.58 92.96 87.02 94.16 93.85
ResNet-101 90.09 75.41 97.32 86.68 93.87 82.62 97.55 83.64 89.37 91.79
ResNet-152 91.74 65.71 94.10 94.96 93.87 90.88 92.35 77.31 92.46 93.64
MobileNet 97.24 93.75 96.91 98.14 91.83 98.29 96.94 92.78 97.59 97.53
NASNetMobile 94.22 94.17 92.70 95.97 65.30 97.72 94.80 77.10 95.15 95.38
DenseNet-121 96.56 88.46 99.10 95.29 93.87 94.58 99.08 91.08 96.79 97.15
DenseNet-169 93.94 79.66 95.39 94.44 95.91 94.01 93.57 87.03 94.96 94.01
DenseNet-201 74.55 100.0 65.48 99.99 61.22 99.99 49.23 75.94 79.14 65.98
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Figure 4: AUC ROC curves obtained from the fine-tuned neural networks
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Figure 5: Class activation maps (CAMs) obtained from the finetuned neural networks (a) Original
CXR, (b) CAMs of VGG-16, (c) CAMs of VGG-19, (d) CAMs of InceptionV3 (e) CAMs
of ResNet50, (f) CAMs of ResNet101, (g) CAMs of ResNet152, (h) CAMs of Xception, (i)
CAMs of InceptionResNets, (j) CAMs of MobileNet, (k) CAMs of NasNetMobile, (l) CAMs of
DenseNet121 (m) CAMs of DenseNet169, (n) CAMs of DenseNet201
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5 Model Averaging

Model averaging is the process of averaging the outcomes of a group of networks trained on a
similar task or the same model trained on different parameters. The model averaging improves the
generalization of the models by aggregating their predictions. The generalization for the model was
obtained by minimizing the loss during stochastic optimization using equation Eq. (1), whereby
x and y are features and ground truth class labels of particular data distribution. If fn is an nth

neural architecture that predicts the class label for a given feature set (where, n= 1, 2 . . .N), the
mean squared error for the loss function can be minimized as follows:

LMSE← argmin
w

E

[
y− 1

N

N∑
n=1

f̂n(x)

]2
(1)

where fN represents the final neural architecture.

Similarly, weights can be assigned to individual models based on their prediction performance.
These weights are then applied to the appropriate models to obtain aggregated generalization. This
is known as weighted model averaging. In the case of model averaging, the models are equally
treated by assigning the individual performance of the model to each network. This means that
the weighted model averaging provides importance to the required models and discards the poorly
performing models.

LMSE← argmin
w

E

[
y−

N∑
n=1

Wnf̂n(x)

]2
(2)

where Wn are weights of the nth model (n= 1, 2, 3, ..N).

The generalization provided by the committee of the neural models improves when compared
to that of model averaging and weighted model averaging. Hence, the models were stacked to
improve the generalization ability of the model.

6 Stacked Ensembles

The stacked ensemble integrates or groups different models to provide aggregated generaliza-
tion by mapping the output predictions onto a logit function. Instead of averaging the weights
to the grouped models, logistic regression or multi-class logit was applied to map the predictions.
Therefore, the predictions were gathered, and a logistic regression was applied to them or built
at the end-to-end neural model that applies softmax non-linearity as final activation [39,40].
The generalization improvements provided by the stacked ensemble (using neural networks) were
mathematically described as follows.

Our network was first considered to be a function that predicts a certain input x, where our
true function is Ti(x) and approximated function is f (x) ∀i= 1, 2, 3, . . .n. Suppose,

Ti(x)= f (x)+ ri (3)

where ri is the generalization error ∀ i = 1, 2, 3 . . .n , whereby n represents the number of neural
networks to an ensemble.

ri =Residual= {Ti(x)− f (x)} (4)
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ri2 = {Ti(x)− f (x)}2 (5)

Zi =E[ri2] (6)

where E[ri2]=∫ ri2(x)p(x)dx (7)

So, the average individual error settled from the networks can be estimated as follows:

Zavg = 1
n

n∑
i=1

E[ri2] (8)

The ensemble learning of the grouping variant networks is presented in the following
equations:

Tstack(x)=
1
n

n∑
i=1

Ti(x) (9)

Estimated error resided by stacking these ensembles:

Zstack=E[(Tstack(x)− (fx))2] (10)

Suppose,

E[ri]= 0 & E[rij]= 0 for i �= j (11)

Zstack=E
⎡
⎣
(
1
n

n∑
i=1

ri2
)2
⎤
⎦ (12)

Zstack=
1
n2

n∑
i=1

E[ri2] (13)

From Eqs. (13) and (8)

Zstack=
1
n
Zavg (14)

If individual networks did not correlate themselves, the stacking ensemble was reduced by n
factors using the original generalization attained from the individual networks. However, for most
scenarios, a correlation in generalization occurs, leading to an increase in the generalization error
to a certain extent.

To understand this scenario, rij �= 0 is considered. So,

Zstack=
1
n2
E

⎡
⎣ n∑
i=1

⎛
⎝ri2∑

j �=i
rirj

⎞
⎠
⎤
⎦ (15)
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Zstack =
1
n2

n∑
i=1

E[r2i ]+
1
n2

n∑
i=1

∑
i �=j

E[rirj] (16)

Zstack =
1
n
Zavg+ ε (17)

This constant ‘ε’ is an additional error caused due to covariances underlying the perception
of individual networks.

With this knowledge, it is clear that the stacked ensembles can outperform single networks
in terms of generalization. As a result, six different neural network committees were formed
by multiplying the number of neural networks described in Tab. 3, which ranged from 2 to 13
networks (all). These ensemble networks were evaluated using the standard classification metrics.
A small neural architecture was attached to the committee of networks to adjoin the connected
layer fully. This fully CNN consists of 16 neurons with a dropout of 30% for regularization.
The final activations were pushed with softmax non-linearity, which consisted of three neurons
describing the class predictions pertaining to each individual class. The results obtained by the
proposed stacked ensembles are described in the next section in detail.

Table 3: Different ensemble models used in the experiment

Ensemble model Stacked finetuned networks

Ensemble-1 VGG-16 + Xception
Ensemble-2 VGG-19 + Xception
Ensemble-3 VGG-16 + VGG-19 + Xception
Ensemble-4 Ensemble-3 + DenseNet169 + DenseNet201
Ensemble-5 Ensemble-5 + MobileNet
Ensemble-6 Stacking all the models in Table. 1

6.1 Results
As mentioned, the generalization error obtained by a committee of neural networks is always

less to that of a single neural network. Six variant committees of networks were selected and
combined as described in Tab. 3. The classwise classification metrics utilized to understand the
behavior of a specific COVID-19 class are illustrated in Tab. 4.

A comparative study was then performed to compare the performance of the proposed
network with other existing models described in the literature Tab. 5.

Our designed generic training algorithm facilitates the training process by acquiring faster
convergence and with low computations (Iterations). During the training process, the batch size
and learning rate are increased cautiously for each iteration to obtain a balanced criterion, as
explained by Smith et al. [41]. As noise during training can be reduced by properly choosing the
batching parameters fed into the network, the learning rate and momentum of the optimizer were
assigned a faster search.
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Table 4: Performance of the various stacked ensemble models

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

C-0 C-1 C-2 C-0 C-1 C-2 C-0 C-1 C-2

Ensemble-1 98.48 97.67 99.42 97.61 85.71 99.14 99.69 91.30 99.28 98.64
Ensemble-2 98.76 99.99 98.86 98.49 83.67 99.71 99.99 91.11 99.28 99.24
Ensemble-3 97.94 99.99 97.76 97.91 73.46 99.43 99.99 84.70 98.58 98.94
Ensemble-4 97.66 99.99 99.42 95.62 69.38 99.43 99.99 81.92 99.420 97.76
Ensemble-5 98.76 99.99 99.42 97.91 85.71 99.71 99.99 92.31 99.42 98.94

Table 5: Performance comparison of the novel stacked ensemble model with existing methods

Literature
(Prev.
Works)

Image-Kind
(CT or
CXR)

Model
(generalization-
test)
(Network
Used)

Binary
Classification

Accuracy
(%) 3-class
Classification

4-class
Classification

Yujin et al. [9] CXR Segmentation+
ResNet-18 (Train-Test)

- - 88.9

Mohammad
et al. [10]

CXR Xception+ ResNet50v2
(5 fold cv)

91.4 - -

Ozturk
et al. [11]

CXR DarkCovidNet
(5 fold cv)

98.3 87.2 -

Apostolopoulos
et al. [12]

CXR Transfer-Learning
(Train-Test)

98.75 94.7 -

Lin Li
et al. [13]

CT COVNET (Train-Test) - 96.0 -

A. Iqbal Khan
et al. [14]

CXR CORONET
(4 fold cv)

99.0 95.0 89.6

Wang
et al. [15]

COPLE-NET 80.72± 9.96 (Dice
Score)

- - -

Proposed CXR Stacked Ensemble
(Train-Test)

- 99.17 -

The noise due to training is theoretically represented as follows in Eq. (18).

noise ≈ ε

β
(Dtrain) (18)

Here we assumed a constant momentum. A training algorithm was developed to conceptualize
the noise constraint. Although a decaying learning rate can decrease the noise, it gradually
increases the computational time for training. On the other hand, lowering the batch size can
also reduce noise but comes at the cost of lowering the generalizing capacity of the model. These
problems were overcome by developing an algorithm that increased the batch size during the
specified iteration and cautiously increasing the learning rate as follows. The algorithm was first
iterated for 16278 steps (iteration 1), whereby the learning rate was set to 10−4 by sending 15
samples as a batch at a time. In the next iteration (iteration 2), the batch size was increased
by 50%, and the learning rate was increased tenfold. In order to maintain a consistent trade-off
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between generalization and faster convergence, the batch size was increased by a factor of 150%
(to that of initial), and the learning rate was tuned as per the preceding iteration. During the
experimentation, it was found that the proposed training procedure led to a faster convergence by
training using only a few steps (approximately 20 epochs).

Appropriate training with fine-tuning of the ensemble was therefore critical to obtain these
insightful outcomes. The final Ensemble-6 model had the highest performance when compared
with the other method, with an accuracy score of 99.175%. Ensemble-1 and Ensemble-2 attained
an accuracy of 98.487% and 98.762%, respectively. When taking into consideration only the
COVID-19 class, the precision rate was at least 97.674%, but the recall rate was lower. The
highest and lowest recall rates were 89.795% and 69.387% and were obtained by Ensemble-6 and
Ensemble-4, respectively. However, due to the small sample of the COVID-19 class in our study,
it was difficult to extract additional invariant features to improve the performance of the model
further.

6.2 Limitations
In this study, we observed that the stacked ensemble was slightly inefficient when a poor-

performing model was included. The DenseNet-201 model evaluations were not always finetuned
correctly, and the network depth was not always appropriate, leading to a high generalization
error. The COVID-19 results were not always included in the single model based on the features
derived from the individual models. The ensemble method offers more generalization, but the
combination of multiple models increased the computational cost, which is unnecessary for small-
scale computational systems (such as Ensemble-6). As a result, in real-world scenarios, small,
quick, and efficient models such as Ensemble-1 and Ensemble-2 are advantageous. The progression
of the virus can be visualized better on Chest CT axial images. However, there is a chance of
missing disease progression on CXR [38], which could be dangerous. Therefore future studies
should focus on the development of models that can predict disease progression on CXR.

7 Conclusion

In this study, various COVID-19 classification models were evaluated and compared using
different classification metrics. Furthermore, a learning framework for finetuning these models
was proposed, and their bottleneck activations were visualized using CAMs. The AUC-ROC
curves were closely examined, and the output of each class was illustrated visually. These fine-
tuned models were then stacked to outperform previous models and include a broad range of
generalizations. The ensemble models achieve an accuracy score of 97.66 percent in the worst-
case scenario. Even after finetuning for class imbalance, the models were found to have a high
generalization ability. The least error rate obtained by the outperforming model, built by stacking
all the finetuned models, was 0.83%. The stacked ensembles method improved the performance
of the model and could therefore be used to improve the prediction accuracy of the diagnostic
models in medical imaging.
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