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Abstract: Recently, Multicore systems use Dynamic Voltage/Frequency Scal-
ing (DV/ES) technology to allow the cores to operate with various voltage
and/or frequencies than other cores to save power and enhance the perfor-
mance. In this paper, an effective and reliable hybrid model to reduce the energy
and makespan in multicore systems is proposed. The proposed hybrid model
enhances and integrates the greedy approach with dynamic programming
to achieve optimal Voltage/Frequency (Vmin/F) levels. Then, the allocation
process is applied based on the available workloads. The hybrid model consists
of three stages. The first stage gets the optimum safe voltage while the second
stage sets the level of energy efficiency, and finally, the third is the allocation
stage. Experimental results on various benchmarks show that the proposed
model can generate optimal solutions to save energy while minimizing the
makespan penalty. Comparisons with other competitive algorithms show that
the proposed model provides on average 48% improvements in energy-saving
and achieves an 18% reduction in computation time while ensuring a high
degree of system reliability.

Keywords: Energy-efficiency; safe voltage; multicore processors; core utiliza-
tion; dynamic voltage/frequency scaling; makespan

1 Introduction

To process a massive amount of data, a possible solution is to use a large multicore system.
The energy consumption of such multicore systems is increasingly rising. This leads to an increase
in cooling costs and reduces the reliability of the system components. In order to work efficiently,
the power consumption and time limitations of multicore system chips become more important
as the number of cores in a single chip is rising up. In multicore systems, the power consumption
is either static or dynamic. Dynamic Voltage/Frequency Scaling (DV/FS) is one of the major
techniques used to manage a system’s power consumption. This technique can provide substantial
power saving with a small performance loss if exists. The DV/FS strategy centered on detecting
idleness in a device to scale down the frequency and optimize savings in energy to achieve minimal
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output costs because of the dependence between power consumption and voltage frequency. The
Dynamic Power Management (DPM) approach [1] is used to determine a specific point in which
the core is switched into a sleep mode to decrease the leakage current, which leads to a decrease
in its static power. The power management points should carefully be chosen to decrease the
overall energy consumption. In [2], a hybrid between DV/FS and DPM approaches is proposed.
The DV/FS scheduling problem can be used to determine the optimum execution frequency for
each core [3]. While greedy techniques predict local optimal Vmin/F levels to each core [4]. In [5],
a heuristic approach is introduced which uses the Dynamic Programming (DP) technique to speed
up the DV/FS run-time. At the final stage, a DP technique moves backward, through the sub-
problems solutions, stage by stage to obtain the optimal solution. The DP used overlapping
sub-problems, which can be solved in parallel through multicores. In this context, this approach
can achieve global optimal levels by considering the advantage of core utilization and energy
efficiency. In Boudjadar [6] built schedules with the purpose of reducing the processing energy with
high utilization levels for the cores. However, there will be a performance degradation due to the
increase in memory access requests, which in turn increases the accumulated waiting time to access
DRAM. It should be noted that core utilization is considered a key parameter in predicting the
optimal Vmin/F levels. In Papadimitriou et al. [7] is used the Voltage Guard Bands of multicore
chips to achieve rapid energy conservations. Where the discrepancy between a chip’s real Vmin and
the nominal operating voltage acts as a protected guard band for any application. Therefore, the
voltage settings can be modified to function correctly. In this paper, a hybrid model for reliability-
aware scheduling and energy efficiency in multicore systems is proposed. The proposed model
introduces a mixture between dynamic programming and greedy technique to achieve optimal
Voltage/Frequency (Vmin/F) levels.

This model is composed of three stages. The first stage named the safe voltage stage that
gets the optimum safe voltage (Vmin) of the system, while the second stage named set the level
of energy efficiency stage which predicts the optimum Vmin/F levels to each core using greedy
techniques, and eventually, the third stage named allocation stage to assess the global optimal
allocation for workloads using dynamic programming.

This paper summarizes the major contributions as follows: Firstly, we propose a novel energy
and reliability-aware scheduling model that globally optimized the distribution of tasks to cores or
clusters in an efficient manner. Secondly, the proposed model gets the optimum frequency levels
for individual core or cluster, leading to minimizing makespan execution time. Thirdly, the pro-
posed model achieved the highest load balance in addition to the best utilization levels in different
workloads. Finally, we evaluate the optimal energy-efficient model using several benchmarks to
examine the performance and reliability of the proposed model through multicore systems.

This paper has the following structure. Section 2 presents a summary of the related algo-
rithms. Section 3 demonstrates the system model. Section 4 describes the proposed hybrid model
and its stages. Section 5 explores a detailed explanation of status settings, platform, experimented
workloads, simulation methods, and results. In section 6 discusses the conclusions and the future
direction.

2 Related Work

Many optimization algorithms were proposed for the balancing of power/energy consumption
and time of execution include linear programming [4], genetic algorithms [8], game theory [9], and
machine learning techniques [10]. From the huge amount DV/FS is used on homogeneous multi-
core systems where device levels that are more specifically applicable to the scope of this work are
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allocated to (per-core DV/FS) or each core group (voltage and frequency island) [2]. In this paper,
we will use the previous two methods (per-core DV/FS) and (voltage and frequency island) at the
same time. Many studies investigated the reliability of heterogeneous systems like [11] to control
power systems, also the idea of Smart Energy and Reliability Conscious Scheduling algorithm
has been suggested (SERAS). It consists of three stages, which maps work tasks to multi-skilled
nodes with the purpose of completing workloads as effectively as possible while still meeting the
reliability needs. While [12] analysis, both the equity and the energy efficiency of heterogeneous
multi-core processors (HMPs). This article proposes a heterogeneous fairness-aware energy efficient
framework (HFEE) architecture that uses DV/FS for fairness constraints and energy efficiency
calendar. A true heterogenecous multicore systems is used and tested in the proposed framework.
The proposed a hybrid model is compared with [12]. We achieved more saving in energy, which is
presented in the results section. The event control is used only to increase system performance and
reduce overhead power consumption when a temperature boundary or timeout has been exceeded.
Reference [13] Formulate an issue about voltage scheduling that reduces device power requirements
to a minimum and solves them in polynomial time by using exact dynamic programming (DP).

3 System Model

This section introduces a hybrid model for reliability-aware scheduling and energy efficiency
in multicore systems. The proposed model is composed of three stages. The first stage gets the
optimum safe voltage (Vmin) of the system, while the second stage predicts the optimum Vmin/F
for each core using the greedy technique, and eventually, the third stage assesses the optimal allo-
cation for workloads through dynamic programming. Fig. | presents the proposed hybrid model.
As shown, the proposed model is constructed from three stages having four modules named task
module, architecture module, power module, and failure and reliability module. This gives a clear
explanation for the energy-efficient scheduling problem. For this purpose, we demonstrate each
stage in the following subsections.

3.1 Safe Voltage Stage

In this stage, a few sets of measurements are conducted to determine the state of each core. It
is possible to consider current voltage from the core remains steady even at a safe voltage (Vmin).
The detailed function for each module in this stage will be described as follows.

3.1.1 Task Module

In the task module, the tasks are multithreaded benchmarks. Based on the existing memory
system architecture, the cores access a shared memory such as (L2 cache or main memory) to
allow inter-core data traffic at runtime. In this model, input tasks are distributed among cores.
Each core executes application programs to process a particular subset of tasks in parallel with
other cores. The underlying architecture provides shared memory for communicating data between
cores during benchmark execution. It is noticed that memory access delays arise from accessing
the data via shared memory. These delays, which are known as communication delays. Assume
that [Wy, Wy, W3... Wy ] are the workloads in a job pool. It should be noted that the workloads
deal with various programming functions. Therefore, these workloads require different amounts
of time to compute on one or more processing elements (cores). On the other hand, tasks could
be classified as (CPU, Memory access) according to the number of instructions per second (IPS)
added to the number of memory access. It should be noted that tasks are assumed to be non-
preemptive. It is essential to obtain task utilization before applying the proposed model. In this



4450 CMC, 2022, vol.70, no.3

module each task (7;) has (U;; Vmin; and F;), where U; is task utilization, Vmin is safe voltage
and F; is the selected frequency.
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Figure 1: The proposed hybrid model for reliability aware scheduling and energy-efficiency

3.1.2 Architecture Module

The architecture of the proposed module is demonstrated in Fig. 2. As shown the proposed
module contains individual cores which can be combined to perform efficiently based on workload
requirements. In this paper, two clusters are built, the first cluster with a low frequency (f;) to
run the memory task while the second cluster with high frequency (f;) to run the CPU task.
According to a hybrid model, there is a free core that executes any class of task (Memory or
CPU) with different frequencies as depicted in Fig. 2.

3.2 Optimal Energy Level Stage

This stage introduces the proposed scheduler that ensures each job has the optimal Vmin/F
level. It should be noted that the preceding task and architecture modules are used incorporated
with the following modules as follows:
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Figure 2: The proposed architecture module

3.2.1 Power Module
The power usage of the silicon-based CMOS processor is based on the aggregation of static
and dynamic powers as in Eq. (1).

Pdistotal = Pstatic + Pdynamic (1)
where Pgc 18 the static power and is also referred to as the leakage power.
Pstatic = Vlleak (2)

where V' is the supply voltage and [, is the leakage current which is independent of the actual
frequency and the system activity. The static power is approximately proportional to the leakage
current. As a consequence, switching a processor to a sleep mode will decrease the I;,. This
leads to a decrease in Pgyic and eventually the overall power dissipation decreases. Therefore, the
DPM approach is adopted to determine the sleep mode switching time for a core with a guarantee
that no task misses its deadline. While Pgy,amic 18 the dynamic power that is consumed during the
task’s execution time [1].

Pdynamic=C V2F 3)

where C is a constant, V' is the supply voltage, and F is the operating frequency. The value of
dynamic power is directly proportional to the frequency. As a consequence, the decrease of a
processor frequency will to a reduction in the overall Pgyqmic. Therefore, the DV/FS approach is
used for task scheduling where the decrease in the processor’s frequency contributes to an increase
in task execution time, and again. This aspect should be considered carefully to avoid missing a
task deadline.

The energy consumed by processing a single task 7; at Vmin and frequency F; (denoted by
E;) as in Eq. (4).

Ei= Pixti “4)
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where ¢; the execution time of the task. The total energy consumed by all the tasks, as in Eq. (5).

N M Fk

DD Eijk (5)

i=1j=1 K

where Ejj denotes the energy consumed by task 7; when executed on Core C; at a frequency
level Fj. The total execution time (makespan) by all the tasks, as in Eq. (0).

N M Fk

>0 D Tik (6)

i=1 j=1 K

where Ty is the total execution time to get optimum Vmin/F by task 7; when executed on Core
C; at a frequency level Fy.

3.2.2 Fuailure and Reliability Module

Fault tolerance methods can typically be divided into two categories: active and passive
redundancy methods. Active methods of redundancy use fault detection to improve system reliabil-
ity [14]. The standby-sparing method is one of the most common active redundancy methods [15].
When a failure in the primary unit occurs, the execution is changed to the replacement unit
in the standby-sparing system [16]. Three options for assigning primary and replacement units
are available. These options include hot standby sparing (HSS), cold standby sparing (CSS),
and warm standby saving (WSS) [16]. The primary unit in addition to the replacement unit is
both configured in the HSS system. Such that any input in the main unit is also provided to
the replacement unit. If the primary device fails, the replacement devices start to perform tasks
immediately. However, the CSS method does not support the replacement device until the primary
unit is failing and the replacement device begins to run the task [16]. The speed of switching
between main and replacement units is longer in the CSS system than in the HSS method. The
WSS named (de-energized state) method is much like the HSS method, but it performs the first
part of the tasks and leaves the part causing retard. On the other hand, passive approaches,
however, use techniques of fault masking [16]. The most common passive redundancy techniques
are the NMR and task replication. To achieve the reliability goal, NMR’s and task replication
processes are used redundant hardware to withstand failures and software replicas. In the task
replication method, the main tasks and their replicas can be executed simultaneously [16]. The
approximate (average) rate of system faults is based on the frequency of the core and is calculated
as in Eq. (7).

A(F) = 2g10(d(=0)/(1~fmin) o

where Ao = 107 is the highest frequency failure rate. This rate is sensitive to the system for the
changes in operating voltage. The reliability of task i according to studies [16] is consistent as in
Eq. (8), where ¢; is the execution time.

Ri(ti) = *7 ()

In this paper, there are two types of fault tolerance techniques are tested. These techniques
are named standby-sparing and task replication. Such techniques could accept failures by fewer
replacement units, unlike NMR. Reliability in the standby-sparing method depends on the method
chosen for fault tolerance. For example, the reliability of the CSS technique when fault coverage
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is in the range from O to 1. The reliability of primary and backup tasks is evaluated as in
Eq. (9) [17].

Ri(ti) = (1 + CAt)e ™ ©)

The reliability is determined as in Eq. (10) if primary and backup tasks are separate.

Ri(ti)= Rp + (1 —Rp)Rs (10)

Where Rp and Rs are the reliability of primary and backup tasks, respectively. When Rp =
Rs the reliability of a task can be calculated as in Eq. (11).

Ri (ti) = 2R — R? (11)
Consequently, the reliability of the N tasks can be measured as in Eq. (12).

Rsystem (ti) = l_[ NRi (1) (12)

However, the reliability of the task replication technique with k& tasks can be measured as in
Eq. (13).
k
Rtotal (ti) =1 - [ ] (1 —Rj) (13)
j=1

The reliability of the system can also be written as in Eq. (14).

n
Rsystem = l_[ Rtotal(ti) (14)

i=1

3.3 Allocation Process Stage

In this stage, it’s desired to develop an effective method that decides which tasks should
be mapped as per the results scheduler from the second stage. According to the module of
architecture which is given in the previous stage, the allocation stage decides the distribution of
tasks. Furthermore, the allocation stage demonstrates the three probabilities where each task has
mapped on the architecture module. This leads to having a more efficient allocation. The three
probabilities as follow:

e A task maps to a cluster.
e A task maps to a single core.
e A task maps to two cores.

This stage is being presented in detail through the task allocation subsection.

4 The Proposed Hybrid Model

4.1 Safe Voltage

In Algorithm 1, the goal of the Safe Voltage Stage (Section 3-1) that includes a set of
measurements is achieved. However, these measurements are taken to determine the state of every
core voltage until remains steady even it reaches a safe voltage (Vmin). The increasing voltage is
applied to the processor core when the load exceeds its current state. Also, it has the ability to
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join one or more cores to run one task. The safe voltage value can be calculated based on the
following parameters.

-V refers to the threshold voltage of a core
-Vqq refers to the system supplied voltage

Algorithm 1: Safe Voltage

Input: Queue of tasks (T'1....T7), Array of Frequencies
(F1.....Fk), N=Numbers of Cores (C1......Cj) and
Vdd, Vth.

Output: Determine V'min to each task at specific frequency

using varies number of cores.

: Get_Vmin()

: for ti =t1 to T'i do

for fi = F1 to Fk do

forn=1to N do
Vmin=Vth // initial Voltage
Recursive(fi, n, Vmin)

end for

end for

: end for

: Recursive( fi, n, Vmin) // Recursive Function to get safe

voltage(V min) for each task

10: if (#i is running without any error and within deadline)

o L b e

then
1:  if (Vmin;= Vdd) then
12: Assign Vmin to ti and to selected frequency fi
13:  else
14: breack
15:  end if
16: else

17: Vmin =Vmin+ 10
Recursive(fi, n, Vimin)
18: end if

4.1.1 Voltage Borders Identification

To make sure all tasks are implemented properly, the nominal operating voltage is set to
a value named safe voltage (Vmin) for all variables. The difference between Vmin and the real
operating voltage is a protected guardband with chips and workloads that can work properly.
This subsection focuses on a measurable study of Vmin. In Algorithm 1, few cores of the same
architecture are applied to compromise the probable guardbands of each workload using the
architecture module. Also, it is used to measure the features that determine the Vmin of cores.

4.1.2 Safe Voltage Measurements

In this subsection, a series of experiments are carried out to obtain the safe voltage (Vmin)
values. It is considered that the initial voltage level for all experiments is set to Vmin. It should
be noted that the value of Vmin is considered as the nominal working voltage. Also, the behavior
for each task operating at or above the safe voltage (Vmin) point is taken into account. In
these experiments, each task was run 50 trials per configuration setting (frequency level, number
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of cores) within all levels of the voltage. We were starting from the safe voltage (Vmin) until
achieving the optimal value. As in algorithm 1, the safe voltage (Vmin) of each task can be
evaluated as follows. Initially, set Vmin =V, for all cores. Then, Algorithm 1 checks if the task is
completed execution without any error and ensuring that Vmin does not exceed the value of Vy,
otherwise the value of the voltage is incremented by 10 V. Nevertheless, Algorithm 1 checks again
the safe voltage (Vmin) to all tasks. After that Algorithm 1 repeats the above directives in addition
to varying the core’s frequency and the number of the cores. Several tasks are performed offline
to find the lowest Vmin value that allows a CPU to get correct operation and work properly with
any workload [7]. Algorithm 1-time complexity equal to O ((2N)?), where N is the number of
tasks.

4.2 Optimal Energy and Utilization Levels

In Algorithm 2, a set of m cores [Cy, C,... Cy] is considered, each core can run by two
frequencies independently. Also, two frequency levels are defined as f}, (high frequency) and f; (low
frequency). It is considered that f;, is the highest frequency per core as a starting point. This paper
used Earliest Deadline First (EDF) scheduler. The EDF is an optimal dynamic priority scheduling
algorithm used in multicore systems. In EDF, if the CPU usage is less than 100%, then it means
that all the tasks have met the deadline. The core C; is executing n tasks T; = (Tj;...Tj,). Each
task 7 has many features depending on its crltlcahty which are Tj; = (cj; d i t;;) where t;j 1s
its period, djj is the deadline and it is supposed to be equal t;; and finally, ¢jj is the worst-case
execution time which depends on the running core frequency. Thus, the computation time of each
task is denoted as an array [Cg; Cg“ ] in which Cp_j; is the worst-case execution time (wcef) that is

estimated at frequency fj. Furthermore, Algorithm 2 supports the complete execution of each task
before reaching its worst-case time. Thus, the worst-case time (wcet) is considered as the critical
time value to complete doing all that task analysis.

The utilization of a task 77 running at frequency fi is Ufj = C‘Z/T i. Henceforth we will assume

that all tasks are assumed to run on a level of frequency that is assigned to the same core. The
reason behind that decision is to avoid overheads (time delay for frequency switching). Thus, the
tasks that are running on the same frequency level will be allocated to the same core or a set of
cores according to their total utilization. The total core utilization (U¢;) is defined as the sum of
all utilizations of tasks assigned to that core C;. Also, there are a queue of tasks and a queue
of their utilizations. Initially, tasks are ordered in the task queue according to their deadlines and
utilizations. Then the task with maximum utilization (U,,,,) is found at the tasks queue that is
named while optimum utilization is named as (U,y) where U,y = Uppax/2, [as in lines 2 to 5] in
Algorithm 2. After that, the algorithm checks each task, if its utilization is less than U,,. This is
leading to mapping all these tasks to the appropriate core. Otherwise, these tasks are mapped to
the cluster and recalculate their utilization [as in lines 7 to 12]. After completing the above steps,
each task will run at any core or cluster. Then, frequency assignments are carried out according to
the task type. Whereas CPU task is assigned to high frequency, and Memory task is assigned to
low frequency [as in lines 13 to 17]. After that, the energy is computed for each task in addition
to checking if minimum energy is obtained. If the minimum energy or reliability (R) is less than
0.99 [as in lines 18 to 30] the frequencies will be updated and the processor is repeated. Finally,
the reliability per task (R) is calculated to make sure that the system has high reliability [as in
lines 25 to 29]. Algorithm 2-time complexity equal to O (N), where N is the number of tasks.
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Algorithm 2: Optimal energy and utilization levels

Input: Queue of tasks T'i, Array of Prequencies FE[f1, fh]
Armay of utilization=U1.

Output: Determine the optimum frequency and utilization
levels to each task to get minimum energy and achieve
load balance.

& Get_MinEnergy()

2 Sorting all tasks according to its utilization

3 Urmnar= The task with maximum utilization

& Uop = (Umaxz/2) /f optimum utilization

5 FEi= Energy per Task

& for ti =11 to T'i do

7. if ((ui <= Uop)) then

& Map #i to core

% else

1 Map ti to cluster

1t Recalculate utilization

12 end if

1% if (¢ is memory task) then

13 Assign low frequancy(fI) to £ // Memory task

15 else
1& Assign high frequancy(fh) to £z / CPU task
1% end if

18  Calculate Energy
1. if (E+ is minimum) then
break

.1

2 else

= Update Frequancy
z end il

2¢ end for

25. R=Calculate overall Reliability of task
26 while (R < .99) do

7 Update Frequancy

2  Repeat Algorithm 2

29 end while

3 Calling Algorithm 3

4.3 Task Allocation

Once the energy-efficient selector method has been applied as in Algorithm 2 that determines
each task’s frequency level and this task will run on an individual core or cluster as well. In this
subsection, it is desirable to achieve the goal of the third stage for the proposed module architec-
ture. As a result of Algorithm 2, the tasks may have the same frequency level or have different
levels of frequency. Algorithm 3 can save energy by using DPM (Dynamic Power Management).
The process of Algorithm 3, is started by choosing separate tasks that have the same frequency
level. These tasks could be assigned to a cluster, two cores, or one core. The first scenario of
Algorithm 3, which chooses the tasks that should run on a cluster. After that Algorithm 3 checks
if there are empty clusters or not. In case of no empty cluster is found, the process will check the
total utilization of this busy cluster (U,) after adding those additional tasks or part of them. If
Uy 1s less than one then it can map some or all tasks to that cluster with condition Uy < 1.
If this condition is not be obtained then map those tasks for two cores [as in lines 3 to 15]. In
the second scenario of Algorithm 3, the current task (z;) will run on the individual core. So, the
process searches for a cluster having the same frequency of #;. After that, the total utilization of
this cluster (Uy,,) will be computed after adding that additional ¢;. If U, is less than one, then it
can map t; to that cluster [as in lines 16 to 20]. In the third scenario of Algorithm 3, the process
searches a core with f; where f; the frequency of the current task #;. If Algorithm 3 found a core
with f;, it checks the (Uyy,) after adding that additional z;. If U,y is less than one then it can
map t; to that core. Otherwise, Algorithm 3 maps it to an underutilized core [as in lines 21 to
35]. Algorithm 3-time complexity equal to O (N), where N is the number of tasks.
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Algorithm 3: Task allocation

Input: Output from Algorithm 2.
Output: chieve DPM(Dynamic Power Management).
i Get_Allocation()
2 for i =tl 1o Ti do
if (¢z is runing on cluster) then
if (empty cluster) them
Map £: to cluster
else
Uold= utilzation in current cluster
LUnew = U
Calculate Utat = Usld 4+ Unew
if (Utot < 1) then
Map fi to cluster
else
Map ti to two cores
end if
end ir
else
Choose the cluster has. fi
Calculae Utot = Uold 4+ Unew
if (Utot < 1) then
Map ti to cluster
else
if (there is any core is run with fi) them
fi= the curent frequency of coming task
Uold= utilzation in current Core
Unew=Us
Calculate Utot = Uold 4 Unew
if (Utot < 1) then
Map ti to that core
else
Map ti to free core
end ir
else
Map ti to firee core
end if
end ir
end if
37 end for
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5 Experimental Evaluations

This section presents the experimental results for different applications on various platforms.
Also, it provides an analysis of the obtained results. In this paper, the GemS5 simulator [18] is used
to develop the proposed hybrid model. Gem5 simulator is one of the most suitable design tools
for computer architecture researchers. This simulation infrastructure enables researchers to model
modern computer hardware on a cycle level with the aid of boot undamaged Linux operating
systems and implement comprehensive applications for a wide range of architectures including
X86, Arm, and RISC-V.

5.1 Benchmarks

To validate the proposed model, twenty-five benchmarks are applied from three various
benchmark suites: the NAS Parallel Benchmark Suite v3.3.1 (NPB) [19,20], the SPEC CPU2006,
and the PARSEC v3.0 [21,22]. NPB is software designed to measure the efficiency of parallel
mainframes and has been used in many performance and energy efficiency studies [23,24]. This
analysis is focused mainly on multicore implementation. We used 6 NPB parallel benchmarks
for multithread executions and moreover 13 SPEC CPU2006 one thread benchmarks (both FP
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and INT class) (each with a different portion of variety in voltage components, CG, EP, FT, IS,
LU, MG). Also, we used 6 PARSEC multithread parallel benchmarks (swaptions, blackscholes,
fluidanimate, canneal, bodytrack). In the experimental evaluation, the workloads benchmarks are
characterized in benchmark throughput terms as the number of instructions per second (IPS)
added to the number of memory access, where IPS values spread over the range. Application
workloads are categorized based on their IPS values and memory access as a small, medium, and
large class. They are denoted by S, M, and L respectively as depicted in Tab. 1. For example, the
task with a large number of IPS added to memory access is classified as large (L class).

5.2 Platform

The proposed model is performed on the state-of-the-art ARMVE micro-servers: Applied
Micro’s (now Ampere Computing) X-Gene 2. ARMvS8. X-Gene2 consists of three independent
voltage domains, the PMD, SoC, and DRAM domains. It provides knobs for under-volting each
of the three domains independently. A PMD domain contains cores, L1 instruction, data caches,
and L2 cache. SoC domain contains the L3 cache, DRAM controllers, the central switch, and the
I/O bridge. Finally, the DRAM domain contains all the DIMMs. In this paper, under-volting of
the PMD domain that contains the eight cores of the CPU is only considered. The key properties
of processors X-Gene 2 are presented in Tab. 2 which run at Linux kernel.

Table 1: Benchmark categorization

Benchmark Class Benchmark Class
CG S namd EP L
EP S Hmmer L
FT S Gromacs L
IS S Cactu L
LU S dealll L
MG S Zeusmp L
Blackscholes S bzip2 L
Swaptions M Gce L
Canneal M bwaves L
Bodytrack M leslie3d L
Dedup M Mcf L
Fluidanimate L Milc L
h264re L
Table 2: The basic parameters of X-Gene 2

Parameter X-GENE 2

ISA 64-bit 00O (4-issue)

Pipeline ARMvVS (AArch64, AArch32, Thumb)

CPU 8 cores

(Continued)
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Table 2: Continued

Parameter X-GENE 2

Core clock 2.4 GHz

L1 Instr. cache 32 KB per core (Parity Protected)
L1 Data cache 32 KB per core (Parity Protected)
L2 cache 256 KB per PMD (ECC Protected)
L3 cache 8 MB (ECC Protected)

Technology 28 nm (bulk CMOS)

TDP 3I5W

Nominal voltage 980 mV

5.3 Experimental Setup

The applications are classified into memory tasks that can be allocated to run on single cores,
while CPU tasks can be run on multiple cores as separate threads, which means adaptive multi-
core architectures. This enables the X-Gene 2 to construct many prototypes on the commercially
used Architecture Set of Instructions (ISA). In this context, the effectiveness of such architectures
will be tested and evaluated to ensure reliability-aware scheduling and energy efficiency in multi-
core systems. As a first step, it’s necessary to measure a multicore system’s efficiency and accuracy.
To apply this the tasks are running at the high frequency of each core (X-Gene 2 at 2.4 GHz), and
for the second time, at the half frequency (1.2 GHz). According to our conducted experiments, it
is important to recognize that clock frequencies are greater than half of the clock that has Vmin
protection similar to the higher clock frequency. Also, frequencies are smaller than the half clock
having similar safe voltage (Vmin) as in the half clock. For the purpose of clarification, both
cores of the clusters are able to support either clock skipping and clock division to respectively
set the effective frequency of the cluster relative to its clock source. Naturally, a clock ratio of
1/2 is applied to the clock input. Therefore, it is not introduced any results for the intermediate
frequencies since they provide the same Vmin points. Exceptionally, there are much higher energy
savings than 1.2 GHz, with minimal performance impacts. The explanation is that the new CPPC
(Collaborative Processor Performance Control) power and performance management requirements
of ACPI 5.1 are enforced by these micro-servers [25]. CPPC is a modern way that can monitor
core’s performance using an objective continuous frequency scale rather than a discrete Pgue scale
(as in legacy ACPI). In reality, the current frequency of the microprocessor is thus scaled below
and above 1.2 GHz when requested for 1.2 GHz during runtime. So it offers an average of 1.2
GHz effectively. The actual frequency properties are thus constrained by the highest frequency
setting, which is more than half in that case (without clock division). This is an interconnecting
frequency strategy given by the CPPC and is not subject to software modification. As in X-Gene
2, it is not possible to observe the same behavior below 1.2 GHz. So, it is reported X-Gene
2 experiments with two different frequencies, 2.4 and 1.2 GHz, are based on an interesting
characterization found. The selected two Vmin/F levels, Fy = [f}, f}], are associated with the
states defined that are based on the core’s energy/time or utilization: (Vmin, 1.2 GHz) and (Vmin,
2.4 GHz). These Vmin/F levels, which are equally separated, are within a nominal Vmin/F levels
range. Also, the levels are used by simulators, whose power and performance values have a linear
relationship. In this paper, when a higher frequency than 2.4 GHz is used. It provides only
marginal improvements in execution times. On the other hand, a lower voltage than 1.2 GHz is
not considered as it negatively increases the leakage power consumption. In this experiment, fixed
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Vmin/F level switching time/energy overheads to be in the order of 0.5 micro-second/1 microjoules,
respectively [26]. These time/energy overheads are very small and often negligible. Also, these
overheads are taken into account during the proposed hybrid model evaluations.

5.4 Results

In this section, the results of comparing the proposed hybrid model are assessed using differ-
ent metrics and compared with other competing methods such as Voltage/Frequency Scaling [25],
VDP pseudocode [13], Greedy pseudocode [13], Feedback Controller pseudocode [13] Ondemand
governor pseudocode [13], Worst Fit Decreasing Utilization (WFDU) [23] and heterogeneous
fairness-aware energy-efficient framework (HFEE) using different metrics is presented.

5.4.1 Safe Voltage Characterization

Fig. 3 shows the safe voltage (Vmin) results on X-Gene 2 for twenty-five benchmarks. The
value of Vmin for each task is considered the lowest voltage setting obtained after completing
ten runs of a task without any notification for a hardware error, such as a process timeout or
system crash. The experiments are conducted on a different number of cores at frequencies 2.4
and 1.2 GHz. As shown, the safe voltage for all benchmarks has close and nearby values for
the same number of cores and frequency. In this context, the safe voltage is slightly affected by
the type of workload, on the other hand, it is affected by the operating frequency and number
of cores. On the basis of this analysis, we conclude that the dominant factors that can affect
the value of Vmin and the possibility of failure are the frequency and the number of cores. For
the same number of cores at different frequencies, the workload has minimal influence on Vmin
in multicore executions. However, we could found that low frequencies provide low safe voltage
Vmin values for most benchmarks. It should be noted that operating voltage can decrease by 4%
of Vmin by reducing the frequency half of its value as the clock division is triggered at this
frequency. Moreover, the voltage can further be reduced by 5% at a certain frequency level when
using different a number of cores. Fig. 4 shows the safe voltage (Vmin for different workloads.
As shown in Fig. 4a, individual cores can achieve constant values for low-frequency levels, while
clusters give high variability of Vmin. However, the situation is reversed for high-frequency levels
as depicted in Fig. 4b.

5.4.2 Consideration of Shared Energy and Efficiency

Energy consumption is a valuable metric that is directly translated into a cost. However,
it may also include very slow (i.e., lower frequency) device configurations that can affect the
latency and throughput specifications. To avoid such bias in comparison purposes, the energy-
delay product (EDP = E * D) and the energy-delay squared product (EDDP = E * DD) are
considered. Given that the proposed model is focusing on server-grade CPUs. Therefore, for fair
comparisons, the normalized energy-delay squared product (EDDP) is used for all experiments.
In addition, it is preferable to present the relation between the energy and performance measures.
Furthermore, the analysis shows that different workloads could be classified as (CPU, Memory
access). Figs. 5 and 6 show the energy consumption when applying various methods. Clearly, the
proposed model achieves lower values of energy consumption that give lower normalized EDDP.
This is noticeable specifically when having mixed workloads such as CPU and memory tasks, and
small, medium, and large loads. These workloads examine the robustness and reliability of the
proposed hybrid model compared with other competitor methods. In the case of workloads W1,
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W7, and W14, the energy-saving results pointed out that there is a 20% to 55% gap in values
between the proposed model and the other methods. In addition, there is an average improvement
of up to 15% in other workloads such as W2, W6, W11, and W13. While there are remarkable
improvements in the remaining workload.
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Figure 3: Experimental results on different tasks using various number of cores. (a) Safe voltage
(Vmin) at 1.2 GHz (b) safe voltage (Vmin) at 2.4 GHz
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5.4.3 Makespan Analysis

Fig. 7, shows the makespan results as another performance metric to evaluate the proposed
model. It should be noted that lower values of makespan and energy consumption of the pro-
posed hybrid model give lower normalized EDDP compared with other approaches. These results
indicate that the proposed hybrid model achieved lower energy consumption. Additionally, the
proposed model decreases the makespan by minimizing the task’s execution time. For instance,
running a task at a high frequency can decrease the task execution time. So, workloads such as

W4, W8, W10, and W15 give outstanding makespan results. However, some makespans for few
workloads are not improved.
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5.4.4 Utilization Analysis

As explained, utilization is considered as the main factor for the assessment of the proposed
hybrid model. Fig. 8 shows comparisons between the proposed model and other approaches. As
depicted, both the proposed model and WFDU give comparable results. This is because both
approaches consider the utilization aspect. But in most cases and various workloads such as W1,
W7, and W11, the proposed hybrid model achieved the best utilization. Also, it is worth noting
that the VDP approach does not perform well as it does not consider the utilization aspect.
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Results show that the proposed hybrid model outperforms in all performance measures
compared with other competitors. Besides, the proposed model is suitable for determining the
best frequency levels for processing various types of workloads on different platforms. Moreover,
the proposed model optimizes the number of required cores and allows the scheduling process
to be more deterministic. This indicates the robustness and reliability of the proposed model,
thus making the scheduling process more deterministic; therefore, the execution times present a
lower standard deviation. The proposed model has given the higher utilization but not the lower
standard deviation compared with others.

6 Conclusions and Future Work

In this paper, a hybrid model for reliability-aware scheduling and energy efficiency in multicore
systems has been proposed. The proposed model augments the greedy approach with dynamic
programming to enhance the utilization per core. In addition, the introduced model is locally
optimizing the individual voltage and frequency level per-core by minimizing the core energy
consumption and globally find the proper task allocation that gives minimum makespan execution
times. As demonstrated, the proposed model achieved the best utilization while preserving the load
balance compared with other heuristics models. Experimental results showed that the proposed
model can achieve 50% and 20% energy saving for heavy and light workloads respectively. Fur-
thermore, the makespan for all workloads is reduced by 18% compared to the other competitors.
This work can be expanded to implementations on large-scale systems, and considering online
operating system control and heterogeneous cores. This will enable the introduced models to run
on bigger systems, and be able to withstand huge workloads to give a bigger boost in energy
efficiency.
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