Optimization is a key technique for maximizing or minimizing functions and achieving optimal cost, gains, energy, mass, and so on. In order to solve optimization problems, metaheuristic algorithms are essential. Most of these techniques are influenced by collective knowledge and natural foraging. There is no such thing as the best or worst algorithm; instead, there are more effective algorithms for certain problems. Therefore, in this paper, a new improved variant of a recently proposed metaphorless Runge-Kutta Optimization (RKO) algorithm, called Improved Runge-Kutta Optimization (IRKO) algorithm, is suggested for solving optimization problems. The IRKO is formulated using the basic RKO and local escaping operator to enhance the diversification and intensification capability of the basic RKO version. The performance of the proposed IRKO algorithm is validated on 23 standard benchmark functions and three engineering constrained optimization problems. The outcomes of IRKO are compared with seven state-of-the-art algorithms, including the basic RKO algorithm. Compared to other algorithms, the recommended IRKO algorithm is superior in discovering the optimal results for all selected optimization problems. The runtime of IRKO is less than 0.5 s for most of the 23 benchmark problems and stands first for most of the selected problems, including real-world optimization problems.

The term “optimization” relates to determining the best values of different system components to complete the systems engineering at the lowest possible price. In machine learning and artificial intelligence, practical applications and problems are typically constrained, unconstrained, or discrete [

The authors want to provide a more efficient and successful method, and hence this paper proposes an Improved Runge-Kutta Optimization (IRKO) algorithm, a revolutionary metaphor-free optimization method. The suggested IRKO is formulated from the basic version of the RKO algorithm [

The paper has been organized as follows: Section 2 confers the backgrounds of metaheuristic algorithms related works, and Section 3 discusses the formulation of the IRKO algorithm employing RKO and LEO concepts. Section 4 demonstrates the numerical simulation results on classical benchmark functions and real-world problems. Section 5 concludes the paper.

Metaheuristic algorithms are divided into four categories relying on the motivation for its development: (i) swarm behaviors, (ii) natural behaviors, (iii) human behaviors, and (iv) physics concepts.

Swarms can inspire natural and social phenomena. Several algorithms have been developed and presented by many researchers. Particle Swarm Optimization (PSO) is a common approach derived from the natural behavior of swarming particles [

Numerous techniques presented in the literature use natural evolution's inherent characteristics to address optimization challenges. Examples of several evolutionary algorithms are as follows. The Genetic Algorithm (GA) is the most often used evolutionary technique [

Researchers presented numerous metaheuristic algorithms by mimicking real human actions. Teacher Learning-Based Optimizer (TLBO) is inspired by teachers’ impact on their student's achievement [

To provide alternatives to optimization problems, physics-based algorithms rely on physical laws. Big Bang-Big Crunch is a prominent MH algorithm inspired by the universe's development, and it has been applied in various applications, such as data clustering, global optimization, and various engineering design problems. The law of gravity and mass relations inspired the Gravitational Search Algorithm (GSA) [

In general, population-based optimization algorithms begin procedures by randomly selecting candidate solutions. Such solutions are improved significantly by the algorithms and iteratively assessed against a specified fitness function, which is the basis of any algorithms. Due to the stochastic nature, obtaining an optimal or near-optimal solution in a single run is not sure. However, many random solutions and evolutionary rounds increase the possibility of discovering the global optima for the given problem. Regardless of the differences in algorithms used in metaheuristic approaches, the optimization process may be separated into two distinct phases: exploration and exploitation. This refers to the broad scope of searching by employing several solutions provided by the algorithms to circumvent search difficulties.

Firstly, this section discusses the concepts of the RKO algorithm and LEO and then extends the discussion to the development of the IRKO algorithm using RKO and LEO.

The RKO algorithm is characterized by the absence of metaphors and strict attention to the underlying mathematical structures [

The solution space is divided into regions, with random solutions placed in each region. A set of search solutions are then placed into the various regions, and a balance between exploitation and exploration is established. To identify the search strategy in the RKO algorithm, the RK4 approach was applied. Thus, the search mechanism (

_{1}_{2}_{3}_{4}

The RKO algorithm starts the procedure with a random population (solutions). Every time around, the solutions’ positions are updated by the RK method. RKO employs a solution and the search mechanism generated using the Runge-Kutta approach. To offer exploration and exploitation search,

_{c}_{m}

The RKO employs ESQ to maximize the quality of the solution across iterations while avoiding local optima. Here's how the solution (

The authors of [_{best}

where

The

The value of

RKO algorithm struggles from being “trapped in the local minima situation.” Optimization could not be completed since the local region confined the system. This scenario often occurs in difficult and high-dimensional optimization problems. Additionally, producing new solutions is based on the results of the last iteration. This could slow down the algorithm's convergence speed, and hence, cause early convergence of the solutions. To increase search capabilities and handle difficult real-world problems, we enhance the RKO algorithm using the LEO concept. The proposed IRKO algorithm follows the RKO algorithm procedure step-by-step. LEO improves the diversification and intensification phase of the RKO algorithm along with the RK method. The initialization phase of the IRKO is similar to the RKO algorithm.

To examine the suggested solutions and improve the new suggested solutions in the next iteration, it is necessary to analyze the solutions in each iteration. As a result, each population is assessed to acquire its solution when each new population is randomly produced, an update that permits the new fitness to be upgraded using

The performance of the IRKO is validated using twenty-three classical test benchmark functions and three real-world engineering problems. The IRKO has been simulated with a 30-population size and 500 maximum iterations to solve the benchmarks and engineering problems. The other control parameters are as follows. RKO and IRKO (_{CR}_{min}_{max}_{1}_{2}

Twenty-three benchmark functions, including unimodal, multi-modal, and fixed dimension multi-modal functions, were used to examine the IRKO's ability to exploit global solutions, explore the search space, and escape from the local minima trap. The benchmark test functions are provided in the weblink [

To confirm the performance of the proposed IRKO algorithm, the balance phase curve, average fitness curve, and trajectory curves are utilized and have been in

The search's history explains how the algorithm search for the optimal solution in search space. The LEO concept enhances the behavior of the IRKO. This modality depicts the movement of the population about the best position for unimodal functions. The nature of the dispersion qualities of populations corresponds to the modality. When using IRKO to address multi-modal and unimodal functions, the exploration and exploitation capabilities are all enhanced. The trajectory curve indicated a high amplitude and frequency in the initial iterations and disappeared during the final iteration. As can be seen, IRKO has a high exploration ability early on and strong exploitation later on. Based on this behavior, the ideal approach is likely for the IRKO algorithm. The LEO in IRKO algorithm promotes the search optimization process to precisely and broadly focus on the local region. Compared to other recently proven methods, the LEO aids the RKO in efficiently and accurately discovering the search space.

It converges quickly with better results than the other counterparts in most of the remaining test functions. This is evident when it's understood that the IRKO performs well between exploitation and exploration stages since it captures nearby values for the best solutions. These solutions are exploited proficiently throughout the iterations to offer the best solutions. In addition, the reliability of all selected algorithms is assessed by visualizing the boxplot.

In this subsection, the IRKO algorithm has been tested in addressing three real-world engineering design problems, including welded beam, tension/compression spring, and pressure vessel. All these design problems have many inequality constraints. The method gets substantial solutions if it violates any of the criteria using the death penalty function.

Algorithm | Min. | Mean | STD | RT | Algorithm | Min. | Mean | STD | RT | ||
---|---|---|---|---|---|---|---|---|---|---|---|

F1 | 0.43 | F13 | 0.45 | ||||||||

RKO | 1.433E − 175 | 2.212E − 170 | 0.000E + 00 | RKO | 3.792E − 08 | 1.067E − 02 | 1.052E − 02 | ||||

SCA | 7.572E − 02 | 4.986E − 01 | 3.897E − 01 | 4.12 | SCA | 1.964E + 01 | 5.154E + 03 | 6.063E + 03 | 1.97 | ||

WOA | 3.277E − 85 | 4.060E − 74 | 7.032E − 74 | 6.82 | WOA | 1.862E − 01 | 2.686E − 01 | 8.218E − 02 | 6.09 | ||

IMO | 5.897E − 38 | 6.075E − 31 | 1.052E − 30 | 2.06 | IMO | 1.001E − 02 | 4.227E − 02 | 5.318E − 02 | 1.45 | ||

HGSO | 5.607E + 00 | 7.458E + 00 | 1.868E + 00 | 4.1 | HGSO | 2.325E + 00 | 3.937E + 00 | 1.396E + 00 | 4.54 | ||

GWO | 5.557E − 29 | 9.856E − 28 | 1.419E − 27 | 0.36 | GWO | 4.168E − 01 | 6.979E − 01 | 3.739E − 01 | 0.49 | ||

HHO | 7.745E − 107 | 7.672E − 100 | 1.326E − 99 | 0.45 | 0.98 | ||||||

F2 | 0.14 | F14 | |||||||||

RKO | 7.275E − 106 | 3.578E − 93 | 6.197E − 93 | RKO | 2.982E + 00 | 2.982E + 00 | 3.608E − 15 | 0.72 | |||

SCA | 2.631E − 03 | 2.779E − 02 | 4.247E − 02 | 1.49 | SCA | 1.002E + 00 | 2.322E + 00 | 1.143E + 00 | 2.65 | ||

WOA | 4.006E − 54 | 1.063E − 51 | 1.397E − 51 | 5.83 | WOA | 1.992E + 00 | 5.246E + 00 | 4.804E + 00 | 6.35 | ||

IMO | 3.394E − 36 | 1.212E − 24 | 2.098E − 24 | 1.12 | IMO | 9.980E − 01 | 1.661E + 00 | 5.739E − 01 | 2.06 | ||

HGSO | 7.212E + 00 | 1.490E + 01 | 7.526E + 00 | 3.06 | HGSO | 9.980E − 01 | 1.329E + 00 | 5.739E − 01 | 2.48 | ||

GWO | 6.323E − 17 | 1.085E − 16 | 5.997E − 17 | 0.19 | GWO | 9.980E − 01 | 4.914E + 00 | 5.161E + 00 | 0.92 | ||

HHO | 1.861E − 56 | 2.972E − 55 | 3.742E − 55 | 0.17 | HHO | 9.980E − 01 | 9.980E − 01 | 3.847E − 10 | 1.78 | ||

F3 | 0.38 | F15 | IRKO | 1.223E − 03 | 1.223E − 03 | 2.713E − 18 | 0.07 | ||||

RKO | 6.149E − 149 | 1.051E − 144 | 1.817E − 144 | ||||||||

SCA | 3.530E + 03 | 1.516E + 04 | 1.164E + 04 | 1.82 | SCA | 7.653E − 04 | 8.150E − 04 | 6.242E − 05 | 1.19 | ||

WOA | 3.367E + 04 | 4.919E + 04 | 1.421E + 04 | 6.01 | WOA | 4.976E − 04 | 9.951E − 04 | 6.649E − 04 | 5.59 | ||

IMO | 1.687E + 04 | 3.508E + 04 | 1.638E + 04 | 1.23 | IMO | 3.111E − 04 | 7.898E − 04 | 6.009E − 04 | 0.7 | ||

HGSO | 5.593E + 02 | 1.526E + 04 | 2.539E + 04 | 4.16 | HGSO | 7.719E − 04 | 1.954E − 03 | 2.039E − 03 | 0.49 | ||

GWO | 3.861E − 07 | 2.248E − 06 | 2.028E − 06 | 0.43 | GWO | 3.699E − 04 | 7.046E − 03 | 1.153E − 02 | 0.07 | ||

HHO | 2.482E − 100 | 4.529E − 72 | 7.845E − 72 | 0.8 | HHO | 3.192E − 04 | 9.988E − 04 | 5.952E − 04 | 0.2 | ||

F4 | 0.15 | F16 | |||||||||

RKO | 4.044E − 86 | 9.464E − 80 | 1.637E − 79 | RKO | − 1.032 | − 1.032 | 4.313E − 14 | 0.05 | |||

SCA | 1.654E + 01 | 3.611E + 01 | 2.026E + 01 | 1.3 | SCA | − 1.032 | − 1.032 | 3.138E − 05 | 1.13 | ||

WOA | 7.001E + 01 | 7.316E + 01 | 3.535E + 00 | 5.96 | WOA | − 1.032 | − 1.032 | 1.075E − 10 | 5.62 | ||

IMO | 8.269E − 03 | 7.117E + 00 | 1.128E + 01 | 0.8 | IMO | − 1.032 | − 1.032 | 4.027E − 07 | 0.65 | ||

HGSO | 3.707E + 00 | 5.463E + 00 | 2.069E + 00 | 2.72 | 0.47 | ||||||

GWO | 5.385E − 07 | 5.911E − 07 | 7.161E − 08 | 0.19 | GWO | − 1.032 | − 1.032 | 5.791E − 08 | 0.05 | ||

HHO | 5.767E − 52 | 4.996E − 50 | 4.563E − 50 | 0.17 | HHO | − 1.032 | − 1.032 | 8.135E − 12 | 0.16 | ||

F5 | 0.17 | F17 | |||||||||

RKO | 2.442E + 01 | 2.500E + 01 | 5.879E − 01 | RKO | 3.979E − 01 | 3.979E − 01 | 5.612E − 13 | 0.08 | |||

SCA | 7.996E + 02 | 2.979E + 03 | 3.455E + 03 | 1.4 | SCA | 3.979E − 01 | 4.001E − 01 | 2.650E − 03 | 3 | ||

WOA | 2.748E + 01 | 2.790E + 01 | 4.165E − 01 | 5.79 | WOA | 3.979E − 01 | 3.979E − 01 | 2.315E − 07 | 5.29 | ||

IMO | 2.775E + 01 | 2.830E + 01 | 4.966E − 01 | 0.85 | IMO | 3.979E − 01 | 3.979E − 01 | 1.440E − 05 | 1.38 | ||

HGSO | 1.498E + 03 | 2.581E + 03 | 1.547E + 03 | 3.04 | 1.08 | ||||||

GWO | 2.708E + 01 | 2.712E + 01 | 3.469E − 02 | 0.21 | GWO | 3.979E − 01 | 3.979E − 01 | 5.550E − 06 | 0.1 | ||

HHO | 2.296E + 01 | 2.386E + 01 | 1.094E + 00 | 0.3 | HHO | 3.979E − 01 | 3.979E − 01 | 2.240E − 06 | 0.36 | ||

F6 | 0.13 | F18 | 0.04 | ||||||||

RKO | 2.525E − 09 | 3.025E − 09 | 6.239E − 10 | RKO | 3.0 | 3.0 | 2.057E − 12 | ||||

SCA | 5.223E + 00 | 1.239E + 01 | 6.206E + 00 | 1.32 | SCA | 3.0 | 3.0 | 1.928E − 05 | 0.95 | ||

WOA | 1.649E − 01 | 3.970E − 01 | 2.562E − 01 | 5.74 | WOA | 3.0 | 3.0 | 2.719E − 04 | 4.4 | ||

IMO | 4.586E − 02 | 4.983E − 02 | 4.562E − 03 | 0.8 | IMO | 3.0 | 3.0 | 1.049E − 05 | 0.55 | ||

HGSO | 3.662E + 00 | 7.069E + 00 | 3.538E + 00 | 2.91 | HGSO | 3.0 | 3.0 | 4.283E − 15 | 0.33 | ||

GWO | 2.496E − 01 | 7.470E − 01 | 6.597E − 01 | 0.19 | GWO | 3.0 | 3.0 | 4.790E − 05 | 0.04 | ||

HHO | 1.940E − 04 | 4.780E − 04 | 3.059E − 04 | 0.19 | HHO | 3.0 | 3.0 | 1.838E − 08 | 0.11 | ||

F7 | IRKO | 1.061E − 04 | 3.581E − 04 | 3.931E − 04 | 0.23 | F19 | 0.06 | ||||

RKO | −3.863 | −3.863 | 2.560E − 10 | ||||||||

SCA | 2.536E − 02 | 9.712E − 02 | 1.006E − 01 | 1.55 | SCA | − 3.861 | −3.856 | 4.674E − 03 | 1.12 | ||

WOA | 2.600E − 04 | 4.012E − 03 | 4.560E − 03 | 6 | WOA | −3.862 | −3.858 | 4.847E − 03 | 4.39 | ||

IMO | 3.502E − 04 | 1.225E − 03 | 8.936E − 04 | 0.99 | IMO | −3.863 | −3.863 | 5.738E − 05 | 0.59 | ||

HGSO | 6.957E + 00 | 1.350E + 01 | 6.048E + 00 | 3.33 | HGSO | −3.863 | −3.863 | 7.022E − 16 | 0.42 | ||

GWO | 9.594E − 04 | 1.187E − 03 | 2.461E − 04 | 0.3 | GWO | −3.863 | −3.863 | 1.465E − 05 | 0.06 | ||

HHO | 1.933E − 04 | 3.155E − 04 | 1.104E − 04 | 0.42 | HHO | −3.863 | −3.860 | 2.938E − 03 | 0.15 | ||

F8 | 0.16 | F20 | 0.06 | ||||||||

RKO | − 8.518E + 03 | − 7.825E + 03 | 6.011E + 02 | RKO | −3.322 | −3.282 | 6.864E − 02 | ||||

SCA | − 3.986E + 03 | − 3.673E + 03 | 3.188E + 02 | 1.43 | SCA | −3.114 | −3.040 | 6.420E − 02 | 1.12 | ||

WOA | − 1.257E + 04 | − 1.257E + 04 | 1.876E + 00 | 5.84 | WOA | −3.320 | −3.188 | 1.181E − 01 | 4.41 | ||

IMO | − 1.257E + 04 | − 1.256E + 04 | 6.233E + 00 | 0.85 | IMO | −3.322 | −3.321 | 1.510E − 04 | 0.62 | ||

HGSO | − 1.006E + 04 | − 9.126E + 03 | 9.683E + 02 | 3.04 | HGSO | −3.322 | −3.138 | 2.201E − 01 | 0.45 | ||

GWO | − 6.260E + 03 | − 5.994E + 03 | 2.308E + 02 | 0.2 | GWO | − 3.322E + 00 | − 3.238E + 00 | 7.309E − 02 | 0.06 | ||

HHO | − 1.257E + 04 | − 1.257E + 04 | 1.631E + 00 | 0.29 | HHO | − 3.183E + 00 | − 3.111E + 00 | 7.234E − 02 | 0.19 | ||

F9 | 0.18 | F21 | |||||||||

RKO | 0.000E + 00 | 0.000E + 00 | 0.000E + 00 | RKO | − 1.015E + 01 | − 1.015E + 01 | 2.559E − 09 | 0.07 | |||

SCA | 1.184E − 01 | 5.683E + 00 | 9.576E + 00 | 1.38 | SCA | − 6.708E + 00 | − 4.070E + 00 | 2.953E + 00 | 1.2 | ||

WOA | 0.000E + 00 | 0.000E + 00 | 0.000E + 00 | 6.15 | WOA | − 1.015E + 01 | − 8.452E + 00 | 2.942E + 00 | 4.47 | ||

IMO | 0.000E + 00 | 0.000E + 00 | 0.000E + 00 | 0.8 | IMO | − 1.015E + 01 | − 1.014E + 01 | 8.561E − 03 | 0.64 | ||

HGSO | 1.360E + 02 | 2.253E + 02 | 7.838E + 01 | 3.16 | HGSO | − 1.015E + 01 | − 1.015E + 01 | 1.130E − 14 | 0.48 | ||

GWO | 1.137E − 13 | 1.238E + 00 | 2.144E + 00 | 0.19 | GWO | − 1.015E + 01 | − 6.781E + 00 | 2.918E + 00 | 0.07 | ||

HHO | 0.000E + 00 | 0.000E + 00 | 0.000E + 00 | 0.23 | HHO | − 5.055E + 00 | − 5.050E + 00 | 4.512E − 03 | 0.22 | ||

F10 | 0.16 | F22 | 0.08 | ||||||||

RKO | − 1.040E + 01 | − 8.631E + 00 | 3.069E + 00 | ||||||||

SCA | 1.935E + 01 | 1.989E + 01 | 4.774E − 01 | 1.33 | SCA | − 4.569E + 00 | − 3.519E + 00 | 9.182E − 01 | 1.24 | ||

WOA | 4.441E − 15 | 5.625E − 15 | 2.051E − 15 | 5.77 | WOA | − 1.040E + 01 | − 7.852E + 00 | 4.407E + 00 | 4.43 | ||

IMO | 8.882E − 16 | 4.441E − 15 | 3.553E − 15 | 0.81 | IMO | − 1.039E + 01 | − 1.032E + 01 | 1.150E − 01 | 0.67 | ||

HGSO | 1.906E + 01 | 1.960E + 01 | 4.718E − 01 | 3.25 | HGSO | − 1.040E + 01 | − 7.853E + 00 | 4.417E + 00 | 0.5 | ||

GWO | 7.905E − 14 | 8.971E − 14 | 1.281E − 14 | 0.21 | GWO | − 1.040E + 01 | − 1.040E + 01 | 5.920E − 04 | 0.08 | ||

0.24 | HHO | − 9.730E + 00 | − 6.634E + 00 | 2.681E + 00 | 0.24 | ||||||

F11 | 0.18 | F23 | |||||||||

RKO | −10.5400 | −8.7340 | 3.122E + 00 | 0.09 | |||||||

SCA | 7.405E − 01 | 9.151E − 01 | 1.612E − 01 | 1.61 | SCA | −4.5300 | −2.3760 | 1.900E + 00 | 1.25 | ||

5.8 | WOA | −10.5300 | −10.5100 | 2.635E − 02 | 4.49 | ||||||

IMO | 0.000E + 00 | 3.701E − 17 | 6.410E − 17 | 0.85 | IMO | −10.5000 | −10.4800 | 2.656E − 02 | 0.68 | ||

HGSO | 1.890E − 01 | 2.930E − 01 | 1.254E − 01 | 3.04 | HGSO | −10.5400 | −7.5830 | 5.115E + 00 | 0.54 | ||

0.21 | GWO | −10.5400 | −10.5400 | 3.509E − 04 | 0.1 | ||||||

0.28 | HHO | −5.1280 | −5.1260 | 2.162E − 03 | 0.28 | ||||||

F12 | IRKO | 2.310E − 09 | 3.172E − 09 | 7.895E − 10 | 0.59 | ||||||

SCA | 4.813E + 00 | 1.804E + 01 | 1.873E + 01 | 2.1 | |||||||

WOA | 1.220E − 02 | 1.742E − 02 | 5.945E − 03 | 6.34 | |||||||

IMO | 3.234E − 03 | 3.997E − 03 | 8.271E − 04 | 1.52 | |||||||

HGSO | 5.463E + 00 | 7.339E + 00 | 1.809E + 00 | 4.77 | |||||||

GWO | 2.555E − 02 | 3.729E − 02 | 1.371E − 02 | 0.53 | |||||||

HHO | 5.174E − 09 | 6.733E − 07 | 6.172E − 07 | 1.01 |

The primary objective of the problem depicted in _{c}_{1}, _{2}, _{3}, _{4}] = [

Subjected to constraints:

Compression spring design has been considered as yet alternative traditional mechanical engineering problem. This problem is illustrated in _{1}, _{2}, _{3}] = [

Subjected to constraints:

Algorithm/Function | IRKO | RKO | SCA | WOA | IMO | HGS | GWO | HHO |
---|---|---|---|---|---|---|---|---|

F1 | 1.000 | 2.000 | 5.667 | 7.667 | 7.000 | 5.667 | 4.000 | 3.000 |

F2 | 1.000 | 2.000 | 6.667 | 8.000 | 5.667 | 5.667 | 4.000 | 3.000 |

F3 | 1.000 | 3.000 | 7.333 | 5.000 | 6.000 | 7.667 | 4.000 | 2.000 |

F4 | 1.333 | 1.667 | 7.667 | 5.333 | 4.000 | 7.333 | 5.667 | 3.000 |

F5 | 2.333 | 1.000 | 7.000 | 5.000 | 5.000 | 8.000 | 4.667 | 3.000 |

F6 | 1.000 | 5.667 | 8.000 | 3.000 | 4.000 | 5.333 | 7.000 | 2.000 |

F7 | 3.000 | 3.000 | 6.667 | 3.000 | 3.000 | 8.000 | 6.333 | 3.000 |

F8 | 2.167 | 2.167 | 8.000 | 4.667 | 3.833 | 7.000 | 6.000 | 2.167 |

F9 | 3.333 | 3.333 | 8.000 | 3.333 | 4.333 | 7.000 | 3.333 | 3.333 |

F10 | 2.000 | 1.000 | 7.667 | 5.000 | 4.000 | 7.333 | 6.000 | 3.000 |

F11 | 2.000 | 2.333 | 8.000 | 5.000 | 3.667 | 7.000 | 6.000 | 2.000 |

F12 | 1.167 | 6.000 | 6.667 | 6.667 | 4.667 | 2.500 | 5.333 | 3.000 |

F13 | 5.667 | 2.667 | 4.333 | 4.667 | 3.667 | 5.667 | 4.000 | 5.333 |

F14 | 1.500 | 3.000 | 8.000 | 5.000 | 5.667 | 1.500 | 6.667 | 4.667 |

F15 | 1.500 | 3.000 | 8.000 | 4.333 | 6.667 | 1.500 | 5.667 | 5.333 |

F16 | 1.333 | 2.667 | 6.333 | 6.333 | 6.667 | 2.000 | 6.667 | 4.000 |

F17 | 1.167 | 3.000 | 7.667 | 6.667 | 4.333 | 1.833 | 4.667 | 6.667 |

F18 | 2.000 | 2.667 | 7.333 | 5.333 | 3.000 | 5.000 | 4.000 | 6.667 |

F19 | 1.000 | 3.000 | 7.667 | 5.000 | 5.000 | 2.000 | 5.000 | 7.333 |

F20 | 1.667 | 3.667 | 7.333 | 5.667 | 4.667 | 3.333 | 3.333 | 6.333 |

F21 | 2.667 | 3.667 | 7.667 | 4.333 | 4.667 | 3.333 | 3.000 | 6.667 |

F22 | 1.000 | 2.000 | 5.667 | 7.667 | 7.000 | 5.667 | 4.000 | 3.000 |

F23 | 1.000 | 2.000 | 6.667 | 8.000 | 5.667 | 5.667 | 4.000 | 3.000 |

Algorithm | Min | Mean | STD | RT | FRT | ||||
---|---|---|---|---|---|---|---|---|---|

RKO | 0.200881 | 3.341663 | 9.036607 | 0.20573 | 1.700 | 1.710 | 0.009 | 0.099 | 3.33 |

SCA | 0.204085 | 3.574402 | 8.771277 | 0.220685 | 1.801 | 1.835 | 0.030 | 3.391 | 6.00 |

WOA | 0.170613 | 4.265315 | 8.470226 | 0.234164 | 1.880 | 2.029 | 0.150 | 6.203 | 7.67 |

IMO | 0.210796 | 3.345326 | 8.462105 | 0.234613 | 1.821 | 1.865 | 0.070 | 1.453 | 6.33 |

HGSO | 0.205291 | 3.26129 | 9.035764 | 0.205771 | 1.696 | 1.707 | 0.021 | 0.661 | 2.00 |

GWO | 0.200872 | 3.347504 | 9.038295 | 0.205781 | 1.701 | 1.706 | 0.004 | 0.151 | 3.00 |

HHO | 0.200804 | 3.43318 | 9.230382 | 0.204784 | 1.738 | 1.888 | 0.228 | 0.464 | 6.00 |

The graphic view of the pressure vessel design framework is shown in _{h}_{s}_{1}_{2}_{3}_{4}] = [_{s}T_{h}RL

Subjected to constraints:

Algorithm | Min | Mean | STD | RT | FRT | |||
---|---|---|---|---|---|---|---|---|

RKO | 0.13914971 | 1.3 | 11.89242563 | 3.662 | 3.662 | 0.000 | 0.047 | 2.33 |

SCA | 0.137440614 | 1.265 | 12.33009784 | 3.682 | 3.696 | 0.023 | 1.297 | 6.67 |

WOA | 0.13914159 | 1.3 | 11.88950847 | 3.662 | 3.685 | 0.033 | 4.557 | 5.67 |

IMO | 0.133756325 | 1.149 | 14.64262775 | 3.731 | 3.734 | 0.002 | 0.583 | 8.00 |

HGSO | 0.13914701 | 1.3 | 11.89186832 | 3.662 | 3.662 | 0.000 | 0.214 | 3.67 |

GWO | 0.139124009 | 1.3 | 11.88926717 | 3.662 | 3.662 | 0.000 | 0.052 | 5.00 |

HHO | 0.139149956 | 1.3 | 11.89251101 | 3.662 | 3.665 | 0.006 | 0.135 | 3.67 |

Algorithm | _{s} |
_{h} |
Min | Mean | STD | RT | FRT | ||
---|---|---|---|---|---|---|---|---|---|

IRKO | 1.093571 | 0 | 65.22523 | 10 | 2302.55 | 2302.55 | 0.00 | 0.05 | 1.00 |

RKO | 1.09259 | 1.04E − 13 | 65.22524 | 10 | 2302.56 | 2302.57 | 0.02 | 0.04 | 2.67 |

SCA | 1.13138 | 0 | 65.15833 | 12.33304 | 2429.79 | 4856.43 | 2101.55 | 0.88 | 6.33 |

WOA | 0.906674 | 0 | 57.89208 | 45.89891 | 3006.85 | 5122.66 | 1836.32 | 4.51 | 7.33 |

IMO | 0.764525 | 0 | 51.81955 | 84.5345 | 3396.84 | 5173.69 | 1538.81 | 0.58 | 6.33 |

HGSO | 1.09356 | 2.14E − 21 | 65.22523 | 10 | 2302.55 | 2683.27 | 659.43 | 0.23 | 3.67 |

GWO | 1.086553 | 0 | 65.22587 | 10 | 2303.17 | 2309.16 | 10.02 | 0.05 | 3.67 |

HHO | 0.943091 | 0 | 59.14706 | 39.05765 | 2903.52 | 3084.58 | 231.81 | 0.13 | 5.00 |

In this paper, an enhanced variant of the RKO algorithm called IRKO algorithm is proposed. A local escaping operator concept is employed to improve the characteristics, i.e., exploration and exploitation capabilities of the original RKO algorithm. A 23 classical test suite and three engineering design problems—welded beam, tension/compression spring, and pressure vessel design problems are used to assess the performance of the IRKO algorithm. According to benchmark tests’ statistical findings, the IRKO produced outcomes that were either superior or relatively close to other selected algorithms. Furthermore, it may assess the proposed IRKO's suitability to real-world applications based on actual investigations of design problems.

From the earlier analysis, the IRKO might enable a broad range of future tasks. This includes applying the IRKO algorithm in numerous applications, such as image processing, feature selection, PV parameter estimation, power systems, power electronics, smart grid, big data applications, data mining applications, signal denoising, wireless sensor networks, artificial intelligence, machine learning, and other benchmark functions. Also applicable to situations depending on binary-, multi-, and many-objective optimizations.

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through the Research Group Program under Grant No: RGP. 2/108/42.