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Abstract: Precision agriculture enables the recent technological advancements
in farming sector to observe, measure, and analyze the requirements of
individual fields and crops. The recent developments of computer vision and
artificial intelligence (AI) techniques find a way for effective detection of
plants, diseases, weeds, pests, etc. On the other hand, the detection of plant
diseases, particularly apple leaf diseases using Al techniques can improve
productivity and reduce crop loss. Besides, earlier and precise apple leaf
disease detection can minimize the spread of the disease. Earlier works
make use of traditional image processing techniques which cannot assure
high detection rate on apple leaf diseases. With this motivation, this paper
introduces a novel Al enabled apple leaf disease classification (AIE-ALDC)
technique for precision agriculture. The proposed AIE-ALDC technique
involves orientation based data augmentation and Gaussian filtering based
noise removal processes. In addition, the AIE-ALDC technique includes a
Capsule Network (CapsNet) based feature extractor to generate a helpful
set of feature vectors. Moreover, water wave optimization (WWO) technique
is employed as a hyperparameter optimizer of the CapsNet model. Finally,
bidirectional long short term memory (BiLSTM) model is used as a classifier
to determine the appropriate class labels of the apple leaf images. The design
of AIE-ALDC technique incorporating the WWO based CapsNet model with
BiLSTM classifier shows the novelty of the work. A wide range of experiments
was performed to showcase the supremacy of the AIE-ALDC technique.
The experimental results demonstrate the promising performance of the AIE-
ALDC technique over the recent state of art methods.
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1 Introduction

Plant phenotyping and Precision agriculture are information and technology based domain with
certain challenges and demands for the detection and diagnoses of plant diseases [1]. This scheme’s
aim is to achieve real world, strong mapping system for environment, crop, and soil parameters for
facilitating a management decision [2]. In contrast, conventional agricultural management practice
assumes that parameters in crop fields are homogeneous, thus leads to crop health management and
pesticide application that isn’t obviously interrelated to the current disease management condition.
Enhancing agriculture productivity needs advanced solution which provides improved quality and
yield for outdoor and indoor farming [3]. A farmer requires precision technique for obtaining
and interpreting the data for well controlled crop development, avoiding losses created by adverse
climate conditions/infectious pests, and therefore enabling return on investment [3]. Yearly, plant
disease contributes to substantial damages in global harvest, costing an estimated US$220 billion.
Plant disease evaluation is accompanied for analyzing the measurement of pathogens or disease
(phythopathometry), that is essential for estimating the crop loss and disease intensity. Abundant
usage of chemicals like nematicides, bactericides, and fungicides for controlling plant diseases is created
adverse impacts on several agroecosystems. A reliable and accurate method is required in plant disease
evaluation for increasing severity estimation plant and disease detection.

Traditionally, visual observation by professionals was accompanied for diagnosing plant diseases.
But, there is a threat for error because of subjective perceptions [4]. Regarding this, several spectro-
scopic and imaging methods were investigated to detect plant disease. Though, they need accurate
bulky sensors and instruments that lead to higher costs and lower performance. Recently, using the
popularisation of digital cameras and another electronic device, automated plant disease diagnoses
through ML were broadly employed as suitable alternative [5]. ML methods are highly suitable for
the detection of uniform background plant images that were taken in an ideal laboratory platform.
In recent times, DL and convolutional networks have created significant developments in computer
vision and several related practical and theoretical attainments have been stated [6]. Since CNNs
could extract features directly and automatically from the input images, thus evading complicated
preprocessing on images, they have been a study in object identification. But, executing the real world
recognition of apple leaf disease remains complex due to ALDD has the succeeding features: firstly,
many diseases might occur on similar leaves [7]. Additionally, all the spots of apple leaf disease are
tiny. Lastly, environmental aspects like soil, shadow, and illumination also affect by apple leaf disease
detections.

This paper introduces a novel Al enabled apple leaf disease classification (AIE-ALDC) tech-
nique for precision agriculture. The proposed AIE-ALDC technique encompasses orientation based
augmentation, Gaussian filtering (GF) based noise removal processes. In addition, the AIE-ALDC
technique includes a Capsule Network (CapsNet) based feature extractor to generate a helpful
group of feature vectors. Moreover, water wave optimization (WWO) technique is employed as a
hyperparameter optimizer of the CapsNet model. Finally, bidirectional long short term memory
(BILSTM) model is used as a classifier to determine the appropriate class labels of the apple leaf
images. A wide range of experiments was carried out to showcase the supremacy of the AIE-ALDC
technique.

The paper organization is given as follows. Section 2 offers the related works, Section 3 elaborates
the proposed model, Section 4 provides the performance validation, and Section 5 concludes the paper.
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2 Related Works

Liu et al. [8] presented the accurate detecting technique for apple leaf diseases on the basis of
DCNN. It consists of creating adequate pathological images and design a new framework of a DCNN
is depending upon AlexNet for detecting apple leaf disease. Chouhan et al. [9] presented a technique
called BRBFNN for classification and identification of plant leaf disease manually. To assign an
optimum weight for radial basis function NN they utilize bacterial foraging optimization which
additionally raises the accuracy and speed of the network for classifying and identifying the areas
affected by distinct diseases on the plant leaves. The area developing method rises the performance
of the network by grouping and searching of seed points that have general attributes for extracting
feature procedure.

In Khan et al. [10], a novel technique is executed for apple disease recognition and identification.
Initially, the apple leaf’s spot is improved by a hybrid technique that is the combination of de-
correlation, three-dimension box filtering, Gaussian, and median filters. Next, the lesion spot is
separated by the robust correlation based technique and enhanced their result by the combination
of EM segmentation. The investigational result is executed on plant village dataset. In Yuetal. [11], a
novel DL framework is presented for considering the leaf spot attention method. To understand this, 2
subnets are implemented. Initially, feature segmentation subnetwork for providing extra discriminate
features for spot areas, individual background, and leaf areas in the feature map.

Xie et al. [12], proposed a real world detector for grape leaf disease is depending upon enhanced
DCNN. This study firstly extends the grape leaf disease image via digital image processing technique,
creating the grape leaf disease dataset (GLDD). In Agarwal et al. [13], a CNN method was established
for identifying the disease in apple and it has 2 densely connected, 3 max pooling layers, and 3
convolution layers. This module was made afterward analysis by differing amount of convolution
layers from two to six and initiate that three layers were provided an optimal accuracy. In order to
compare the result, the conventional ML method was also implemented on a similar dataset. Alongside
conventional ML approach, the prominent pretrained CNN modules like InceptionV3 and VGG16
are also performed. Bi et al. [14] propose a HIGH, LOW COST, STABLE accuracy apple leaf disease
detection technique. It can be attained by using MobileNet module. Initially, relating to a common
DL method, it is a LOW COST module since it is easily placed on mobile devices. Next, in place of
skilled expert, everybody could complete the apple leaf disease investigation STABLELY using this
approach. Lastly, the accuracy of MobileNet is almost similar to present complex DL methods. Some
other methods are also available in the literature [15-19].

3 Materials and Methods

The workflow involved in the AIE-ALDC technique is demonstrated here. The proposed AIE-
ALDC technique encompasses orientation based augmentation, GF based preprocessing, CapsNet
based feature extraction, WWO based parameter tuning, and BiLSTM based classification. The
detailed working processes involved in the AIE-ALDC technique are offered in the succeeding sections.

3.1 Dataset Used

The performance validation of the AIE-ALDC technique takes place utilizing a new plant disease
dataset [20]. The dataset comprises images under four different classes like Apple Scab, Black Rot,
Cedar Rust, and healthy images. Firstly, the Apple Scab contains a set of 2016 training images and
504 testing images. Besides, the black rot class includes a total of 1987 training images and 497 testing
images. Followed by, the Cedar Rust class encompasses a set of 1760 training images and 440 test
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images. Finally, the healthy class contains a set of 2008 and 502 training and testing images respectively.
The details related to the dataset are shown in Tab. | and some sample test images are illustrated in

Fig. 1.

Figure 1: Sample images
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Table 1: Dataset description

No. of Classes No. of Training Images No. of Testing Images
Apple Scab 2016 504
Black Rot 1987 497
Cedar Rust 1760 440
Healthy 2008 502

3.2 Data Augmentation and Data Pre-Processing

In the apple orchard, the comparative location of the image acquisition devices to study objects
is defined by their present spatial relation that is based on the shooting location. Thus, it is complex
to picture the apple leave pathological images from all angles to encounter every opportunity. In this
subsection, to test and construct the adaptability of the CNN based method, an extended image dataset
is developed from the natural images utilizing mirror symmetry and rotation transformation. Image
rotation takes place if all the pixels rotate specific angles nearby the centre of an image. Consider that
Py (X, yo) denotes a random point of image; afterward rotating 6° anticlockwise, the point coordinates
are P(x, y). The coordinate of the estimation of 2 points is displayed in Eqs. (1) and (2).

Xy =T CoS o (1)
Yo = ISin o

X = rcos(a — 0) = xy,c080 + y,sind 2)
y=rsin(e —0) = —x,sin6 + y,cosd

As displayed, a pathological image is mirrored and rotated for generating 4 pathological images,
where the angle of rotation contains 90°, 180°, and 270.

Fig. 2 shows the sample images produced after the data augmentation process. Fig. 2a depicts
the original, 2b-2d depicts the images produced after the rotation of 90°, 180°, and 270°. The figure
depicted that the input images are effectively augmented into different views.

The implementation of two dimensional Gaussian filters was widely utilized for noise removal and
smoothing. It requires huge processing resources and the efficacy in executing is stimulating research.
The convolutional operator is determined as Gaussian operator and proposal of Gaussian smoothing
is attained using the convolution. The Gaussian operator in one dimension is given by:

Gio(9) = ——e () 3)

2no

The optimal smoothing filter for the image endures localization in the frequency & spatial
domains, in which the ambiguity relations are fulfilled by:

1



6228 CMC, 2022, vol.70, no.3

(@ (b) (© @

Figure 2: Sample augmented images a) Original image b) 90° Rotated image (c) 180° Rotated image (d)
270° Rotated image

The Gaussian operator in two dimensions is established by:

e*(x;fzyz) (5)

Gonlx,) = 5—

Whereas, o (Sigma) denotes the SD of a Gaussian function. Once it has a maximal value, the image
smoothing will be higher. (x, y) represents the Cartesian coordinate of the image which showcases the
window dimension.

Fig. 3 displays the sample set of pre-processed images produced by the GF technique. From the
figure, it is obvious that the quality of the images is considerably enhanced by the GF technique.

Figure 3: Preprocessed images
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3.3 Feature Extraction: WWO-Capsnet Model

Convolutional neural networks (CNNs), or convents for short, is specific kind of FFNN. They
are equivalent to the NN demonstrated above in that they are composed of neurons with learnable
biases and weights. The significant variation is that the CNN framework creates the implicit statement
that the input is an image that permits encoding specific features in the framework. Particularly,
convolution captures translation invariance (viz., filter is independent of the position). This alternately
creates the forward function more effective, massively decreases the amount of variables, and thus
creates the network easier for optimizing and lesser based on the size of the data. A CNN contains
MLP, sequence of layers, in which all the layer converts the activation or output of the prior layer
by other distinguishable functions. It has many layers utilized in CNN, and this would be described
in the following section, but, the most popular components would meet in all the CNN framework
contains the fully connected layer, pooling layer, and convolutional layers. Basically, this layer contains,
dimensionality reduction, classification layers, and feature extractors, correspondingly. These CNN
layers are stacked to create a full convolutional layer. These sliding filters are generally executed by a
convolution and, a linear operator, it could be stated as a dot product for effective execution. In every
convolution layer, they have a whole set of filters, all of them would generate distinct activation maps.
This activation map is stacked for obtaining the output map or activation amount of layers.

The CapsNet method is the most common study field in the research. The fundamental units
of CapsNet are capsule that has a group of arranged neurons. The capsule length is based on the
invariance, where the amount of features for recreating the image are the measurement of equivariance.
Capsule produces vectors of a similar magnitude with distinct locations. The output of capsule i
was considered as u;, and conversion matrix W, was utilized to the capsule output for calculating

predictions of parent capsule j by altering u; to the predictive vector U jli.
Ujli = Wyu, (6)

whereas Uj|i denotes the predictive vector of output of the j, capsule in a high level calculated by
capsule i in layer below, and W, represents the weighting matrix which should be learned in the
backward pass. The variable s, is a weighted amount on the entire predictive vectors u;, whereas
¢; denotes the coupling coefficient computed using the dynamic routing procedure for determining
conformation degree among the capsules in the layer below and parent capsule [21]. Fig. 4 illustrates
the structure of CapsNet.

(L8]
00

6 Wij = (8x16)

Figure 4: Structure of CapsNet

An activation function baptized squashing shrink the last output vector to 0 when it is smaller
and for unit vector when it is larger, for generating capsule length. In activity vectors v; is computed
by the succeeding nonlinear squashing functions.

lIsilI* s

V= (7
T T4l sl
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The ¢, is estimated as softmax ofb;. The coupling coefficient is determined as the confirmation

degree among the capsule and the parent capsule.

_exp (by)
e S )

b; denotes similar score which considered feature and likeliness properties instead of likeliness in
neurons.

Once the images are augmented and preprocessed, the WWO-CapsNet technique is applied to
generate a useful set of feature vectors.

WWO module is an effective and well-known method that has attained greater emphasis from the
researchers utilized to map search space problems to a sea bed. Now, a single WW is suggested as a
solution where height and wavelength fitness A. Firstly, # denotes a constant, and A is assigned as 0.5.
It is obvious that a seabed of WW is greater compared to fitness. For optimization procedure, three
stages have been executed, Refraction Propagation, and Breaking [22].

3.3.1 Propagation State

For each iteration, all WWs are propagated effectively. With the consideration of actual WWx,
the propagated WW and propagation process is a dimension of high functionF, called asD. The
propagation process X' was executed by calculating the operations as Eq. (10)

X'(d) = x(d) + rand(—1,1) - LL(d) (10)

whereas d € D, x(d) denoted the d — th dimension of actual WW x, x(d) indicates the d — th dimension
of propagated WW, rand(—1, 1) determines an equally distributed arbitrary value amongst —1 and 1,
and A indicates the wavelength of WW, L(d) represents the length of d — th dimensional of search space.
Eventually, when the length is greater compared toL(d), then it is arbitrarily set to a new position on
the basis of Eq. (11).

L(d) = Ib(d) + rand. x (ub(d) — Ib(d)) (11)

Whereas Ib(d) & ub(d) denotes lower & upper bounds of L(d) and rand. denotes an arbitrary
value amongst zero and one. A fitness measure f(x’) is defined by a FF f when finishing propagation
process. if & = 0, x is substituted, and a wave height is recreated to/ ,,,, , otherwise, the actual WW
will be preserved and height is shown in Eq. (10) for accelerating the energy dispersion of WW of
propagation task [23]. When the iteration is finished, wavelength of a WW is re-calculated by Eq. (12).

A= A- a*(f(x)*/ininJre)/(f max —/ min +¢) (12)

whereas « indicates the wavelength, f,... and f ., denotes the higher and lower fitness values of current
population. ¢ represents a tiny positive value. It is learned that has maximal fitness value which
results in constrained wavelength and tiny range of WW propagation. Now, WW with maximal fitness
improves local search.
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3.3.2 Breaking State

In the event of WW standard, improved power of WW enhances steeper peak. If speed of wave
is greater, WW may be separated into huge amount of solitary waves. With WWO method, the wave
breaking task is calculated on newly recognized solution when finishing the propagation operation. A
method of separating waves are chosen arbitrarily amongst [1, & ..« ], kK mex denotes a predetermined
parameter which is higher compared to one, and generates an orphan wave in all dimensions based on
Eq. (13).

X'(d) =x(d)+ N(0,1) - BL(d) (13)

Whereas 8 represent a coefficient of breaking waves (0.001 and 0.1). N(0, 1) indicates a normal
distribution. When the wave function is separated, the fitness value of solitary waves is lesser compared
tox*, x* is preserved. Succeeded by, x* is swapped by an optimal solution of unique waves.

3.3.3 Refraction State

Once WW refracts in the mountain valley, particularly in steep regions with deep sea features.
For accelerating the power dispersion of WW in propagation development, henceforth wave height is
decreased afterward propagation for removing search stagnation. Eq. (14) is applied for updating the
position of a dimension afterward WW refraction:

x*(d) + x(d) |x*(d) — X(d)l)

2 ’ 2 (14

Xd)y=N (
Whereas x* represents the optimum value of current populations. N(u, o) indicates a Gaussian

distribution. Succeeded by, a wave height x' is assigned to/ ,,,, , and wavelength of WW is maximalized
by Eq. (15).

3=l

RACY: ()

3.4 Image Classification

Finally, the BILSTM model is utilized as a classifier to allot proper class labels to the input apple
leaf images. Generally, an RNN is made up of difficulties in learning long term dependency [24]. An
LSTM based technique is expanded for RNNs that can able to handle reducing gradient problems.
Therefore, the LSTM technique learns the data importance to remove/preserve. Usually, an LSTM
technique has output, forget, and input gates. Fig. 5 demonstrates the architecture of LSTM.

Forget Gate. The sigmoid function is normally employed for creating a decision that should be
deleted from the LSTM memory. This decision is basically depending upon the value of 4,_, and x,.
A result of this gate is f;, a value among zero & one, while zero represents the learned value, and one
denotes the entire value. The result is estimated by:

Jo=o Wy [h], Wilx]. by (16)

whereas b, denotes a constant and so named bias value.
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Figure 5: Structure of LSTM

Input Gate. Now, it improves the decision of new data is within the LSTM memory. It can be made
up of: sigmoid and “tanh” layers. The results of 2 layers are estimated by:

I, = U(th[hf—l], I/I/ix[xt]s b;) (17)

¢, = tanh (W, [h_]. W.[x].b.) (18)

whereas i, denotes the value should be upgraded or not, and ¢, represents a vector of novel candidate
value that is added to the LSTM memory. The succeeding formula indicates its numerical formula:

e =fixc_ +i*c (19)

whereas f; denotes the result of forgetting gate that the value amongst zero and one signifies lastly
obtained value; however, one represents lastly preserve the value.

Output Gate. It employes sigmoid layer to make decisions i.e., A separation of LSTM memory
provides to the result. Next, it creates a nonlinear tanh function for mapping the values amongst —1
& 1. The succeeding formula indicates the equations to calculate the result:

o,=o (W, [h.], W,l[x], b) (20)

h, = o, % tanh (¢, (21)

whereas o, denotes the outcome value, and 4, denotes the value amongst —1 & 1.

4 Performance Validation

Fig. 6 displays the confusion matrices generated by the AIE-ALDC technique under different
runs. On the execution run-1, the AIE-ALDC technique has classified a set of 484 images into Apple
Scab, 489 images into Black Rot, 425 images into Cedar Rust, and 494 images into Healthy. Also,
on the execution run-2, the AIE-ALDC approach has classified a set of 494 images into Apple Scab,
489 images into Black Rot, 429 images into Cedar Rust, and 494 images into Healthy. Moreover, on
the execution run-3, the AIE-ALDC method has categorized a set of 494 images into Apple Scab, 490
images into Black Rot, 431 images into Cedar Rust, and 494 images into Healthy. Furthermore, on the
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execution run-4, the AIE-ALDC manner has classified a set of 497 images into Apple Scab, 493 images
into Black Rot, 433 images into Cedar Rust, and 498 images into Healthy. Finally, on the execution
run-5, the AIE-ALDC methodology has ordered a set of 500 images into Apple Scab, 495 images into
Black Rot, 436 images into Cedar Rust, and 500 images into Healthy.

Confusion Matrix Confusion Matrix Confusion Matrix

Apole Scab

Actual
Actual

cab Black Rot Cedar Hust Healthy pple Scab Black Rot Cedar Rust Healthy
Predicted Predicted Predicted

(@) () ()

Confusion Matrix Confusion Matrix

Actual
Actual

Apple Scab 8lack Rot Cedar Ru: sple Scab Black Rot Cedar Ru:

Predicted Predicted

(d) (e)

Figure 6: Confusion matrices of AIE-ALDC technique. a) Run-1 b) Run-2 c¢) Run-3
d) Run-4 e) Run-5

The proposed AIE-ALDC technique is simulated utilizing Python 3.6.5 tool. A deiled classifica-
tion results analysis of the AIE-ALDC technique is examined under different runs in Tab. 2. From the
results, it can be noticed that the AIE-ALDC approach has accomplished maximal apple leaf disease
detection performance. For instance, with the execution-1, the AIE-ALDC technique has obtained
effectual outcomes with accuracy of 0.987, precision of 0.975, recall of 0.974, specificity of 0.991,
and F-score of 0.974. Likewise, with the execution-2, the AIE-ALDC manner has gained effective
results with accuracy of 0.991, precision of 0.981, recall of 0.981, specificity of 0.994, and F-score of
0.981. Similarly, with the execution-3, the AIE-ALDC method has attained efficient outcomes with
an accuracy of 0.991, precision of 0.983, recall of 0.982, specificity of 0.994, and F-score of 0.983.
Also, with execution-4, the AIE-ALDC methodology has gained effectual outcomes with accuracy of
0.994, precision of 0.989, recall of 0.989, specificity of 0.996, and F-score of 0.989. At last, with the
execution-5, the AIE-ALDC algorithm has achieved effective results with accuracy of 0.997, precision
of 0.994, recall of 0.994, specificity of 0.998, and F-score of 0.994.
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Table 2: Performance measures of proposed AIE-ALDC method on different runs

No. of Classes Accuracy Precision Recall Specificity F-score
Run-1

Apple Scab 0.988 0.992 0.960 0.997 0.976
Black Rot 0.982 0.946 0.984 0.981 0.965
Cedar Rust 0.992 1.000 0.966 1.000 0.983
Healthy 0.986 0.963 0.984 0.987 0.973
Average 0.987 0.975 0.974 0.991 0.974
Run-2

Apple Scab 0.992 0.988 0.980 0.996 0.984
Black Rot 0.988 0.968 0.984 0.989 0.976
Cedar Rust 0.993 0.993 0.975 0.998 0.984
Healthy 0.990 0.976 0.984 0.992 0.980
Average 0.991 0.981 0.981 0.994 0.981
Run-3

Apple Scab 0.992 0.990 0.980 0.997 0.985
Black Rot 0.988 0.968 0.986 0.989 0.977
Cedar Rust 0.993 0.989 0.980 0.997 0.984
Healthy 0.992 0.984 0.984 0.994 0.984
Average 0.991 0.983 0.982 0.994 0.983
Run-4

Apple Scab 0.995 0.994 0.986 0.998 0.990
Black Rot 0.993 0.980 0.992 0.993 0.986
Cedar Rust 0.995 0.993 0.984 0.998 0.989
Healthy 0.995 0.988 0.992 0.996 0.990
Average 0.994 0.989 0.989 0.996 0.989
Run-5

Apple Scab 0.997 0.996 0.992 0.999 0.994
Black Rot 0.996 0.990 0.996 0.997 0.993
Cedar Rust 0.997 0.998 0.991 0.999 0.994
Healthy 0.997 0.992 0.996 0.997 0.994

Average 0.997 0.994 0.994 0.998 0.994
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Table 3: Result analysis of existing with proposed AIE-ALDC method with respect to memory space
and training Time

Model Space (GB)  Time (hrs)
AlexNet 3.29 0.551
GooglLeNet 4.33 0.580
VGGNet-16 8.70 2.433
ResNet-20 12.0 2.717
DCNN 2.83 0.579
AIE-ALDC 2.56 0.518

Tab. 3 offers the memory space and training time analysis of the AIE-ALDC technique with other
techniques. From the table, it is apparent that the ResNet-20 model has shown ineffective outcomes
with a higher memory space of 12 GB and training time of 2.717 h. Followed by, the VGGNet-16 model
has gained slightly enhanced performance with a memory space of 8.70 GB and training time of 2.433
h. Then, the GoogleNet and AlexNet models have showcased moderate memory space and training
time. At the same time, the DCNN model has portrayed somewhat considerable memory space of 2.83
GB and training time of 0.579 h. However, the AIE-ALDC technique has outperformed the other
techniques with a minimal memory space of 3.29 GB and training time of 0.551 h.

In order to ensure the promising performance of the AIE-ALDC technique, a detailed comparison
study is made with the recent methods in Tab. 4 and Fig. 7 [25]. From the obtained values, it is
noticeable that the BP and SVM models have led to least outcome with the accuracy of 0.5463 and
0.6873. In line with, the ResNet-101 and AlexNet models have depicted slightly enhanced outcome
with the accuracy of 0.9116 and 0.9119. Then, the ResNet-50, ResNet-20, ResNet-34, and ResNet-18
models have demonstrated moderate outcome with the accuracy of 0.9317, 0.9364, 0.9549, and 0.9569
respectively. Followed by, the VGGNet-16 model has gained somewhat considerable outcome by
gaining an accuracy of 0.9632. Though the DL-ICNN and DCNN models have portrayed competitive
accuracy values of 0.9714 and 0.9762, the proposed AIE-ALDC technique has surpassed all the other
techniques by accomplishing a maximum accuracy of 0.992.

Table 4: Result analysis of existing with proposed AIE-ALDC method with respect to accuracy

Methods Accuracy (%)
SVM 0.6873
BP 0.5463
AlexNet 0.9119
Googl.eNet 0.9569
ResNet-20 0.9276
VggNet-16 0.9632
DCNN 0.9762
InceptionV3 0.9549
ResNet-101 0.9116
ResNet-50 0.9243

(Continued)
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Table 4: Continued

Methods Accuracy (%)
ResNet-34 0.9317
ResNet-18 0.9364
DL-ICNN 0.9714
AIE-ALDC 0.9920
1r o
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Figure 7: Accuracy analysis of AIE-ALDC model with existing techniques

By looking into the aforementioned tables and figures, it can be ensured that the AIE-ALDC

methodology is initiate that exists an appropriate technique for apple leaf disease detection and
classification.

5 Conclusion

This paper has devised an efficient AIE-ALDC technique for the detection and classification of
apple leaf diseases. The proposed AIE-ALDC technique encompasses orientation based augmenta-
tion, GF based preprocessing, CapsNet based feature extraction, WWO based parameter tuning, and
BiLSTM based classification. The use of WWO algorithm aids to optimally adjust the hyperparameter
involved in the BiLSTM model. A wide range of experiments was performed to showcase the
supremacy of the AIE-ALDC approach. The experimental outcomes demonstrate the promising
performance of the AIE-ALDC technique over the recent state of art methods with the higher accuracy
of 0.9920. In future, the proposed AIE-ALDC technique can be deployed in a real time environment
using internet of things (IoT) and imaging sensors.
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