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Abstract:Agriculture has been an important research area in the field of image
processing for the last five years. Diseases affect the quality and quantity
of fruits, thereby disrupting the economy of a country. Many computerized
techniques have been introduced for detecting and recognizing fruit diseases.
However, some issues remain to be addressed, such as irrelevant features and
the dimensionality of feature vectors, which increase the computational time
of the system. Herein, we propose an integrated deep learning framework
for classifying fruit diseases. We consider seven types of fruits, i.e., apple,
cherry, blueberry, grapes, peach, citrus, and strawberry. The proposed method
comprises several important steps. Initially, data increase is applied, and then
two different types of features are extracted. In the first feature type, texture
and color features, i.e., classical features, are extracted. In the second type, deep
learning characteristics are extracted using a pretrained model. The pretrained
model is reused through transfer learning. Subsequently, both types of features
are merged using the maximum mean value of the serial approach. Next, the
resulting fused vector is optimized using a harmonic threshold-based genetic
algorithm. Finally, the selected features are classified using multiple classifiers.
An evaluation is performed on the PlantVillage dataset, and an accuracy of
99% is achieved. A comparison with recent techniques indicate the superiority
of the proposed method.

Keywords: Fruit diseases; data augmentation; deep learning; classical fea-
tures; features fusion; features selection

1 Introduction

Agricultural imaging is an important research domain in image processing and computer
vision [1]. Fruit plants contribute significantly to the economic growth of any country [2,3]. They
not only provide food and raw materials, but also contribute to the employment of the local
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population [4]. Fruit plants that contribute primarily to production include citrus fruits, apples,
grapes, and peaches. Citrus fruits are beneficial to human health as they are abundant in vitamin
C [5]. Fruit diseases affect the production of fruits; the reduction in fruit productivity inevitably
affects the overall economy of a country. Therefore, it is important to detect and recognize
these diseases at the early stage to overcome major losses. The most typical citrus fruit diseases
include downy, greening, canker, and black spots. Main leaf diseases that affect apple production
are frog eye spots, cedar rust, mosaics, gray spots, and scabs. The detection and identification
of fruit diseases at the early stage can improve fruit quality and production [6]. The manual
detection process incurs considerable time and energy; therefore, computerized techniques must be
introduced.

Recently, the automated recognition of fruit diseases has garnered significant interest in the
field of computer vision. The primary procedures of these automated systems are preprocessing,
segmentation, feature extraction, feature selection, and classification [7]. Researchers have primarily
focused on enhancing the efficiency of the system using different techniques in these procedures.
Researchers have utilized different segmentation methods such as K-means clustering [8], snake
segmentation [9], globally adaptive thresholding [10], and genetic cellular neural network-based
segmentation [11] to identify the infected regions in fruit plant diseases.

Feature extraction is crucial in fruit disease classification. During feature extraction, hand-
crafted features and deep CNN features are extracted for disease identification. The important
handcrafted features for fruit plant and leaf disease recognition are color and texture features [12].
In [13], researchers utilized color features for disease recognition. For texture feature extraction,
researchers utilized the local binary pattern (LBP) [14] and color texture features [15]. Addi-
tionally, deep-learning-based features have garnered significant attention for the classification of
different fruit diseases [16,17]. Deep CNN features can improve recognition accuracy. Some deep-
feature-based systems are used for recognizing plant leaf diseases [18,19]. Furthermore, researchers
have proposed feature selection techniques to select the best features. The computational time can
be minimized using the best feature selection techniques.

Herein, we present a framework for the classification of fruit plant diseases. We evaluated our
technique on 16 classes of the Plant Village database, which comprises different fruit plants such
as apple, blueberry, cherry, orange, peach, grapes, and strawberry. In the proposed framework, we
extracted the LBP, color, and deep ResNet50 features and then combined them to obtain a single
vector using the maximum mean value serial approach. Subsequently, the combined vector was
optimized using a modified genetic algorithm (GA) and fed to the ensemble subspace discriminant
(ESD) classifier for disease recognition.

The remainder of this paper is organized as follows: The existing studies (related studies)
are discussed in Section 2. In Section 3, the proposed framework is described based on different
visualizations and mathematical modeling, and the results are presented in Section 4. Finally, the
conclusions are presented in Section 5.

2 Related Work

Researchers have introduced several automated systems to detect and recognize diseases in
fruit plants and leaves [20,21]. These systems utilize handcrafted and deep CNN features. Sharif
et al. [5] developed a system for recognizing diseases in citrus fruits based on two phases. In the
first phase, the lesion area was detected in the citrus fruits and leaves. To detect the lesion, they
utilized an optimized weight-based segmentation method. In the next step, they combined the
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color, texture, and geometric features. Feature selection was performed using skewness, entropy,
and PCA-based methods. Subsequently, the selected feature vector was fed to a support vector
machine (SVM), which achieved a 97% recognition accuracy for citrus diseases and 90.4% on
a private dataset. In [22], a grape leaf disease detection method based on a back-propagation
neural network was introduced. First, images denoised using a wavelet transform-based Wiener
filtering technique, and the infected region was segmented using the Otsu segmentation method.
Subsequently, the features were calculated from the perimeter, circularity, area, shape complexity,
and rectangularity.

Liu et al. [23] presented a CNN-based methodology for the recognition of apple leaf diseases.
They trained the AlexNet model on 13689 images of apple leaves and achieved a 97.62% accuracy.
Khan et al. [6] presented a method for classifying different fruit diseases. They utilized the
features from pretrained Caffe AlexNet and VGG-16 networks. In another study [24], researchers
developed a system for the segmentation and recognition of grape leaf disease. In this system,
a haze reduction and enhancement technique was first introduced. Subsequently, LAB color
transformation was performed to select the best channel. During feature extraction, the features
were calculated based on the geometric, color, and texture features. The extracted features were
combined using canonical correlation analysis, and the best feature set was selected by imple-
menting neighborhood component analysis. This method yielded accuracies of 90% and 92% for
segmentation and classification, respectively.

Khan et al. [25] proposed a technique for identifying apple leaf diseases. Initially, the images
were enhanced using a hybrid method. This hybrid method combines de-correlation as well as
three-dimensional (3D) Gaussian, 3D median, and 3D box filtering. They extracted and com-
bined the LBP, color, and color histogram-based features and optimized them using a GA.
Chao et al. [26] introduced a method for identifying apple leaf diseases based on deep CNN
models. They combined DenseNet and Xception models using global average pooling layers.
They extracted the features from the CNN models and fed them to an SVM for classification.
Additionally, researchers [27] have implemented a transfer learning technique for the detection of
apple diseases, where they utilized a global average pooling layer for feature collection from the
VGG-16 network. Adeel et al. [4] introduced a deep CNN-based methodology for the detection of
grape leaf diseases. They implemented the transfer learning technique on pretrained networks such
as AlexNet and ResNet101 and selected the best features using the Yager entropy and kurtosis.
In [28], a leaf generative adversarial network (GAN) was introduced for grape disease recognition,
where grape leaf images in four different diseases were generated.

All of the abovementioned techniques focused on the classification of fruit diseases using deep
learning. Challenges in deep learning during training have been discussed, and they were solved
using data augmentation techniques in a few studies. Furthermore, few researchers have high-
lighted the issue of irrelevant features, which can be resolved using feature selection techniques.
Nonetheless, issues in the classification phase persist.

3 Proposed Methodology

In this section, we present the proposed framework for the classification of fruit plant diseases
from leaf images with visual and technical details. The primary procedures of the proposed
framework are dataset collection, data augmentation to increase the number of images per class, as
well as extraction of features that include LBPs [29], robust color features, and deep ResNet50 [30]
features. Subsequently, these extracted features are combined using a maximum mean value serial
approach and optimized using a modified GA. Finally, the optimized feature vector is fed to



1390 CMC, 2022, vol.71, no.1

multiple classifiers for image recognition. Fig. 1 illustrates the main flow diagram of this process.
The details of each procedure are provided below.

Figure 1: Flow of the proposed fruit diseases classification framework

3.1 Dataset Collection
In this study, the PlantVillage database [31] was utilized to prepare a dataset for the evaluation

of the proposed technique. The PlantVillage dataset comprises 54303 leaf images and 38 classes.
In this study, we utilized 16 classes of healthy and diseased fruit plants. The images were captured
from apple, blueberry, cherry, grape, orange, peach, and strawberry leaves. All images of this
dataset were resized to 256× 256 pixels. Sample images of this dataset are shown in Fig. 2.

Figure 2: Sample images of the Plantvillage dataset
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3.2 Dataset Augmentation
In this study, we performed data augmentation to increase the amount of data of classes

comprising few images to balance the dataset. For the augmentation, image flips were performed
to convert the original image into a new angle. Initially, the apple scab class contained 630 images;
however, the number of images increased to 1260 after augmentation. The original apple cedar
rust class contained 276 images, which to 550 images after augmentation. Meanwhile, the grape
healthy and peach healthy classes contained 423 and 360 images, respectively, which increased to
846 and 720 images after augmentation, respectively. The number of healthy strawberry classes
increased from 456 to 912 images. Mathematically, the horizontal and vertical flip operations are
defined as follows:

FH = Ii(n+ 1− j) (1)

FV = I(n+ 1− j)j (2)

where FH represents the horizontal flip operation, FV the vertical flip operation, and I the original
database image with dimensions N×M × k.
3.3 Feature Extraction

Feature extraction is an important aspect in computer vision and image processing. Features
are extracted to represent the image information. The extraction of robust features enables image
to be classified correctly. In this study, we focused on both classical and deep learning features,
i.e., LBP, color, and deep features extracted through the ResNet50 CNN pretrained model. A
mathematical description of each method is provided below.

3.3.1 Local Binary Patterns (LBP) Features
LBP features are used extensively to perform texture analysis on image datasets. They estimate

the texture information of an image based on its neighboring pixels. Suppose Xh(a,b) is an image
of size M×N, where (a,b) is the position of the image pixels. The central pixel and its neighring
pixels are denoted as qc, and qh respectively. Using these parameters, the LBP features can be
calculated a:

LBP(qc)h,r =
h−1∑
h=0

x(qh− qc)2h (3)

x(y)=
{
1, y≥ 0
0, y< 0

(4)

where h denotes the neighboring pixel, and r is the neighborhood radius. The extracted feature
set size of the LBP features was N × 59. Here, N represents the total number of images, and for
each image, 59 features were extracted.

3.3.2 Color Features
Color features [32] are vital to the recognition of diseases using RGB images. We utilized

three color spaces, namely RGB, HSV, and LAB, to extract the color features from the database.
First, we separated each channel of the color space and then converted it into a histogram. Sub-
sequently, for each channel, we calculated five parameters including the mean, standard deviation,
variance, kurtosis, and skewness. This calculation was performed for all nine channels of the three
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color spaces. The computed parameters were combined serially to obtain a vector c_fv(i) of size
N × 6500. Robust color features were selected by defining a threshold function, which selects the
features based on the mean value and eliminates approximately 60% to 70% of irrelevant features.
Mathematically, this can be described as follows:

where ψcf (i) is the robust color feature set of size N × 2511, selected from c_fv(i).

c_fv(i)= {RGB;LAB;HSV}3i=1 (5)

CF =
{
ψcf (i), c_fv(i)≥μ

Eliminate otherwise
(6)

where ψcf (i) is the robust color features set of size N × 2511, selected from c_fv(i).

3.3.3 Deep Learning Features
In this study, we utilized the ResNet50 [30] model for deep feature extraction. This model,

which was established using the residual learning technique, comprised 50 layers and 16 bottleneck
residual blocks. Three convolutional operations of size 1 × 1, 3× 3, and 1× 1 were performed
on each residual block. The image size for the input was 224× 224, and this model yielded 2048
features as the output. The feature map sizes for the first three residual blocks were 64 and 256.
The feature maps for the next four blocks were 128 and 512. The feature sizes for the next six
blocks were 256 and 1024. The final three blocks contained feature maps of sizes 512 and 2048.
We extracted the features from the fully connected (fc1000) layer, which generated a feature vector
of size N × 1000, as illustrated in Fig. 3. The feature set was later combined with the LBP and
color features for the final classification.

Figure 3: An architecture of ResNet50 deep learning model

3.4 Features Fusion
After extracting the features, we combined all features in a single vector using a new approach

known as the “maximum mean value serial approach.” Three feature vectors, including LBP, color,
and ResNet50 features, were combined into a single vector to obtain a new feature set of size N×
3570 to achieve a better classification accuracy. The combination process can be mathematically
expressed as follows:

Consider, we have three feature vectors ψ(LBP), ψ(cf ), and ψ(df ) of dimensions N × 59,
N × 2511, and N × 1000, respectively. Suppose ψfd is a fused vector of dimension N × K, then
computed the mean value of each vector as follows:

μ(1)= 1
N

(∑
(ψ(LBP))

)
, μ(2)= 1

N

(∑
(ψ(cf ))

)
, μ(3)= 1

N

(∑
(ψ(df ))

)
(7)
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μ̌=
∑

(μ(1),μ(2),μ(3))
3

(8)

ψfd(i)=
⎛
⎝ψ(LBP)N×59
ψ(cf )N×2511
ψ(df )N×1000

⎞
⎠ (9)

ψ̃fd(i)=
{
UP(ψfd(i)) for ψfd(i) < μ̌

NotUpdated for ψfd(i)≥ μ̌

}
(10)

where ψ(LBP)N×59, ψ(cf )N×2511, and ψ(df )N×1000 represent the LBP, color, and deep ResNet50
features, respectively. ψfd(i) is the serial fused vector, and ψ̃fd(i) is the final maximum mean value
of the serial approach-based feature vector. This vector is further optimized using a modified GA,
and this process is known as threshold-function-based GA feature selection.

3.5 Features Selection
A GA is a feature optimization technique inspired by biological evolution theory [33]. The GA

belongs to the evolutionary class of algorithms. In this study, using the GA, the best features were
selected from the combined feature vector ψfd(i). The combined feature vector was provided as an
input. The best features were selected as the set of solutions, also known as the population. The
solution is known as a chromosome and comprises genes that depict a possible solution for
the specified problem. The GA evaluated the generated solutions after each iteration based on
the fitness function. The GA randomly selected individuals as parents from the population. These
parents produce children for the next generation. Finally, the GA provided an optimal solution,
which was then passed through a threshold function. The threshold function was based on the
harmonic mean of the optimal solution.

Initialization: The GA performs an initialization using a set of individuals, known as a
population. The population was set to 20, which is the possible number of solutions. The number
of generations was set to 500, signifying that this algorithm performed 500 iterations to evaluate
the fitness function. The mutation rate and crossover rate were set to 0.01 and 0.8, respectively.

Selection: The most important step in the GA is the selection of the best features. In this
study, we applied the roulette-wheel method for parent selection. The probability-based roulette
wheel selection is mathematically defined as:

W = wi∑
(wi)

(11)

wi = exp
(
−b1×

Sρ

Wl

)
(12)

where, b1 represents the selected parent pressure, Sρ denotes the sorted population, and Wl is the
last selected population.

Crossover: This step generates a better individual by swapping the genes of two parents. In this
study, we utilized a single-point crossover rate of 0.8. A single-point crossover randomly selects a
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point from both parents. A high crossover rate may cause a premature convergence of the GA.
In mathematical form, it can be defined as:

γcr =CrossOver(X1,X2) (13)

X1= vZ1+ (1− v)×Z2 (14)

X2= vZ2+ (1− v)×Z1 (15)

Mutation: Mutation maintains genetic diversity and avoids the premature convergence of the
GA. In this process, one or more genes are flipped based on the defined mutation rate. In our
method, a uniform mutation rate of 0.01 was utilized.

Fitness Function: The fitness function is a key parameter for selecting the best features. The
fitness function verifies the quality of the solution; hence, a good fitness function yields more
optimized results. In this method, the “fitcknn” function is used as the fitness function. This
function returns the K-nearest neighbor (KNN) classification model based on the input features.
The Euclidean distance is used in this fitness function for the KNN classification model. The
Euclidean distance is formulated in mathematical form as follows:

d(p,q)=
√

(p1− q1)2+ . . .+ (pn− qn)2 (16)

To calculate the error rate, we utilized the “kfoldLoss” function. This function returns the
loss of a cross-validated classification model. The classification error for the loss function of the
KNN model is expressed as:

Kloss=
n∑

h=1
mhI{r̂h �= rh} (17)

After the completion of all iterations, a new optimized feature vector is obtained; subse-
quently, it is passes into a harmonic-mean-based threshold function. Mathematically, the function
is expressed as follows:

H̄ = n∑n
i=1

1
Sel(i)

(18)

Fitness=
{
Vec(i) forSel(i)≥ H̄
Discard, Elsewhere

(19)

The final selected features represented by Vec(i) were validated using multiple classifiers. The
highest accuracy was achieved using the ESD.

4 Experimental Setup and Results

The proposed framework was evaluated on 16 classes of the publicly available PlantVillage
dataset. A brief description is provided in Tab. 1. In the preprocessing step, we performed data
augmentation to increase the number of images per class. Different features, including handcrafted
and deep features, were extracted and combined; subsequently, the fused vector was optimized
using the GA. The handcrafted features included LBP and color features, and for deep feature
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Algorithm: For GA based Features Optimization
Output: Vec(i)← SelectedVector
Input: ψfd(i)← FusedVector
Step 1: Parameters Initialization

- Population←N = 20
- Iterations←T = 500
- γcr← 0.8
- γmr← 0.01
- β← 5

Start
Step 2: Fitness Function

- Type← FKNN
- Neighbors← 5
- K − fold← 2
- Distance←Euclidean

- Kloss←
n∑

h=1
mhI{r̂h �= rh}

Step 3: Selection
- W = wi∑

(wi)
wi← exp

(
−b1× Sρ

Wl

)
Step 4: Crossover

- γcr←CrossOver(X1,X2)

Step 5: Mutation
- Type←Uniform

Step 6: Repeat Step 2
Step 7: Sel(i)←BestFeatures
End
Step 8: Apply Threshold function by Eqs. (18) and (19).
Step 9: Selected best features are returned as output.

extraction, we utilized the ResNet50 model. In the training phase of the model, a 70:30 approach
was used. Extensive experiments were performed on different cross-validations, including 5-, 10-,
15-, and 20-fold cross-validations. Multiple classifiers were selected for a fair comparison, including
the linear SVM, quadratic SVM, cubic SVM, medium Gaussian SVM, coarse Gaussian SVM,
medium KNN, cosine KNN, weighted KNN, ensemble bagged trees (EBT), and ESD. Each
classifier was evaluated using different performance measures such as accuracy, false-negative rate
(FNR), precision, sensitivity, F1 score, and time.
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Table 1: Technical details of the selected database

Database details

Total classes 16
Total images 15801
Training ratio 70%
Testing ratio 30%
Image size 256× 256

4.1 Results for 5-Fold Cross-Validation
In the first experiment, the optimized feature set was fed to the classifiers using five-fold cross-

validation for evaluation. The best accuracy was 99%, achieved using the ESD classifier, as shown
in Tab. 2. Other measures such as precision, sensitivity, F1 score, and FNR calculated using the
ESD were 95.5%, 95.5%, 95.5%, and 1%, respectively. The accuracy was verified, as shown in
Fig. 4. The computational time for the ESD was 746.3 s. The best computational time was 68.2
s, which was achieved on the EBT classifier. However, the accuracy achieved using the EBT was
95%. The worst performance observed in the five-fold cross-validation was an accuracy of 89.7%,
which was calculated using the C-KNN classifier.

Table 2: Results for 5-Fold cross-validation

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s)

L-SVM 98.4 1.6 99.3 98.8 99.0 337.8
Q-SVM 98.8 1.2 99.2 99.2 99.2 564.4
C-SVM 98.7 1.3 98.4 98.1 98.3 684.9
MGSVM 96.5 3.5 97.7 97.4 97.5 1071.3
CGSVM 95.9 4.1 98.4 97.1 97.7 1058.2
M-KNN 90.0 10.0 93.9 94.8 94.3 281.9
C-KNN 89.7 11.3 94.0 94.9 94.4 342.5
W-KNN 90.5 9.5 93.5 95.1 94.3 270.7
EBT 95.0 5.0 97.7 96.9 97.3 68.2
ESD 99.0 1.0 99.5 99.5 99.5 746.3

4.2 Results for 10-Fold Cross-Validation
Next, we used 10-fold cross-validation to evaluate the proposed framework. The maximum

accuracy achieved on the Q-SVM and ESD was 99%, as shown in Tab. 3. The FNR for both
classifiers was 1%, and the highest precision was 99.7%, which was achieved using the Q-SVM.
The accuracy was verified, as shown in Fig. 5. The computational times for the Q-SVM and
ESD were 729.6 and 993.3 s, respectively. The sensitivity and F1 score were 99.4% and 99.5%,
respectively, achieved using the ESD classifier. The best computational time was 82.9 s, which was
achieved using the EBT classifier with a 95.1% accuracy. The C-KNN recorded the worst accuracy
of 90.1%.
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Figure 4: Confusion matrix for ESD classifier using 5-fold cross-validation

Table 3: Results for 10-Fold cross-nalidation

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s)

L-SVM 98.6 1.4 99.5 99.1 99.3 484.6
Q-SVM 99.0 1.0 99.7 99.3 99.4 729.6
C-SVM 98.8 1.2 99.6 99.1 99.4 948.2
MGSVM 96.7 3.3 98.9 97.7 98.3 1603.2
CGSVM 96.2 3.8 98.8 97.4 98.1 1527.7
M-KNN 90.3 9.7 94.7 95.1 94.9 207.4
C-KNN 90.1 9.9 94.3 95.3 94.8 183.5
W-KNN 91.0 9.0 94.5 96.1 95.3 137.6
EBT 95.1 4.9 97.9 97.1 97.5 82.9
ESD 99.0 1.0 99.6 99.4 99.5 993.3

4.3 Results for 15-Fold Cross-Validation
For the 15-fold cross-validation, the best results were obtained using the ESD classifier. The

best accuracy, FNR, precision, sensitivity, and F1 score obtained using the ESD were 99%, 1%,
99.7%, 99.5%, and 99.6%, respectively, as shown in Tab. 4. This accuracy was further verified, as
shown in Fig. 6. However, the computational time of the ESD was 1709.5 s. The Q-SVM and
C-SVM yielded good accuracies of 98.9% and 98.8%, respectively. However, the Q-SVM and C-
SVM incurred 1339.9 and 1678.9 s for recognition, respectively. The C-KNN recorded the worst
accuracy of 90.1%. The best computational time afforded by the EBT was 218.2 s.
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Figure 5: Confusion matrix for ESD classifier using 10-fold cross-validation

Table 4: Results for 15-Fold cross-validation

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s)

L-SVM 98.6 1.4 99.5 99.1 99.3 1170.1
Q-SVM 98.9 1.1 99.5 99.3 99.4 1339.9
C-SVM 98.8 1.2 99.6 99.1 99.4 1678.9
MGSVM 96.7 3.3 98.9 97.7 98.3 2637.2
CGSVM 96.3 3.7 98.9 97.6 98.2 2572.3
M-KNN 90.4 9.6 94.9 95.3 95.1 371.5
C-KNN 90.1 9.9 94.7 95.4 95.0 376.2
W-KNN 91.2 9.8 94.9 96.3 95.6 334.6
EBT 95.2 4.8 98.1 97.3 97.7 218.2
ESD 99.0 1.0 99.7 99.5 99.6 1709.5

4.4 Results for 20-Fold Cross-Validation
The final experiment was performed using a 20-fold cross-validation. The maximum accuracy

achieved in this experiment was 99% for the ESD classifier, whereas the FNR, precision, sensitiv-
ity, F1 score, and computational time were 1%, 99.5%, 99.4%, 99.4%, and 2130.9 s, respectively,
as shown in Tab. 5. In addition, this accuracy was verified, as shown in Fig. 7. The accuracies
of the Q-SVM and C-SVM were 98.9% and 98.9%, respectively, indicating good performances.
However, those classifiers required 1870.8 and 2151.9 s, respectively. The best computational time
was achieved by the EBT, with a 95.3% accuracy. Meanwhile, the C-KNN classifier recorded the
worst accuracy of 90.3%.
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Figure 6: Confusion matrix for ESD classifier using 15-fold cross-validation

Table 5: Results for 20-Fold cross-validation

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s)

L-SVM 98.7 1.3 98.5 99.2 98.8 1583.0
Q-SVM 98.9 1.1 99.4 99.3 99.3 1870.8
C-SVM 98.9 1.1 98.8 99.2 98.9 2151.9
MGSVM 96.8 3.2 98.9 97.7 98.3 3137.2
CGSVM 96.5 3.5 98.9 97.6 98.2 2972.3
M-KNN 90.45 9.55 94.6 95.4 95.0 775.5
C-KNN 90.3 9.7 94.8 95.7 95.2 665.2
W-KNN 91.4 9.6 95.2 96.5 95.9 684.5
EBT 95.3 4.7 98.3 97.33 97.8 548.2
ESD 99.0 1.0 99.5 99.4 99.4 2130.9

Additionally, we compared the proposed framework with previous fruit plant disease detection
techniques. Specifically, we compared our technique with methods evaluated on only four to eight
classes, as presented in Tab. 6. Khan et al. [6] performed experiments on six classes of diseases and
achieved a 98.6% accuracy. The authors of [7] evaluated their model on eight classes and obtained
an accuracy of 82%. Meanwhile, the authors of [20,21] used four and five classes, respectively, to
verify their methodology and achieved accuracies of 97% and 97.8%, respectively. In this study,
we evaluated our framework on 16 classes comprising different diseases and healthy images and
achieved an accuracy of 99%.
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Figure 7: Confusion matrix for ESD classifier using 20-fold cross-validation

Table 6: Comparison with previous techniques

Author Year No. of classes Accuracy (%)

Khan et al. [6] 2018 6 98.6
Barbedo [7] 2019 8 82.0
Thapa et al. [20] 2020 4 97.0
Akram et al. [21] 2020 5 97.8
Proposed 2021 16 99.0

5 Conclusion

A new framework for the classification of fruit plant diseases from leaf images was presented
herein. The primary steps of the proposed framework were dataset collection, data increase, LBP
extraction, color based on mean value, ResNet50 features, feature fusion, feature optimization
using improved GA, and classification. We evaluated our technique by conducting extensive
experiments, which yielded promising results. The maximum accuracy achieved was 99% using
the ESD and Q-SVM classifiers, whereas the precision, sensitivity, and F1 score were calculated
to be 99.7%, 99.5%, and 99.6%, respectively. We analyzed all the results and concluded that our
proposed framework is superior to the other compared methods. Furthermore, we concluded that
the selection of features through the threshold function further minimized the computational time
while maintaining the classification accuracy. In future studies, we will consider more fruit classes
and implement new optimization techniques to improve the computational time.
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