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Abstract: This paper focuses on detecting diseased signals and arrhythmias
classification into two classes: ventricular tachycardia and premature ventric-
ular contraction. The sole purpose of the signal detection is used to determine
if a signal has been collected from a healthy or sick person. The proposed
research approach presents amathematicalmodel for the signal detector based
on calculating the instantaneous frequency (IF). Once a signal taken from a
patient is detected, then the classifier takes that signal as input and classifies
the target disease by predicting the class label. While applying the classifier,
templates are designed separately for ventricular tachycardia and premature
ventricular contraction. Similarities of a given signal with both the templates
are computed in the spectral domain. The empirical analysis reveals precisions
for the detector and the applied classifier are 100% and 77.27%, respectively.
Moreover, instantaneous frequency analysis provides a benchmark that IF
of a normal signal ranges from 0.8 to 1.1 Hz whereas IF range for ventric-
ular tachycardia and premature ventricular contraction is 0.08–0.6 Hz. This
indicates a serious loss of high-frequency contents in the spectrum, implying
that the heart’s overall activity is slowed down. This study may help medical
practitioners in detecting the heart disease type based on signal analysis.

Keywords: Heart disease; signals; preprocessing; detection; machine
learning

1 Introduction

Machine learning showed significant success in the area of medicine such as heart disease
classification [1], brain tumor [2,3], lung cancer [4], skin cancer [5,6], stomach [7,8], Covid19 [9,10],
and detection of cancer and hypertension [11,12]. These diseases cause severe consequences; even
human deaths like Cardiac Arrhythmia is one of the most common causes of death in the world.
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Cardiac Arrhythmia represents cardiac or heartbeat disorders. It indicates the perturbation in the
normal sinus rhythm of the myocardium. In cardiac Arrhythmia, the heartbeat may be very slow,
fast, or irregular. It is the unresolved clinical problem causing 0.4 million deaths in the United
States annually while in Pakistan, facing cardiac Arrhythmia, and the death rate is almost 15.36%
(196,258 people) [13] of total deaths. According to the statistics of the World Health Organization,
the death toll caused by cardiovascular disease (CVD) is up to 17.9 million worldwide every year,
accounting for 1/3 of the total death toll in the world [14].

This paper focuses on detecting diseased signals and arrhythmias classification into two
target classes: ventricular tachycardia and premature ventricular contraction. The main aim is
to determine if a signal was collected from a healthy or sick person. The detector works by
calculating the instantaneous frequency (IF). First, a given signal is detected from a patient, and
a classifier classifies the disease by predicting the class. Applying the supervised learning-based
classifier, templates are designed separately for ventricular tachycardia and premature ventricular
contraction. Similarities of a given signal with both the templates are computed in the spectral
domain.

The heart is the central part of the human body that supplies oxygenated blood to the entire
body. It is composed of four valves, and four chambers; [14] the upper chambers are called atria,
while the lower chambers are called ventricles. The right ventricle is the lower right part of the
heart. When the right atrium contracts, it receives deoxygenated blood. The left ventricle is the
lower left part of the myocardium that accepts oxygenated blood from the atrium. The right
atrium is the upper right chamber of the heart that receives deoxygenated blood from the body.
Left Atrium is the upper left part of the heart. It accepts oxygenated blood from the lungs. Once
both atria are filled with blood, they contract, and the oxygenated blood from the left atrium
flows into the left ventricle [15]. Veins from the upper body and head go empty into the right
atrium of the heart while the veins from the lower parts of the body feed into it, which goes
empty into the right atrium of the heart.

1.1 ECG
Electrocardiogram (ECG) represents the amount of electrical activity vs. time. Normally,

the ECG signal frequency is 0.05–100 Hz, and the dynamic range is 1–10 mv. ECG signal is
recognized by its five peaks denoted by letters of the alphabets P, Q, R, S, and T [16]. Its
components explain the ECG, so we present them in a separate heading as below.

1.2 Components of ECG
As shown in Fig. 1, an ECG contains five waves (P, R, Q, S, and T). The P wave is generated

with the contraction of the atria [17]. It is the small upward wave that is generated by the
first deflection of the heartbeat. It indicates that the atrial vein has an electrical impulse. The
magnitude of the P wave is 50–100 mili-volts, and the duration is 100 ms. After the P wave,
another wave appears the heartbeat’s downward deflection, known as the Q wave. The duration
of Q wave is 0.08–0.10 s. The R wave represents the second trough or second peak after the
P wave. It intimates the beginning of depolarization in ventricles. The extraction of heart ventricles
produces a wave known as T wave. The approximate deflection of T wave is 0.5 mv, and the
duration is 0.20 s.

In the normal rhythm, the heart rate ranges from 60 to 100 bpm (beats per minute In electro-
cardiography. There is no disorder in the signal, then it is called normal sinus rhythm.). When the
heart rate increases above 100 bpm, the rhythm is known as sinus tachycardia. If the heart rate
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is much slower, it is known as bradycardia [18]. Heart Arrhythmias can be categorized as Sinus
Node Arrhythmias, Atrial Arrhythmias, Junctional Arrhythmias, and Ventricular arrhythmias.
Disturbance in the Sinoatrial node causes the disturbance in the normal rhythm of the signal; this
causes the sinus node arrhythmias [19]. During the sinus node arrhythmias, the P-wave in the ECG
is normal. Atrial Arrhythmias arise outside the Sino-atrial node, forming electrical impulses. In
this type of Arrhythmia, the heartbeat is very fast that ranges from 160 to 240 bpm, and the QRS
complex and a T-wave are normal. The cause of the junctional arrhythmias is the atrioventricular
junction node that generates the impulse. These arrhythmias cause the abnormality in P wave. In
Ventricular arrhythmias, the impulses arise from the ventricles and go to the rest of the heart
outwards. In ventricular arrhythmias, QRS complexes are ample and odd in shape. The ventricular
arrhythmias have three types: premature ventricular contractions, ventricular tachycardia, and
ventricular fibrillation, as shown in Figs. 2a–2c, respectively.

Figure 1: A sample ECG signal and its different components

(a) (b)

(c)

Figure 2: (a) Premature ventricular contraction (b) Ventricular tachycardia (c) Ventricular
fibrillation
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This work aims at detecting automatic heart disease by classification of ventricular arrhyth-
mias on ECG using machine learning techniques.

i. The proposed methodology helps determine and detect whether the person belongs to a
healthy or a diseased category.

ii. This proposed research methodology consists of preprocessing, resampling and normaliza-
tion, and the detector is also designed.

iii. Mathematical modeling is presented for signal detection, template, detector.
iv. The proposed system shows enhanced performance results as compared to existing

approaches I the relevant literature.

The paper’s remainder is arranged as follows: Section 2 discusses the literature work related
to the problem and discusses methods related to the classification of ventricular arrhythmias from
ECG; in Section 3, the research methodology followed in this paper is given. Section 4 presents
and discusses the results of the findings, and in Section 5 conclusion of the overall research work
is given.

2 Related Work

Digital signal and data processing is a significant research domain in biomedical engineer-
ing research. Researchers from different parts of the world have applied different method and
techniques for the automatic detection of heart diseases. Various methodologies have been imple-
mented for digital signal preprocessing, feature extraction from ECG and ECG signals, specifically
ventricular arrhythmias signals classification.

2.1 Artifacts in ECG Signals and Feature Extraction
The ECG signals are normally corrupted with different types of noise. Signal preprocessing

extracts the required information from a noisy ECG signal. There are various types of artifacts
that can cause abnormal ECG patterns; signals become noisy and distorted. Base-line drift can
be caused in ECG signals when breathing [20]. Its frequency is 0.25 Hz. To remove baseline drift,
a notch filter is used [19]. Additive white Gaussian noise is assumed as noise statistics. To remove
noise, we use a low pass filter with a cut-off frequency of 0.2 Hz [21].

The features of ECG signals include the information regarding classification present in the
signals. To recognize and extract different ECG waveforms features, a neuro-fuzzy approach has
been used [22]. It applied two techniques to characterize the QRS complex by using Hermite
polynomials and Hermite kernel expansion coefficients. The research consisted of Markov mod-
eling techniques to detect and analyze QRS complex and R-R intervals as ECG features to
classify ventricular Arrhythmia, which researchers used [23]. This technique was used to detect
low amplitude P wave from the ECG signal. A wavelet transform based approach extracts P, T
and QRS waves and baseline artefacts. Frequency domain, time domain and statistical feature
were utilized in [24] for feature extraction. According to this approach, for each segment that is
extracted from the signal, the attributes P, Q, R, S and T are determined by discrete wavelet to
transform [25,26].

An efficient approach to retrieve features from ECG signals is given in [27]. A synthesis coding
technique was presented. The algorithm used in that approach has predefined distortion to encode
each heartbeat to extract ECG features while maintaining the defined distortion level [28]. Zhao
et al. used wavelet transform and support vector machine for ECG feature extraction and heart
rhythms classification [29]. A multiresolution wavelet transform was introduced in 2005 to extract
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feature from the ECG signals. It used the modified lead II for signal processing. The researchers
used records from the MIT-BIH Database to apply two different types of wavelet filters which
are Daubechies4 and Daubechies6.

2.2 Ventricular Diseases Classification Approaches
In ECG classification analysis, most of the researchers have focused on increasing the accu-

racy level of classification. Several computational approaches have been applied, such as neural
networks, digital signal analysis, statistical techniques and support vector machine. Detection of
life-threatening ventricular arrhythmias in real-time was addressed by [30,31]. An algorithm named
DIAGNOSIS was developed to classify ECG signals using four parameters regarding frequency
domain. Sets of rules were used that were based on the comparison of the parameters with
predefined thresholds. Four types of signals were discriminated including ventricular fibrillation,
imitative artifacts, ventricular rhythms and predominant sinus rhythm. The sequential hypothesis
method was detected between two ventricular Arrhythmia; ventricular fibrillation and ventricular
tachycardia [32]. The researchers in [33] used early detection automatic detection based on artificial
intelligence to assist the ophthalmologist in testing the eyes to avoid blindness and provide a
more precise and reliable assessment of a patient’s condition. Diabetic retinopathy (DR) is an
inevitable retinal disease caused by diabetes. The patient’s elevated blood sugar level causes DR,
which is difficult to treat. Since no early signs occur at the initial level, they can’t be identified
early. A generalized discriminant analysis (GDA) technique and a multi-layer perceptron (MLP)
neural network classifier were utilized by [34] to develop an effective algorithm for arrhythmia
classification. Nine features were obtained from the heart rate variability (HRV) signals.

The novel multi-threaded fitness evaluation approach and the genetic algorithm were used
to handle many data sets. A backpropagation neural network addressed by [35] used discrete
wavelet transform to classify ECG signals. The features were broken up into two classes: discrete
wavelet transform-based features and morphological features. The feed-forward backpropagation
and logistic regression variable selection method was used for classification [36,37].

There are several shortcomings in the above-discussed techniques. Some approaches consider
a long period for processing, while others are dependent on the ECG signal characteristics. Some
of the classifiers need an artifact removal procedure. A few algorithms analyze one part of the
signal and detect only one or two abnormalities. It is observed that a common problem with the
above-discussed techniques is that when the size of the training parameters increases, structural
complexity also grows.

3 Research Methodology

This paper’s research methodology consists of preprocessing, resampling and normalization;
and is discussed in detail in later sections. In this paper, the model of the signals is considered
as:

x(n)= s(n)+ ηj (n) (1)

where s(n) and ηj (n) are true ECG signal and additive white Gaussian noise. The spectrum η̂j (n)
of ηj (n) is:

η̂j (n)=N0 (2)

where N0 is a constant
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3.1 Preprocessing
We carry out the following steps in preprocessing to achieve the same sampling rate with

the same signal powers. ECG signals we obtained are sampled at different sampling rates. Also,
signals are recorded using different machines, which may cause some comparative amplifica-
tion/attenuation to signals.

Resampling This step resamples the signals so that all signals have the same sampling rate.

Normalization Signals are normalized so that the power of every signal is unity. Let xi(n) and
x̂i(n) be a signal and its normalized form, for 1≤ n≤N.

x̌i (n)= xi(n)
d

(3)

where d is defined as follows.

d =
√√√√ N∑

n=1
xi(n) (4)

3.2 Design of Detector
For a time-frequency distribution P(ω; t), the frequencies’ expected value at a particular time

is defined by Eq. (5). As IF has no single definition, one good possibility is to define IF as an
expectation of all the frequencies of all the tones in the signal. We find IF for respiration. As the
signals are discrete, the process is as follows.

For a signal x(n) of length N, spectrum x̂(k) of x(n) is computed as:

x̂ (k)=
∣∣∣∣∣
1
N

N∑
n=1

x (n) · exp
(
−2π j (k− 1) (n− 1)

N

)∣∣∣∣∣ (5)

f (k)= π(k− 1)/(N− 1) (6)

For 1≤ k≤N, and x̂ and f are vectors of the spectral density and corresponding frequency
values. Instantaneous frequency (IF), 〈ω〉, is calculated as given below.

〈ω〉 =
N∑
k=1

f (k) x̂(k) (7)

3.3 Design of Template
Let S= {xi [n]}1≤i≤M be a set of ECG signals, of a disease, for training, where i is an integer

and i ∈ [1,M]. We shortly write xi in place of xi[n] and xi ∈RN . Let us consider a template vector
f ∈RN as a linear combination of all xi as follows.

f = k1x1+ k2x2+ k3x3+ . . .+ kMxM (8)

where kj ∈R and xj ∈ S. The coefficients kj are computed as:

kj = 〈xj, f 〉 (9)
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where 〈xj, f 〉 is a dot product of xj and f . Consider a matrix X ∈RN×M as follows.

X = (x1 x2 x3 . . . xM) (10)

where xi (for 1≤ i ≤M) are vectors and are columns of X . Eq. (8) is rewritten in matrix form,
as follows.

f =XK (11)

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1

k2

k3
...

kM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3
...

cM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

where ci ∈R for i ∈ [1,M]. The matrix C is computed as:

C =XTf (14)

C =XTXK (15)

K =
(
XTX

)−1
(16)

3.3.1 Complexity Analysis of the Template Design

Complexity of the equation K = (
XTX

)−1
C is computed as follows. The equation involves

multiplication of two matrices of sizes M×N and N×M. Therefore, the complexity of multipli-
cation is O(M2N). Then an inverse of a matrix of size M ×M requires a complexity of O(M3).
Therefore, the overall complexity for computation of Eq. (16) is O(M2N)+O(M3). As N >M,
complexity turns out to be O(M2N). Eq. (11) involves multiplication of a matrix of size N ×M
with a vector of size M×1. Therefore, the complexity of this multiplication is O(MN). Therefore,
the overall complexity is O(M2N)+O(MN)=O(M2N).

3.4 Classifier
It is assumed that the templates are different from each other for different diseases. Suppose

the classifier is designed to calculate a signal’s similarity with both the templates and decide (label).
This task is performed in the spectral domain. Eq. (5), with a change of units, is rewritten as:

x̂ (k)= 10 log10

∣∣∣∣∣
1
N

N∑
n=1

x (n) · exp
(
−2π j (k− 1) (n− 1)

N

)∣∣∣∣∣ for 1≤ k≤N (17)
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The sequence of spectral coefficients x̂ (k) given by the above equation is called power spectral

density in decibels, where f is the same as given by Eq. (6). Let x̂(k), f̂1(k) and f̂2(k) be power
spectral densities of a given signal and both the templates, respectively, having means mx, mf 1

and mf 2. The similarity metric S(x̂, f̂1) between x̂(k) and f̂1(k) is computed as follows.

S
(
x̂, f̂1

)
=

N∑
k=1

(
x̂ (k)−mx

) (
f̂1 (k)−mf 1

)
(18)

S
(
x̂, f̂2

)
=

N∑
k=1

(
x̂ (k)−mx

) (
f̂2 (k)−mf 2

)
(19)

S
(
x̂, f̂1

)C1

<>

C2

S
(
x̂, f̂2

)
(20)

3.5 Detection Algorithm
The algorithm for detecting a patient’s condition and detecting whether a person belongs to

a healthy or diseased category is given below.

Training Phase of Detector Design of the detector for training is given below.
Input: X1 ∈ RN×M1 , X2 ∈ RN×M2 where the column of the matrix X1 and X2 are healthy

ECGs and diseased ECGs with PVC or VT characteristics, respectively. The numbers of ECG
healthy signals and PVC or VT characteristics are M1 and M2, respectively.

Output: A threshold λ.
Algorithm:
1. X1←Normalize X1 (normalize every column using Eq. (3)).
2. Compute ω1

i (1≤ i≤M1) instantaneous frequencies for every column of X1 using Eq. (7).
3. X2←Normalize X2 (normalize every column using Eq. (3))
4. Compute ω2

j (1≤ j ≤M2) instantaneous frequencies for every column of X2 using Eq. (3).
5. Set λ to optimize any one of the following relations, for all I, j

ω1
i < λ < ω2

j (21)

ω1
i < λ < ω2

j (22)

Test Phase of Detector Test phase algorithm of the detector is given below.
Input: An arbitrary ECG signal, x(n), in vector form, and λ a threshold (found in Step 5 of

the training phase of the detector).
Output: Decision whether x(n) belongs to a healthy or diseased person.
1. x(n)←Normalize x(n) (normalize using Eq. (3)).
2. Compute ω for x(n) using Eq. (7)
3. Compare ω with λ and decide whether x(n) belongs to a healthy or diseased person.
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3.6 Classification Algorithms
There are two parts of classification. One is training the process, which is given in the form

of an algorithm given as a Training Algorithm. In the second part, signals were introduced to
the classifying algorithm given as Testing Algorithm to know whether the signal has ventricular
tachycardia or premature ventricular contraction. The training Algorithm is given below.

Input: Matrices X1 ∈ RN×M1, X2 ∈ RN×M2 and T (sampling rate). Every column of matrix X1
is a single ECG with PVC characteristics. Every column of matrix X2 is a single ECG with
VT characteristics. Dimensions M1 and M2 are numbers of ECG signals having PVC and VT
characteristics, respectively.

Output: Power spectral densities f̂1 and f̂2 of templates of C1 and C2, respectively.
1. X1←Resample X1 at T
2. X1←Normalize X1 (normalize every column using Eq. (3))
3. Set C1 ∈RM1 with arbitrary values
4. Compute K1= (XT

1 X1)
−1C1

5. Find template f1, in time domain, for PVC by f1 =X1K1
6. Compute power spectral density f̂1 of f1 using Eq. (21).
7. X2←Resample X2 (resample every column at a rate T)
8. X2←Normalize X2 (normalize every column using Eq. (3))
9. Set C2 ∈RM2 With arbitrary values.
10. Compute K2= (XT

2 X2)
−1C2

11. Find template f2, in time domain, for VT by f2 =X2K2.
12. Compute power spectral density f̂2 of f2 using Eq. (21).
The testing Algorithm is given below.
Input: An ECG signal, x(n), with PVC or VT, in vector form; and f̂1 and f̂2; and sampling

rate T .
Output: Decision whether x(n) belongs to C1 or C2.
1. x(n)←Resample x(n) (at a rate T if not already sampled at T).
2. x(n)←Normalize x(n) (normalize using Eq. (3)).
3. Calculate power spectral density, x̂(n) of x(n) using Eq. (21).
4. Compute S(f̂1, x̂) and S(f̂2, x̂).
5. Decide VT if S(f̂1, x̂) > S(f̂2, x̂), else decide PVC.

3.7 Complexity Analysis of Algorithms
Complexities of steps of Training Algorithms and Classification Algorithms are given in

Tabs. 1 and 2 respectively.

4 Results and Discussions

We have used three datasets, namely MIT-BIH Normal Sinus Rhythm (nsrdb) [38], MIT-
BIH Arrhythmia Database (mitdb) [38] and MIT-BIH MalignantVentricular Ectopy Database
(vfdb) [38], for detection and classification purpose. Every ECG is in vector form. Such a form
of data represents the input to experiments. We carried out simulations using Matlab software.
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Table 1: Complexity analysis of training algorithm

Step No. Computational complexity

1 O(N log2N)
2 O(MN)
3 O(M)
4 O(M2N)
5 O(MN)
6 O(N log2N)
7 O(N log2N)
8 O(MN)
9 O(M)
10 O(M2N)
11 O(MN)
12 O(N log2N)
Overall complexity O(NM2)

Table 2: Complexity analysis of testing algorithm

Step No. 1 2 3 4 5 Complexity

Complexity O(N log2N) O(MN) O(N log2N) O(N) O(1) O(NM)

4.1 Preprocessing
Data preprocessing included two steps: namely normalization and resampling. Normalization

is performed for all the signals in the processes of detection and classification. Tab. 3 shows
the datasets and respective sampling rates. Tab. 4 shows the datasets for Training and Testing
Algorithms. For detection, signals are not resampled as it is possible to compute instantaneous
frequencies for any arbitrary sampling rate. For the classification of diseases, ECGs taken from
MITBIH Arrhythmia Database are resampled at 0.004 sec as shown in Tabs. 5 and 6.

Table 3: Datasets and number of ECGs considered for the research

Dataset No. of ECGs Signals

MIT-BIH normal
Sinus rhythm

12 16265, 16272, 18177, 17453, 17052, 16795, 16786, 16273,
16420, 16483, 16539, 16773

MIT-BIH
Arrhythmia database

32 102, 104, 105, 106, 107, 108, 109, 114, 116, 118, 119,
123, 124, 200, 201, 202, 203, 205, 207, 208, 210, 213,
214, 215, 217, 219, 221, 223, 228, 233, 234

MIT-BIH malignant
ventricular database

15 420, 421, 423, 425, 427, 428, 430, 602, 605, 607, 609,
611, 612, 614, 615
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Table 4: Datasets for training and testing algorithms

Type Normal PV VF

Training 6 16 8
Testing 6 15 17

Table 5: Datasets and corresponding sampling rate

Dataset Sampling rate (s)

MIT-BIH normal Sinus rhythm 0.0078125
MIT-BIH Arrhythmia database 0.0027777
MIT-BIH malignant ventricular ectopy database 0.004

Table 6: Datasets and IF-values while training the detector

Dataset IF-values

Normal Sinus rhythm 0.8352, 0.9613, 0.7039, 0.9699, 1.0054, 0.9803
Arrhythmia database 0.3908, 0.4153, 0.3428, 0.549, 0.3453, 0.2135, 0.2548, 0.5531, 0.2686,

0.1596, 0.2447, 0.1932, 0.1972, 0.4509, 0.4053, 0.481
Malignant vent. ectopy 0.2852, 0.5409, 0.4702, 0.3805, 0.0978, 0.081, 0.2826, 0.427

4.2 Results of Detection and Classification
4.2.1 Training

As given in Tab. 7, 30 records were given as input to the detector’s training part. Tab. 7 shows
the instantaneous frequencies of all the 30 signals. From Tab. 7, we set the value of IF as 0.7.
Therefore, any value of IF smaller than 0.7 indicates that the given signal is diseased.

Table 7: Signals used in training and testing

Phase Signals used

Training 16265, 16272, 18177, 17453, 17052, 16795, 102, 104, 105, 106, 107, 108, 109, 114,
116, 118, 119, 123, 124, 200, 201, 202, 420, 421, 423, 425, 427, 428, 430, 602

Testing 16786, 16273, 16420, 16483, 16539, 16773, 203, 205, 207, 208, 210, 213, 214, 215,
217, 219, 221, 223, 228, 233, 234, 602, 605, 607, 609, 611, 612, 614, 615

Detection rate during training is 100%. Next, the diseased signals were introduced to the
classifier’s training part to achieve the templates’ power spectral densities. K1 and K2 set for
training are shown in Figs. 3a and 4b. And Tab. 8 shows the values of K1 and K2, plotted in
Figs. 3a and 3b.

Figs. 4, 5 shows the templates and their power spectral densities, respectively. It is observed
that there is a wide difference between the power spectral densities of the two templates.
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(a) (b)

Figure 3: (a) Coefficients C1 set for the template for signals taken from MIT-BIH Arrhythmia
database (b) Coefficients C2 set for the template for signals taken from MIT-BIH malignant
ventricular ectopy database

(a) (b)

Figure 4: (a) Template for signals taken from MIT-BIH Arrhythmia database (b) Template for
signals taken from MIT-BIH malignant ventricular ectopy database

Table 8: Values of K1 and K2

K1 0.0439 0.0956 0.1863 0.3247 0.5063 0.7066 0.8825 0.9862 0.8825 0.7066 0.5063
K2 0.0439 0.203 0.5633 0.9382 0.9382 0.5633 0.203
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(a) (b)

Figure 5: (a) Power spectral density of template for signals taken from MIT-BI Arrhythmia
database (b) Power spectral density of template for signals taken from MIT-BIH malignant
ventricular ectopy database

4.2.2 Testing
As given in Tab. 7, 26 records were given as input to the detector’s testing part. Tab. 7 shows

the instantaneous frequencies of all 28 signals. All the diseased signals are below 0.7, and normal
signals are above 0.7. Therefore, 22 signals of the two diseases were subject to the classifier.
Results of the classifier for both the diseases are given in Tabs. 9 and 10.

Table 9: Datasets and IF-values after testing of detector

Dataset IF-values

Normal Sinus rhythm 0.9188, 0.8874, 1.0804, 0.887, 1.0315, 0.8938
Arrhythmia database 0.5695, 0.2462, 0.2988, 0.4252, 0.4422, 0.3835, 0.4225, 0.5007, 0.3919,

0.3142, 0.4732, 0.2735, 0.296, 0.3935, 0.4939
Malignant vent. ectopy 0.5114, 0.374, 0.404, 0.5045, 0.3158, 0.458, 0.5196

4.3 Performance Analysis
In order to test the effectiveness of the proposed detector and classifier, standard performance

metrics have been used, such as sensitivity, specificity, and precision.

Considering Tab. 7, with the value of λ as 0.7, we have 6 normal (NP = 6) and 22 diseased
signals (NN = 22) as a test dataset to the detector; thus N = 28. All 6 healthy signals were classified
correctly. Therefore, TP = 6 and FP = 0. It is observed that TN = 22 and FN = 0. Ideally, the values
of all these measurements must be 1. We fund 100% performance analysis results of detector
whereas; performance analysis of the classifier in the classification of arrhythmias is 77.27 percent.
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Table 10: S(f̂1, x̂) and S(f̂2, x̂) with classification decisions and real labels. Signals are in order

S(f̂1, x̂) S(f̂2, x̂) Decision Real label

0.663760264 0.916298454 PVC PVC
0.282300751 0.99466931 PVC PVC
0.379595135 0.996645516 PVC PVC
0.813273941 0.50230313 VT PVC
0.632965133 0.938918205 PVC PVC
0.476326468 0.975082568 PVC PVC
0.903269023 0.446639397 VT PVC
0.486279888 0.973163926 PVC PVC
0.853824353 0.446130412 VT VT
0.346451853 0.999616871 PVC PVC
0.759368053 0.843316651 PVC PVC
0.338819816 0.998915766 PVC PVC
0.314611294 0.998405087 PVC PVC
0.508293142 0.980992851 PVC PVC
0.750130734 0.830672137 PVC PVC
0.3554757 0.993536324 PVC VT
0.743128129 0.591626894 VT VT
0.710279424 0.433968715 VT VT
0.855829155 0.090706231 VT VT
0.291176134 0.996170479 PVC VT
0.806895893 0.580148512 VT VT
0.943785289 0.46570739 VT VT

Considering Tab. 7, we have taken 15 signals from MIT-BIH Arrhythmia Database with a
label PVC (NP= 15) and 7 signals from MIT-BIH Malignant Ventricular Ectopy Database (NN =
7) with a label of VF, as a test dataset subjected to the classifier, thus N = 22. Again from Tab. 4,
it is clear that TP= 12, FP= 3, TN = 5 and FN = 2. Ideally, the values of all these measurements
must be high. Performance analysis of the classifier is given in Tab. 11.

Table 11: Performance analysis of the classifier, in classification of arrhythmias

Metric Sn Sp PPV NPV P

Measure (%) 85.71 62.5 80 71.43 77.27

5 Conclusion

In this research, we designed algorithms for the detection and classification of ventricular
cardiac diseases. Firstly, the detection algorithm works for the detection of a diseased signal.
Normal signals were taken from MIT-BIH Normal Sinus Rhythm. If a given signal is diseased,
it passes through the classifier to identify the disease. We considered only two diseases: ventric-
ular tachycardia (taken from MIT-BIH Malignant Ventricular Ectopy Database) and premature
ventricular contraction (taken from MIT-BIH Arrhythmia Database). Signals taken from every
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database were divided into two sets. One set was introduced in the training of the detector and
classifier. The other set was used to test and observe the performance of the proposed detector
and classifier. Through the evaluation process, the main conclusion drawn is as follows. Removal
of noise and wander baseline are not necessary if the signals are transformed to a spectral
domain. As it is assumed that signals have additive white Gaussian noise, there is a constant value
added to the signals’ spectrum. This does not affect the value of the instantaneous frequencies
and does not affect decisions drawn from spectra of the templates. As far as wander baseline is
concerned, its magnitude is so small that it has a little effect on IF spectra of templates. It has
been observed that the same results are obtained if X1 is resampled to the sampling rate of X2 and
vice versa. High values of instantaneous frequencies for normal signals show that high-frequency
components are suppressed in the case of diseased signals.
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