
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.019636

Article

Malicious Traffic Detection in IoT and Local Networks Using Stacked
Ensemble Classifier

R. D. Pubudu L. Indrasiri1, Ernesto Lee2, Vaibhav Rupapara3, Furqan Rustam4 and Imran Ashraf5,*

1School of Computing and Mathematics, Charles Sturt University, Australia
2Department of Computer Science, Broward College, Broward County, Florida, USA

3School of Computing and Information Sciences, Florida International University, USA
4Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology,

Rahim Yar Khan, Pakistan
5Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, 38541, Korea

*Corresponding Author: Imran Ashraf. Email: ashrafimran@live.com
Received: 20 April 2021; Accepted: 03 June 2021

Abstract:Malicious traffic detection over the internet is one of the challenging
areas for researchers to protect network infrastructures from any malicious
activity. Several shortcomings of a network system can be leveraged by an
attacker to get unauthorized access through malicious traffic. Safeguard from
such attacks requires an efficient automatic system that can detect malicious
traffic timely and avoid system damage. Currently, many automated systems
can detect malicious activity, however, the efficacy and accuracy need fur-
ther improvement to detect malicious traffic from multi-domain systems. The
present study focuses on the detection of malicious traffic with high accu-
racy using machine learning techniques. The proposed approach used two
datasets UNSW-NB15 and IoTID20 which contain the data for IoT-based
traffic and local network traffic, respectively. Both datasets were combined to
increase the capability of the proposed approach in detecting malicious traffic
from local and IoT networks, with high accuracy. Horizontally merging both
datasets requires an equal number of features which was achieved by reduc-
ing feature count to 30 for each dataset by leveraging principal component
analysis (PCA). The proposed model incorporates stacked ensemble model
extra boosting forest (EBF) which is a combination of tree-based models such
as extra tree classifier, gradient boosting classifier, and random forest using
a stacked ensemble approach. Empirical results show that EBF performed
significantly better and achieved the highest accuracy score of 0.985 and 0.984
on the multi-domain dataset for two and four classes, respectively.

Keywords: Stacked ensemble; PCA; malicious traffic detection; classification;
machine learning

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.019636


490 CMC, 2022, vol.71, no.1

1 Introduction

Internet services are widely utilized by businesses, industries, education, and in a variety
of other fields of human life. In the past two decades, the advent of information technology
made network infrastructure essential for individuals, as well as, corporate organizations [1]. In
addition to an exponential growth in reliance on internet services for network infrastructures, the
integrity, confidentiality, security, and availability of sensitive information have been compromised
increasingly due to various kinds of malicious attacks. Individuals and corporate organizations are
impelled to integrate safety mechanisms such as antivirus software, firewall, or malware detection
system in their network to secure critical data from such malicious attacks. Depending only
on the conventional firewall is inadequate for business networks as the prevention of different
forms of malicious attacks cannot be achieved [2]. The particular reason for this circumstance
is that malicious attacks have become more complicated and diversified over the past few years
making a conventional firewall ineffective for modern attacks. Hence, in addition to a firewall, a
malicious traffic detection system (MTDS) is integrated into the network infrastructure to enhance
the security and ensure the credibility of the system [3]. An MTDS acts as a wall of defense
for a network infrastructure against malicious attacks. MTDS attempts to detect the deviation
of network traffic from traditional patterns of traffic usage and flags it as malicious traffic or
intrusion and authorizes only non-malicious traffic to the end-users.

Detection of malicious traffic in a network system can be categorized as network-based
and host-based malware detection [4]. A host-based malicious traffic detection system (HMTDS)
assesses network data at the host level while the network-based malicious traffic detection system
(NMTDS) analyzes online network traffic data of any malware at the server or network gateway
before the malware reaches the end-user. Additionally, NMTDS can function online as well as
offline. An offline NMTDS logs network information to detect any intrusion while an online
NMTDS inspects network traffic for detection of malicious activity as it arrives [5].

This study focuses on real-time NMTDS where the incoming traffic is captured and analyzed
for any suspected malware. The detection of malware results in blocking the traffic to secure the
end-user from ongoing attacks. The proposed framework can also be integrated with HMTDS
along with the categorization of network traffic as local network traffic and IoT network traffic. A
general framework of the proposed MTDS is shown in Fig. 1. The proposed MTDS is designed
using machine learning algorithms for the detection of malicious traffic from local network traffic
as well as IoT network traffic. For this purpose, two publicly available datasets; UNSW-NB15
and IoTID20 are utilized. The implementation of machine learning algorithms provides us with
a straightforward and systematic approach for malicious traffic detection which provides easy
adaptation and control. To achieve this, we integrated and compared several machine learning
algorithms including random forest (RF), logistic regression (LR), gradient boosting classifier
(GBC), decision tree classifier (DTC), extra tree classifier (ETC), stochastic gradient descent
classifier (SGDC), and k-nearest neighbor (KNN) for classifying network traffic as an anomaly
(1) and normal (0).

Even though there are a variety of features that could be leveraged for MTDS, we integrated
principal component analysis (PCA) to consider only 30 features from each dataset. The proposed
MTDS is evaluated both for binary classification and multi-classification to provide extensive anal-
ysis of the approach and increase its credibility. The current study is proposed for the detection of
malicious traffic from IoT and local network traffic by using PCA as a dimensionality reduction
technique and to enhance the performance of machine learning models. However, fundamental
contributions in this study are summarized below.



CMC, 2022, vol.71, no.1 491

Figure 1: General framework of the proposed malicious traffic detection system

• This study proposes a novel approach to monitor and detect malicious traffic in an IoT
and local network infrastructure. The stack ensemble approach, called extra boosting forest
(EBF) aims at detecting malicious traffic using tree-based models as base-learners. The
primary objective is on real-time NMTDS to monitoring the incoming traffic and analyzing
for suspected malware.
• The proposed approach is tested on a complex dataset by combining features of the
IoT network traffic dataset (IoTID20) and local network traffic dataset (UNSW-NB15).
Horizontal merging of the datasets is achieved by obtaining an equal number of features
from both the datasets through the PCA approach.
• The proposed approach is evaluated with binary classification as well as multi-class clas-
sification in terms of accuracy, precision, recall, and f1-score. Additionally, comparative
performance analysis is conducted using various machine learning classifiers, as well as,
state-of-the-art approaches.

The rest of the paper is divided into five sections: Section 2 provides the literature review while
Section 3 contains the description of the proposed approach and the datasets used for training
and testing. Results and discussion are provided in Section 4 while the concluding remakes are
given in Section 5.

2 Literature Review

Despite Malware is a fast-growing threat to the security of information and sensitive data
in computer systems. Malware exploits the vulnerabilities of a system or network infrastructure
and the detection of malware has been regarded as a significant research area. Several techniques
have been developed by the researchers to identify malware by integrating many machine learning
(ML), as well as, deep learning (DL) techniques.

Malware changes the data structures of programs leaving its fingerprints on memory accesses
of the program. Based on these patterns of changes in data structures, a study [6] identified the
behavior of malicious attacks on application-specific virtual memory access patterns of the kernel



492 CMC, 2022, vol.71, no.1

as well as a user-level rootkit. In this study, 10% of the features with the highest F-score were
selected. The study utilized RF and LR classifiers to achieve 100% accuracy in the detection of
malicious attacks of the kernel-level rootkit. While for the user-level rootkit, malicious attacks
were identified with an accuracy of 99% by RF. In the same way, another study [7] proposed a
method for the automated classification of malware. The approach has the capability of detecting
new forms of malware. The study utilizes the data collected from Threat Trace Security from
the campus network, VX Heavens and ESET NOD32. Several features have been used in this
study including import functions, Opcode n-gram, and grey-scale images with the integration of
an enhanced information gain for the dimensional reduction of extracted features. The study
utilized DT, support vector machine-poly (SP), LR, Naïve Bayes (NB), gradient boosting (GB),
KNN, and RF for the classification of malware and shared nearest neighbor (SNN) for detection
of new malware. The proposed system achieved the highest accuracy of 98.9% with RF for the
classification of unknown malware and detects new malware with an accuracy of 86.7%.

Along the same direction, the authors performed malware detection on malware samples
acquired from the Malicia project and benign samples extracted from several windows systems [8].
The study utilized opcode frequency for the extraction of features and then further reduced
the dimensionality of feature vector space by making use of none, variance threshold (VT),
and single and a three-layered auto-encoder (AE-1L and AE-3L), respectively. For classification
purposes, the study incorporated RF, a deep neural network (DNN) with two, four, and seven
layers (DNN-2L, DNN-4L, and DNN-7L), respectively. Experimental results showed that RF with
VT outperformed DNNs with an accuracy of 99.78%. One of the significant reasons for the
drastic increase in malicious attacks is developers’ exploitation of malware where minor changes
in the already available malware lead to introducing a new malware in the network. So, detection
of such variations is of significant importance for the security of sensitive data. In this regard,
an approach based on deep learning to detect malware in Microsoft and Malimg datasets was
proposed in [9]. The study converts the features extracted from the datasets into greyscale images
since a minor change in the code of the malware is easy to track in an image. The study utilizes
the convolutional neural networks (CNN) for classification and achieved 99.97% and 98.52%
accuracy on Microsoft and Malimg datasets, respectively.

A malware classification system called ‘Malscore’ was proposed in [10] which is based on
machine learning models and probability scoring. The proposed system works in two phases,
where, CNN is utilized with spatial pyramid pooling to examine grayscale images in phase 1, and
several n-grams and ML models have been integrated to examine the dynamic features in phase
2. The study utilized 63 malware families and collected 174,607 malware samples. For phase 2,
the features were extracted by making use of n-grams of lengths 2, 3, and 4. The selection of
features was carried out by document frequency-inverse document frequency (DF-IDF) approach.
The study trained five machine learning models including RF, SVM, NB, AdaBoost, and KNN.
Evaluation of Malscore showed that it classified malware with an accuracy of 98.82%. Another
study [11] advanced the process of malware detection by integrating effective and low-dimensional
features with an ensemble of tree-based methods. The study showed that tree-based ensemble
methods perform better with low-dimensional features which do not require padding or selection
of fixed length features. Consequently, word2vec, a feature extraction method for deep learning
models was utilized by [12] for the vector representation of malware based on the opcode. The
study utilized the GB algorithm to validate the system using k-fold cross-validation and achieved
an accuracy of 96%.



CMC, 2022, vol.71, no.1 493

Application programming interface (API) functions along with opcodes are utilized in another
study [13] for the classification of malware by integrating a word2vec based long short-term
memory (LSTM). The study carried out experiments on the Microsoft dataset and acquired
an accuracy of 97.59%. Similarly, several frameworks were proposed in [14] that used language
models based on the gated-recurrent unit (GRU), LSTM, and character-level convolutional neural
network (CCNN). The study showed that features extracted by LSTM lead to improved accu-
racy in comparison to the architectures integrating random-weighted features. Similarly, feature
selection techniques including chi-square, gain ratio, information gain, and fisher score are utilized
for the classification of malware from Microsoft dataset by the authors in [15]. The study took
advantage of machine learning classifiers including simple cart (SC), random tree (RT), J48 Graft,
Naïve Bayes tree (NBT), REPTREE, J48, RF, logistic model tree (LMT), and decision stump
(DS). The study concluded that the fisher score outperformed other feature selection techniques
for RF, NBT, LMT, and RT with an accuracy of 100%.

Classification performance of malware detection is highly influenced by the features which are
used for models ‘training. As a result, several research works investigate the importance of various
feature selection methods to increase the efficacy of malware detection. The authors perform an
analysis of various feature selection techniques including L1-regularized methods, Chi-square, F-
statistics, and Relief F in [16]. The study concluded that the L1-regularized embedded feature
selection technique produces more correlated features for the models to perform classification
tasks. The authors of the study [17] eliminated the implementation of domain knowledge for the
extraction of required features and automated the feature section process by integrating opcodes
up to 10-grams. The study experimented on 2520 samples and resulted in a 98% f-measure.
Another study [18] integrated machine learning and deep learning approaches for malware classi-
fication by integrating an RF model combined with opcodes, VT, AE-1L, and AE-3L, and DNN
with two, four, and seven layers combined with auto-encoders. The experimental results of the
study showed that RF with VT achieved the highest accuracy of 99.78% while DNN with AE-
1L gave an accuracy of 99.21%. Results suggest that the machine learning models outperformed
deep learning models for malware detection. The findings of the above-discussed research works
are summarized in Tab. 1. Despite the reported accuracy, several aspects of malware detection
approaches are not explored extensively. For example, the differentiability of the selected features
for malware detection is not studied very well. Similarly, the robustness of malware detection
approaches is not elaborated for online network traffic which is very important. The threats from
multi-domain malware are not investigated either. So, this study focuses on malware detection
from multi-domain network traffic with increased accuracy.

Table 1: Summary of previous work which advances malware detection

Study Approach Features Model Accuracy

[6] Integrated machine
learning for
classification of
malicious attacks on
user-level as well as
a kernel-level rootkit

F-score LR, and RF 100% (kernel level)

(Continued)



494 CMC, 2022, vol.71, no.1

Table 1: Continued

Study Approach Features Model Accuracy

[7] Automated
classification of
unknown malware
along with detection
of new malware by
incorporating
machine learning
and deep learning
approaches.

import functions,
opcode n-gram, and
grey-scale images
Dimensionality
reduction: Information
gain

DT, SP, LR, NB, KNN,
RF, and SNN

98.9% (unknown malware)

[8] Malware detection
by creating feature
vector space with
opcode frequency
and implementing
machine learning
and deep learning
techniques for
classification.

Opcode frequency,
Dimensionality
reduction: None, VT,
AE-1L, AE-3L

RF, DNN-2L,
DNN-4L, and
DNN-7L

99.78%

[9] Incorporated deep
neural networks for
malware detection in
Microsoft and
Malimg datasets

NaN CNN 99.97% (Microsoft)

[10] Proposed Malscore,
a model that
integrates machine
learning and
probability scoring
for malware
classification

Feature extraction:
n-grams (n=2, 3, 4)
Feature selection:
Document
frequency-inverse
document frequency
(DF-IDF)

SVM, RF, AdaBoost,
NB, KNN, and CNN

98.82%

3 Materials and Methods

This section contains a description of the datasets used for the experiments, as well as, the
details of the proposed approach to detect the malicious traffic.

3.1 Dataset Description
The proposed system is evaluated by using two publicly available datasets including

the UNSW-NB15 dataset https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-
NB15-Datasets/ [19] and IoTID20 https://ieee-dataport.org/open-access/iot-network-intrusion-
dataset. Despite the UNSW-NB15 being the old dataset, it contains patterns of recent attacks and
is still one of the widely used benchmark datasets publicly available for evaluation of malware
detection systems. Whereas, IoTID20 is the contemporary dataset collected by authors of [20] in
an IoT environment which is an up-to-date dataset consisting of real-time traffic of recent attacks.
Therefore, to compare our proposed approach with state-of-the-art malware detection techniques
we adopted a hybrid of the UNSW-NB15 dataset and a latest IoTID20 dataset. The datasets are
combined for a variety of purposes. For example, since each dataset has a different number of

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset


CMC, 2022, vol.71, no.1 495

samples for each class which creates the data imbalance problem, combining the datasets resolves
this problem. Similarly, the UNSW-NB15 dataset contains the data for local traffic while IoTID20
contains real-time IoT traffic data. Machine learning algorithms tend to show good performance
on individual datasets. However, to evaluate the performance of the proposed approach, both
datasets are combined to make a complex dataset that contains both local and real-time traffic.

The datasets are combined because these datasets efficiently resolve the issue of data imbal-
ance between legitimate and illegitimate connection records.

The UNSW-NB15 dataset has around 100 GB volume of network packets producing
2,540,044 connection records of which 321,283 are illegitimate and 2,218,761 are legitimate. The
UNSE-NB15 is a high-dimensional dataset containing 47 attributes for each connection record.
The attribute ‘label’ has a binary value of 0 and 1 which corresponds to ‘normal and ‘anomaly,
respectively. The velocity of this dataset is 5–10 MBs on average which portrays the real-world
environments as shown in Tab. 2.

IoTID20 dataset was generated by implementing an IoT environment consisting of two
devices including EZVIZ Wi-Fi camera and SKTNGU, a smart home device that was connected
to a Wi-Fi router thus duplicating modern trends. The authors used CICflowmeter for extraction
of features from Pcap files and generated CSV files of the dataset consisting of 625,783 records
among which 40,073 belong to the normal class whereas, 585,710 are labeled as anomaly connec-
tion records. Each connection record has 80 attributes making it a high dimensional dataset as
shown in Tab. 3. The number of samples in each dataset is shown in Tab. 4.

Table 2: Sample records from UNSW-NB15 dataset

ID Dur Proto Service State Spkts Dpkts Sbytes Dbytes ,. . ., Label

1 0.121478 TCP - FIN 6 4 258 172 . . . 0
2 0.332921 TCP http FIN 10 16 802 13112 . . . 1

Table 3: Sample records from IoTID20 dataset

Serial Flow_ID Src_IP ,. . ., Label Cat Sub_Cat

1 192.168.0.13-
192.168.0.16-
10000-10101-
17

192.168.0.13 . . . Anomaly (1) Mirai Mirai-
Ackflooding

2 0.332921 192.168.0.13 . . . Normal (0) DoS Dos-
Synflooding



496 CMC, 2022, vol.71, no.1

Table 4: Number of samples in each dataset

Dataset Total No. of features Normal Anomaly

UNSW-NB15 82,332 43 37,000 45,332
IoTID20 625,783 86 40,073 585,710

3.2 Feature Reduction
We perform feature reduction on both datasets using the PCA approach. PCA is a statistical

algorithm that creates a feature subspace by transforming a set of highly correlated attributes into
a set of attributes that are linearly uncorrelated to reduce the dimensionality of the dataset [21].
It accomplishes dimensionality reduction by identifying the direction of maximal variations which
are also known as principal components (PCn) [22]. The PCn is acquired by breaking the original
data into eigenvalues (a number corresponding to the amount of variance in the data) and
eigenvectors (the direction where most of the variance lies in the data) [23]. Generally, PCA
works by corresponding original data attributes into a new coordinated system in which PC1
(first-principal-component) is projected in the direction where data varies the most, thus capturing
most of the variation in the dataset [24]. Then, PC2 is projected along the direction where data
varies the most after PC1, thus, capturing the variation which was not captured by PC1. Each
PCn captures most of the variation which has not been captured by the subsequent PCn–1 till
the decomposition of the data matrix. The total number of dimensions of the new feature set
created by PCA is equal to the total number of PCn that have been created in the process. Most
significantly, the last PCn captures the least variance and hence can be omitted resulting in lower
dimensionality of the dataset [25].

Let the dataset be an m×n matrix ‘Y’, where each row of Y, the vector yi represents a single
record of all attributes and each column Yj represents all the records relating to one attribute
of the dataset. Set of inputs Y1,Y2,Y3,. . .,YN are transformed linearly into another set of input
columns C1,C2,C3,. . .,CN by PCA to overcome collinearity and high-dimensionality. Here, the first
few Cs capture the most amount of variation in input data matrix Y, thus providing low dimension
and minimum loss of information by eliminating the few of the last Cs. This linear transformation
is carried out by an n×n matrix ‘C’ giving transformed variables C as C=YP, which alternatively
decomposes Y as Y=CPC. Where P is a loading matrix YC Y of eigenvectors of highly associated
eigenvalues. Thus, PC1 is calculated by subtracting c1p’1 from Y where c1 is the score of first PC
and p’1 is the first loading matrix from the sample matrix Y. This gives a residual value R1 where
R1 = Y − c1p’1 which further becomes Y while calculating PC2. This process is repeated until the
required number of PCn is achieved. The nth principal component PCn is calculated by following
the steps described below:

Step 1: Vector yj = cn:cn is taken from Y
Step 2: Pn:Pn is calculated as P′n: P′n=c′n Y/c′n cn
Step 3: Length of P′n is normalized as: 1:p′nnew=P′nold/(P

′
nold)

Step 4: cn:cn is calculated as: cn:cn=Ypan/P′nPn
Step 5: Difference between cn used in the second step and fourth step is observed

If there lies a difference between them then these steps are iterated, else if they give us the
last PC. After the generation of PC1, Y in the second and fourth steps are replaced by the



CMC, 2022, vol.71, no.1 497

residual value R. Thus, the nth PC gives us the intrinsic dimension as employed by authors
of [26] for the prediction of loss path. PCA aims at the selection of potentially significant features
among all feature components of the dataset [27] which in turn improves the accuracy of machine
learning models as stated by authors of [28] in which they carried out the detection of narcotics
from Raman spectra by integrating PCA for feature detection and machine learning models for
classification.

3.3 Supervised Machine Learning Models
In this study, we used supervised machine learning models for the detection of attacks in

network traffic. The used models are tuned with the best hyperparameter settings using hit and
trial methods. All hyperparameters for the learning models are shown in Tab. 5.

Table 5: Hyperparameters setting for machine learning models

Model Hyperparameters

DTC max_depth= 30, criterion=’entropy’
RF max_depth= 30, n_estimators = 300, criterion=’entropy’
ETC max_depth= 30, n_estimators = 300, criterion=’entropy’
GBC max_depth= 30, n_estimators = 300, learning_rate = 0.2
LR solver=’liblinear’, multi_class=’multinomial’
KNN n_neighbors = 5, leaf_size = 35
SGDC Larning_rate=’optimal’, epsilon= 0.2

3.3.1 Random Forest
RF is a tree-based ensemble model that can be used both for classification and regression [29].

RF fits the number of decision trees in the learning procedure and then combines their predictions
using majority voting criteria where the predicated class is based on the predictions of the higher
number of decision trees [30]. RF uses the Gini value and Entropy algorithms to build the
decision tree. These algorithms find the important features to build the tree and the top node will
be the most important feature. Mathematically, RF can be defined as:

trs = tr1, tr2, tr3, . . . , trn (1)

where trs are the trees in RF and n is the number of decision trees.

rf =modetrp1, trp2, trp3, . . . , trpn (2)

rf =mode
N∑
i=0

trpi (3)

Here trp1, trp2, . . . , trpn are the predictions from the decision trees and the model of all these
predictions shown the final prediction using the majority voting criteria.

RF is trained with three hyperparameters including are max_depth, n_estimators, the criterion
which are shown in Tab. 5. The max_depth hyperparameter is used with the value 300 which
means each decision tree in RF will be restricted to 300 level depth.



498 CMC, 2022, vol.71, no.1

3.3.2 Decision Tree Classifier
DTC is a combination of mathematical techniques which integrates generalization, categoriza-

tion, and description of a given training data into rules or tree [31]. After derivation of rules or
trees in the learning phase, test data is randomly taken from the training set to test the accuracy
of a decision tree. Afterward, the decision tree model is validated by utilizing unannotated data
by using rules or trees derived in the learning phase of the model. The framework of a decision
tree consists of a root node, a right subtree, a left subtree, and a leaf node. Each node nt in
a decision tree is selected based on the highest value of selection function S(ni) which is of the
form:

S(ni)=−T(ni)−C.ε(ni)+
di∑
j=1

P(i+j)S(n(i+j)) (4)

where T(ni) is the computation time, ε(ni) is the measure of error corresponding to the clas-
sification at node ni which has di descendent nodes, S(ni+j) is the selection function of the jth

descendent node of ni and Pi+j is the probability that ni will reach its jth descendent node. C is
a constant which corresponds to the significance of the speed of the decision tree vs. its accuracy
and is defined by the user.

Tab. 5 shows the hyperparameters integrated for the training of DTC in the current study.
DTC is subjected to max_depth= 30 which corresponds to the depth of each decision tree to 30.
The selection hyperparameter i.e., criterion = entropy which represents that each node split in the
decision tree will be dependent on the highest entropy score yielded by the node.

3.3.3 Extra Tree Classifier
TC is an ensemble of a large number of decision trees (DT) where each DT is grown by

integrating the whole training set. The framework of ETC resembles DT and initializes with a
root node [32]. At every child node, ETC integrates a set of m randomly selected features i.e., Fi
where i ∈ 1, 2, 3, . . . ,m. The feature set is evaluated for implementation of split-rule and a partial
random cut-point using any mathematical criterion e.g., entropy is utilized as the criterion for the
split in this study as shown in Tab. 5. Entropy for the splitting of node Ni using data sample S
can be calculated as:

entropy(S)=−
i=1∑
j

pilog2pi (5)

Here pi is the probability of split of node Ni. The split with the highest entropy score is
selected to split the node [33]. This procedure is repeated until the leaf node is acquired. ETC
is comprised of three underlying components including the number of DTs in the ensemble (N),
number of randomly selected features (R), and minimum number of training samples required to
split a node (Smin).

3.3.4 Stochastic Gradient Descent
Gradient descent is a convex function-based optimization method that smooths a set of

attributes by integrating partial differential equations or PDEs through several iterations [34]. GD
minimizes the cost function C(P) by updating a set of parameters (P) to achieve a local minimum.
GD integrates learning rate L for the whole training set, which defines the number of steps that



CMC, 2022, vol.71, no.1 499

are required to yield a local minimum. Incorporation of the whole training set tends to slow down
which is further addressed by SGDC. SGDC in contrast integrates parameter update for each
instance from the training set si and target variable ti:

P=P−L.∇pC(P; s(i)t(i)) (6)

SGDC follows one-up gradation of one parameter at a time thus working well with the
redundancy in the dataset [35]. It also provides a fast coverage with high variance thus enabling
the model to yield better local minima [36].

The current study utilizes learning_rate and epsilon hyperparameters for the training of
SGDC as shown in Tab. 5. The learning_rate is set to ‘optimal’ which shows that the initial
learning rate is set to 0.1 and the epsilon value is set 0.2 which represents the loss function.

3.3.5 Gradient Boosting Classifier
GBC is an ensemble of weak learners which make a streak of predictions to minimize the

loss function [37]. GBC develops an additive model in a progressive manner such that one weak
learner is added at every iteration, leaving the existing weak learners unchanged. DTs are mainly
integrated as weak learners in GBC and an additive model is constructed by adding DT one by
one at each iteration. For an input variable xi, a target variable yi from dataset D and a loss
function L:

Input :D(xi,yi)(i= 1)nandL(yi,F(x)) (7)

GBC is initialized with a constant value:

Fi(x)= argmin
n∑
i=1

L(yi,γ ) (8)

where γ is the log of odds for probability p and L is the loss function and can be calculated as:

−yi× log(odds)− log(1− p) (9)

For the node m, the output can be obtained by calculating the likelihood of node m against
input data samples x as:

Fm(x)=P(m) (10)

P(m)= elog(odds)

1+ elog(odds) (11)

3.3.6 Logistic Regression
LR is a predictive model that maps the relationship between a dependent variable (y) and

one or more ratio-level, interval, nominal, or ordinal independent variables [38]. LR is primarily
used for binary dependent variables, however, the model can be extended to scenarios involving 3
or more dependent variables (ordinal, multinomial). LR integrates a logistic distribution function
(also known as a sigmoid function) which models the probability ratio directly [39]. Logistic



500 CMC, 2022, vol.71, no.1

regression can mathematically be defined as finding the optimized β parameters of the observed
values a and b which is given as:

b=
{
1 β0+β1a+ ε > 0

0 else
(12)

where ε is the logistic distribution function ε : R→ (0, 1). For t-interval the logistic distribution
function can be calculated as:

ε(t)= 1
(1+ e−t) (13)

where t= β0+β1a linear combination of a. Tab. 5 is shows the hyperparameters utilized to train
LR in the current study. LR is integrated with ‘liblinear’ solver to incorporate L1 regularization
along with the specification of multiclass classification.

3.3.7 K-Nearest Neighbor
KNN is a non-parametric algorithm which stores information related to all of the examples

from train set and carries out the classification of new data sample based on similarity mea-
sure [40]. It suspends the computation until the function is evaluated by the majority voting of a
data point with its neighboring data points. The data point which has the least value of distance
function with its k neighbors is classified to those neighboring data points [41]. It is a versatile
model which does not require tuning of several parameters or any additional assumptions to
be made. KNN algorithm initiates by calculating the distance among data points by integrating
Hamming, Manhattan, and Euclidean distance [42]. The current study used the Euclidean distance
to measure the distance between data points ai and bi in the form:

Euclidean=
√√√√ k∑

i=1
(ai− bi)2 (14)

Hyperparameters used in this study for the training of KNN include n_neigbours = 5 which
defines the number of neighbors for each data point and for optimized speed of construction of
tree we integrated leaf_size = 35 as shown in Tab. 5.

4 Proposed Extra Boosting Forest (EBF) Model and Architecture Flow

This study aims at detecting malicious traffic from the multi-domain dataset by developing
a stacked ensemble model. Stacking is an ensemble method which aggregates predictions from
multiple base-learners into one meta-predictor [43]. It mainly consisted of a 2-layer architecture
where the first layer integrates all base-leaners and the second layer contains a meta-predictor
which makes predictions of the base-learners to perform the final prediction [44]. A stacking
model with m number of base-learners is trained similarly to k-fold cross-validation with each
fold containing n

k number of data instances where n is the number of data instances in the dataset
under consideration and k is the number of folds. Base-learners are trained on k-1 folds where
one-fold is utilized as a validation fold. The values for the train set are predicted by base-learners
which produces m number of predictions for each data instance in k fold. Stacking results in a
n
k × m matrix of n

k set of data instances with m number of predictions by base-learners. This
matrix will act as an input for the meta-learner which further carries out the final prediction.



CMC, 2022, vol.71, no.1 501

Proposed EBF is stacked with ETC, GBC, and RF as base-learners which can be demonstrated
as:

ETC= tree1, tree2, tree3, . . . , treen (15)

GBC= tree1, tree2, tree3, . . . , treen (16)

and

RF = tree1, tree2, tree3, . . . , treen (17)

Here, ETC, GBC, and RF are the base-learners with n trees. The new features set is generated
using the probability of the base classifier’s predictions and the size of the features set will depend
on the size number of classes because the predicted probability for each class will be considered
as a feature. So, the new features set for the training of meta leaner will be:

Modelfeature1,Modelfeature2=ModelProb1(instance),ModelProb2(instance) (18)

trainingset(D(MXNinstance))= concatenate(ETCfeatures_n,GBCfeatures_n,RFfeatures_n) (19)

Here, D(M X N) is the new training set by the base models for the stack classifier and fp is the
final prediction by the EBF. The architecture of the proposed model EBF is shown in Fig. 2.

Figure 2: Architecture of the proposed EBF model

We proposed an ensemble model by combining the tree-based models such as extra tree
classifier, gradient boosting classifier, and random forest. These models are selected based on
their individual performances. In this regard, the top three best performers on both datasets are
selected to make an ensemble model. Tree-based models perform well individually because targets
in the datasets are not linearly separable, so tree-based models perform well as compared to linear
models.



502 CMC, 2022, vol.71, no.1

Figure 3: The illustration of horizontally merging of datasets using PCA features

Table 6: Number of target classes per dataset and merged dataset

Dataset Total No. of features Normal Anomaly

UNSW-NB15 82,332 43 37,000 45,332
IoTID20 625,783 86 40,073 585,710
Merged dataset 142,332 30 67,000 75,332

Figure 4: Flow architecture of the proposed methodology

This study focuses on the detection of malicious traffic from IoT traffic and local network
traffic. For this purpose, we obtained two datasets from the publicly available repository. The
dataset contains two target classes corresponding to network traffics records, as described in
Section 3.1. To develop a more complex problem, we horizontally merged both datasets resulting
in a multi-domain dataset. Equal numbers of features are required to merge the datasets, for which



CMC, 2022, vol.71, no.1 503

we used the PCA algorithm to select an equal number of features from each dataset. This PCA
technique returns 30 features from each dataset which are further combined, as shown in Fig. 3.

We utilized 30,000 records from each target class from the IoTID20 dataset. The distribution
of the total number of records in each dataset is shown in Tab. 6. After merging both datasets,
we split the data into training and testing set with an 80:20 ratio. In the end, the evaluation of
the trained models is carried out using several important performance evaluation metrics such as
accuracy, precision, recall, and F1 score. The flow diagram of the proposed methodology is shown
in Fig. 4.

5 Results and Discussions

The performance of machine learning models is evaluated on the network traffic datasets. Two
approaches are followed, where initially the models are tested on individual datasets. Later, the
training and testing are carried out using the merged complex dataset. Results for each approach
are discussed in separate sections.

Algorithm 1: Algorithm for detecting malicious traffic

Input: UNSW-NB15 and IoTID20 features
Output: malicious traffic prediction
Initialization:
def preprocessing():

NF1 ← PCA(UNSW-NB15)
NF2 ← PCA(IoTID20)
FFS ← Concatenation(NF1,NF2,axis = 0)

def training_set_for_meta_model(FFS):
F1 ← ETC(FFS)
F2 ← GBC(FFS)
F3 ← RF(FFS)
Fn ← concatenation(F1,F2,F3)
EBF ← stacking(ETC,GBC,RF)

5.1 Performance of Machine Learning Models on IoTID20 Dataset
Experimental results of machine learning models on the IoT20 dataset are shown in Tab. 7.

The tree-based machine learning models outperform other models concerning the evaluation
metrics. DT, ETC, RF, and GBC achieved a 1.00 accuracy score against linear models whose
performance is comparatively low. For example, LR and SGDC achieved 0.940 and 0.942 accuracy
scores, respectively. On the other hand, the performance of KNN is marginally low than tree-
based models with an accuracy of 0.99. Such high performance is attributed to the use and tuning
of several important hyperparameters.

The performance of linear models is poor due to the distribution of class samples. Fig. 5
shows the class distribution for the IoTID20 dataset and it can be seen that the data samples are
not linearly separable. Consequently, the performance of linear models has been degraded. Linear
models perform better on the datasets where the data samples can be separated linearly which is
not the case with the IoTID20 dataset.



504 CMC, 2022, vol.71, no.1

Table 7: Experimental results of machine learning on IoTID20 dataset

Model Accuracy Precision Recall F1-score

RF 1.00 1.00 1.00 1.00
ETC 1.00 1.00 1.00 1.00
GBC 1.00 1.00 1.00 1.00
DTC 1.00 1.00 1.00 1.00
KNN 0.990 0.99 0.99 0.99
GNB 0.996 1.00 1.00 1.00
SGDC 0.942 0.94 0.94 0.94
LR 0.940 0.94 0.94 0.94

Figure 5: Class distribution for IoTID20 dataset

Tab. 8 shows the confusion matrix for models’ performance on the IoTID20 datasets where
CP and WP correspond to correct predictions and wrong predictions, respectively. As discussed
above, tree-based models perform exceptionally well, so the number of wrong predictions is zero.
For KNN and linear models, several wrong predictions are made for each class. The highest
number of wrong predictions is 1425 out of a total of 24,000 predictions from LR.

5.2 Performance of Machine Learning Models on UNSW-NB15 Dataset
Separate experiments are carried out using the selected machine learning models on the

UNSW-NB15 dataset and results are shown in Tab. 9. The performance of tree-based models is



CMC, 2022, vol.71, no.1 505

also better on the UNSW-NB15 dataset where RF, ETC, GBC, and DTC achieve an accuracy
score of 1.00. Conversely, the performance of linear models, as well as, KNN is substantially lower
than that of tree-based models. The performance of linear models is low on UNSW-NB15 as
compared to IoTID20 because the UNSW-NB15 has fewer features as compare to IoTID20 and
the linear model sperform better when we have a large feature set that’s the reason linear models
perform better on the IoTID20 dataset. The performance of linear models is further reduced when
used with the UNSW-NB15 dataset. GNB, SGDC, and LR achieve accuracy scores of 0.849,
0.735, and 0.923, while the accuracy of KNN is 0.898.

Table 8: Confusion matrix for models on the IoTID20 dataset

Model TP TN FP FN CP WP

RF 12,000 12,000 0 0 24,000 0
ETC 12,000 12,000 0 0 24,000 0
GBC 12,000 12,000 0 0 24,000 0
DTC 12,000 12,000 0 0 24,000 0
KNN 11,868 11,894 132 106 23,762 238
GNB 11,989 11,926 11 74 23,915 85
SGDC 11,371 11,240 629 760 22,611 1,389
LR 11,215 11,360 785 640 22,575 1,425

Table 9: Experimental results of machine learning models on UNSW-NB15 dataset

Model Accuracy Precision Recall F1-score

RF 1.00 1.00 1.00 1.00
ETC 1.00 1.00 1.00 1.00
GBC 1.00 1.00 1.00 1.00
DTC 1.00 1.00 1.00 1.00
KNN 0.898 0.87 0.91 0.89
GNB 0.849 0.85 0.85 0.85
SGDC 0.735 0.80 0.74 0.71
LR 0.923 0.92 0.92 0.92

There are two possible explanations for the poor performance of linear models. First, as
shown in Fig. 6 the data samples are grouped into different clusters which are not linearly
separable. As a result, linear models are unable to find linear relationships among the data samples
and show bad results. Secondly, the number of samples for the UNSW-NB15 is not equal. It has
45,332 and 37,000 samples for anomaly and normal classes, respectively. The imbalance of the
training data further degrades their performance.

On the datasets tree-based models perform exceptionally well than other classifiers. Linear
and probability-based models couldn’t perform well because of non-linearity in data as shown in
Tab. 10. Tree-based models are the best performer with 0 wrong predictions and KNN, GNB,



506 CMC, 2022, vol.71, no.1

SGDC, and LR perform poorly. SGDC gives the highest wrong predictions of 6,534 out of 24,700
predictions.

Figure 6: UNSW-NB15 dataset representation

Table 10: Confusion matrix for models on the IoTID20 dataset

Model TP TN FP FN CP WP

RF 11,100 13,600 0 0 24,700 0
ETC 11,100 13,600 0 0 24,700 0
GBC 11,100 13,600 0 0 24,700 0
DTC 11,100 13,600 0 0 24,700 0
KNN 10,154 12,050 946 1,550 22,204 2,496
GNB 9,900 11,079 1,200 2,521 20,979 3,721
SGDC 4,858 13,308 6,242 292 18,166 6,534
LR 10,425 12,387 675 1,213 22,812 1,888

5.3 Experimental Results of Machine Learning Models on Complex Dataset
The performance of models on individual datasets is good, however, the performance of the

models needs to be analyzed with a complex dataset which is done by merging the dataset. After



CMC, 2022, vol.71, no.1 507

merging the datasets, the aim is to perform multi-class and binary classification. First, we have a
binary classification problem where normal traffic and anomaly traffic data are considered for both
datasets. For multi-class problems, we combine the data from UNSW-NB13 and IoTID20 datasets
into four classes with normal traffic as 0 and 2 and anomaly traffic as 1 and 3 for UNSW-NB13,
and IoTID20 datasets, respectively. The underlying objective is to detect the malicious traffic from
IoT and local traffic networks using a single approach with high accuracy. The distribution of the
dataset after combining two datasets is shown in Fig. 7.

Figure 7: Distribution of the samples after merging the datasets

5.3.1 Performance of Machine Learning Models for Binary Classification
Experimental results shown in Tab. 11 show that the models show weak performance on the

complex dataset. It is on account of merged features where the large feature set makes it difficult
for the models to learn. The merging of datasets makes the experimental dataset complex as
compared to the individual dataset, as Figs. 5–7 indicate. The target class correlation with features
is different in individual and merged datasets. It becomes difficult for the machine learning models
to have a good fit on a multi-domain dataset which affects the performance of the machine
learning models. As a result, the models perform poorly with the complex dataset compared to
their performance with each of the individual datasets. Even so, the performance of the tree-
based model is superior to that of probability-based and linear models. So, RF gives the highest
accuracy score of 0.981 while ETC and GBC are marginally behind RF with 0.978 and 0.986
accuracy scores, respectively.



508 CMC, 2022, vol.71, no.1

Table 11: Performance of machine learning models on the merged dataset (two classes)

Model Accuracy Precision Recall F1-score

RF 0.981 0.98 0.98 0.98
ETC 0.978 0.98 0.98 0.98
GBC 0.976 0.98 0.98 0.98
DTC 0.962 0.96 0.96 0.96
KNN 0.935 0.94 0.94 0.94
GNB 0.635 0.64 0.64 0.63
SGDC 0.621 0.62 0.62 0.62
LR 0.711 0.71 0.71 0.71

Tab. 12 shows the correct and wrong predictions for all the models. As discussed above, the
superior performance of tree-based models results in a lower number of wrong predictions with
RF giving only 819 wrong predictions out of 42,700 total predictions. Linear models lack such
performance due to a non-linear relationship among the data samples and show poor performance
with SGDC giving the highest number of wrong predictions, i.e., 16,157 predictions out of 42,700
total predictions.

Table 12: Confusion matrix for models on the merged dataset (two classes)

Model TP TN FP FN CP WP

RF 19,840 22,041 260 559 41,881 819
ETC 19,835 21,949 265 651 41,784 916
GBC 19,711 21,983 389 617 41,694 1,006
DTC 19,304 21,778 796 822 41,082 1,618
KNN 18,938 21,026 1,162 1,574 39,964 2,736
GNB 9,320 17,932 10,780 4,668 27,252 15,448
SGDC 12,072 14,471 8,028 8,129 26,543 16,157
LR 13,993 16,373 6,107 6,227 30,366 12,334

5.3.2 Performance of Machine Learning Models for Multi-Class Classification
Tab. 13 shows the results of selected machine learning models for four classes on the merged

dataset. Results suggest that the performance of models has been degraded on multi-class classi-
fication. Tree-based models are still the leading performers for multi-class classification. Despite
the decrease in their performance, there is a slight difference in the performance of binary and
multi-class classification. On the contrary, the performance of linear models is severely affected.
For example, the accuracy of SGDC and LR has been reduced to 0.460 and 0.649 from 0.621
and 0.711, respectively.

The number of CP and WP shown in Tab. 14 indicates that the GBC performs regarding cor-
rect predictions giving 41,893 correct predictions out of 42,700 total predictions. The performance
of RF, ETC is very similar to that of GBC with 814 and 822 wrong predictions, respectively.



CMC, 2022, vol.71, no.1 509

Table 13: Performance of machine learning models on merged dataset (four classes)

Model Accuracy Precision Recall F1-score

RF 0.980 0.98 0.98 0.98
ETC 0.980 0.98 0.98 0.98
GBC 0.981 0.98 0.98 0.98
DTC 0.965 0.97 0.97 0.97
KNN 0.937 0.94 0.94 0.94
GNB 0.785 0.80 0.79 0.78
SGDC 0.460 0.45 0.46 0.43
LR 0.649 0.65 0.65 0.65

Table 14: Confusion matrix for models on the merged dataset (four classes)

Model CP WP

RF 41,886 814
ETC 41,878 822
GBC 41,273 1,463
DTC 41,893 807
KNN 40,015 2,685
GNB 33,555 9,145
SGDC 19,671 23,029
LR 27,752 14,948

5.4 Performance of Proposed Stacked Model EBF
The performance of machine learning models is exceptional when tested on individual

datasets, however, their classification accuracy is reduced when used with the complex dataset
comprising the data from multiple domains. To increase the detection accuracy for malicious
traffic, this study proposes EBF. The primary objective is to detect malicious traffic from multiple
domain data with high accuracy. Several experiments are carried out to analyze the performance
of the proposed EBF model. Initially, the performance of the proposed EBF model is evaluated
on individual datasets and the results are shown in Tab. 15. Results show that EBF performs
exceptionally well on the individual dataset with a 100% accuracy score which shows that our
proposed model is significant for all scenarios.

Table 15: EBF performance on individual datasets

Dataset Accuracy Precision Recall F1-Score

UNSW-NB15 1.00 1.00 1.00 1.00
IoTID20 1.00 1.00 1.00 1.00

Tab. 16 shows the experimental results on the multi-domain dataset for binary and multi-
class classification. Results suggest that the performance of the proposed EBF is superior to



510 CMC, 2022, vol.71, no.1

other machine learning models. EBF achieves an accuracy of 0.985 for binary classification while
the accuracy score for multi-class classification is 0.984 which is much better than other models.
Another important point worth stating is the comparable performance of EBF for binary and
multi-class tasks.

Table 16: Performance of EBF model on the merged dataset (two & four classes)

Target Accuracy Precision Recall F1-Score

Binary class 0.985 0.99 0.99 0.99
Multi class 0.984 0.98 0.98 0.98

Tab. 17 shows the confusion matrix for EBF correct and wrong predictions. Statistics show
that EBF has the lowest number of wrong predictions with 621 and 644 wrong predictions for
binary and multi-class classification. It verifies that the performance of EBF is almost identical
with two and four classes on the merged dataset.

Table 17: Confusion matrix EBF model for merged dataset (two & four classes)

Target CP WP

Binary class 42,079 621
Multi class 42,056 644

To further corroborate the results of the EBF model, 10-fold cross-validation is performed
using the merged dataset. Results of cross-validation are shown in Tab. 18 which indicates the
superior performance of the proposed EBF model. Fig. 8 shows the significance of EBF on the
binary and multiclass dataset.

Table 18: Performance of EBF model concerning 10-fold cross-validation

Target Accuracy Interval

Binary class 0.985 +/−0.001
Multi class 0.984 +/−0.001

5.5 Comparison with State-of-the-Art Approaches
The performance of the proposed EBF model is compared with several state-of-the-art

approaches which used the same datasets. In comparison with previous studies, EBF performs
well with the highest accuracy on the same datasets. Besides, these studies used either IoTID20
or UNSW-NB15 dataset individually, and experiments on the multi-domains dataset are not
performed. In this regard, the experiments carried out in this study prove to be beneficial to
realize the performance of machine learning models on multi-domain datasets. It also shows the
superior performance of the proposed stacked model EF for its identical performance on binary



CMC, 2022, vol.71, no.1 511

and multi-class performance. Tab. 19 shows the accuracy comparison of EBF with state-of-the-art
approaches on the same datasets.

Figure 8: EBF performance using 10-fold cross-validation

Table 19: Performance comparison with other studies

Reference Dataset Accuracy

Aleesa et al., (2021) [45] UNSW-NB15 99.26%
Ahmad et al., (2021) [46] UNSW-NB15 98.67%
Maniriho et al., (2021) [47] IoTID20 99.94%
Proposed EBF model UNSW-NB15 100%

IoTID20 100%
Merged Dataset (Binary-class) 98.5%
Merged Dataset (Multi-class) 98.4%

5.6 Statistical Significance Test
To ensure the significance of our proposed model we have done the statistical T-test. Statistical

T-test indicates if the difference in the performance of the proposed EBF model is statistically
significant. To validate the test there are two hypotheses as follows [48]:

• Null hypothesis (Ho): There is a statistically significant difference between the proposed
models and other models’ performances.
• Alternative Hypotheses (Ha): There is no statistical significance between models’
performance.

We implement a T-test on models’ performance and the T-test rejects H0 for EBF perfor-
mance and other tree-based models on individual datasets and accepts Ha. It shows that the
tree-based models and EBF perform equally well on the individual datasets, but it is statistically
significant in comparisons to linear and probability-based models such as LR, GNB, KNN, and



512 CMC, 2022, vol.71, no.1

SGDC. When tested for the merged datasets, it accepts the H0 which means that the EBF is
statistically significant as compared to all other models.

6 Conclusion

Malicious traffic detection from local and IoT networks is a very important task that holds
great significance for the safeguard of network traffic. Although current automated systems can
perform malicious traffic detection with higher accuracy, such models lack the ability to detect
malicious traffic from multi-domain data. To overcome the limitations of existing methods, this
study first analyzes the performance of machine learning models and then proposes a stacked
model, called EBF, for the said task. For this purpose, experiments are performed on a complex
dataset which is made by combining IoT-based dataset IoTID20 and local traffic dataset UNSW-
NB15. Horizontally merging the datasets requires an equal number of features which is achieved
by utilizing the PCA technique.

Experimental results indicate that traditional machine learning models perform better for indi-
vidual datasets, however, their performance is degraded when tested with multi-domain datasets
due to the complex features. Tree-based models perform better for malicious traffic detection
while probability and linear models show poor performance due to the linear inseparability of
the data. Furthermore, the performance of all the models is severely affected when tested for the
multi-class problem. On the other hand, the proposed EBF model shows better results on the
combined complex dataset because of its ensemble architecture. The performance of the proposed
EBF model is superior to other models with 0.985 and 0.98 accuracy scores for binary and multi-
classes, respectively. Besides, the performance analysis is carried out with several state-of-the-art
approaches that used the same datasets for experiments. EBF outperforms these approaches on
both single and merged datasets. In addition to that, the T-test and cross-validation suggest that
the performance of the proposed EBF is statistically significant. Although this study performs
experiments by combining two dataset, however, they both belong to IoT domain. Using the
proposed approach on a different domain’s data may affect the results substantially. To resolve
this issue, we intend to perform additional experiments in future by integrating the data from
several different domain and analyze the efficacy of the proposed approach.

Funding Statement: This research was supported by the Florida Center for Advanced Analytics
and Data Science funded by Ernesto.Net (under the Algorithms for Good Grant).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] C. Sinclair, L. Pierce and S. Matzner, “An application of machine learning to network intrusion

detection,” in Proc. Annual Computer Security Applications Conf. (ACSAC), Phoenix, AZ, USA, pp.
371–377, 1999.

[2] Y. Ye, D. Wang, T. Li and D. Ye, “IMDS: Intelligent malware detection system,” in Proc. Conf. on
Knowledge Discovery and Data Mining (SIGKDD), San Jose, California, USA, pp. 1043–1047, 2007.

[3] M. Shafiq, Z. Tian, A. K. Bashir, X. Du and M. Guizani, “Corrauc: A malicious bot-iot traffic
detection method in iot network using machine learning techniques,” IEEE Internet of Things Journal,
vol. 8, no. 5, pp. 3242–3254, 2020.

[4] P. Sangkatsanee, N. Wattanapongsakorn and C. Charnsripinyo, “Practical real-time intrusion detection
using machine learning approaches,” Computer Communications, vol. 34, no. 18, pp. 2227–2235, 2011.



CMC, 2022, vol.71, no.1 513

[5] C. F. Tsai, Y. F. Hsu, C. Y. Lin and W. Y. Lin, “Intrusion detection by machine learning: A review,”
Expert Systems with Applications, vol. 36, no. 10, pp. 11994–12000, 2009.

[6] Z. Xu, S. Ray, P. Subramanyan and S. Malik, “Malware detection using machine learning based
analysis of virtual memory access patterns,” in Proc. Design, Automation & Test in Europe Conf. &
Exhibition (DATE), Lausanne, Switzerland, pp. 169–174, 2017.

[7] L. Liu, B. S. Wang, B. Yu and Q. X. Zhong, “Automatic malware classification and new malware
detection using machine learning,” Frontiers of Information Technology & Electronic Engineering, vol. 18,
no. 9, pp. 1336–1347, 2017.

[8] H. Rathore, S. Agarwal, S. K. Sahay and M. Sewak, “Malware detection using machine learning and
deep learning,” in Proc. Int. Conf. on Big Data Analytics, Warangal, India, pp. 402–411, 2018.

[9] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang et al., “Malware classification with
deep convolutional neural networks,” in Proc. IFIP Int. Conf. on new Technologies, Mobility and Security
(NTMS), Paris, France, pp. 1–5, 2018.

[10] D. Xue, J. Li, T. Lv, W. Wu and J. Wang, “Malware classification using probability scoring and machine
learning, IEEE Access, vol. 7, pp. 91641–91656, 2019.

[11] S. Euh, H. Lee, D. Kim and D. Hwang, “Comparative analysis of low-dimensional features and tree-
based ensembles for malware detection systems,” IEEE Access, vol. 8, pp. 76796–76808, 2020.

[12] M. Nisa, J. H. Shah, S. Kanwal, M. Raza, M. A. Khan et al., “Hybrid malware classification method
using segmentation-based fractal texture analysis and deep convolution neural network features,”
Applied Sciences, vol. 10, no. 14, pp. 4966, 2020.

[13] J. Kang, S. Jang, S. Li, Y. S. Jeong and Y. Sung, “Long short-term memory-based malware classification
method for information security,” Computers & Electrical Engineering, vol. 77, pp. 366–375, 2019.

[14] B. Athiwaratkun and J. W. Stokes, “Malware classification with LSTM and GRU language models and
a character-level CNN,” in Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), New
Orleans, LA, USA, pp. 2482–2486, 2017.

[15] S. Sharma, C. R. Krishna and S. K. Sahay, “Detection of advanced malware by machine learning
techniques,” Soft Computing: Theories and Applications, India, pp. 333–342, 2019.

[16] G. Yan, N. Brown and D. Kong, “Exploring discriminatory features for automated malware classifi-
cation,” in Proc. Int. Conf. on Detection of Intrusions and Malware and Vulnerability Assessment, Berlin,
Germany , pp. 41–61, 2013.

[17] B. Kang, S. Y. Yerima, K. McLaughlin and S. Sezer, “N-opcode analysis for android malware classi-
fication and categorization,” in Proc. Int. Conference on Cyber Security and Protection of Digital Services
(Cyber Security), London, UK, pp. 1–7, 2016.

[18] M. Sewak, S. K. Sahay and H. Rathore, “Comparison of deep learning and the classical machine
learning algorithm for the malware detection,” in Proc. Int. Conf. on Software Engineering, Artificial
Intelligence, Networking andParallel/Distributed Computing (SNPD), Busan, Korea (South), pp. 293–296,
2018.

[19] N. Moustafa and J. Slay, “UNSW-Nb15: A comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set),” in Proc. Military Communications and Information Systems
Conference (MilCIS), Canberra, ACT, Australia , pp. 1–6, 2015.

[20] I. Ullah and Q. H. Mahmoud, “A scheme for generating a dataset for anomalous activity detection in
IoT networks,” in Proc. Canadian Conf. on Artificial Intelligence, Ottawa, Ontario, pp. 508–520, 2020.

[21] S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani and A. Hooman, “An overview of
principal component analysis,” Journal of Signal and Information Processing, vol. 4, no. 3B, pp. 173,
2013.

[22] M. Ringnér, “What is principal component analysis?,” NatureBiotechnology, vol. 26, no. 3, pp. 303–304,
2008.

[23] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary Reviews: Computa-
tional Statistics, vol. 2, no. 4, pp. 433–459, 2010.



514 CMC, 2022, vol.71, no.1

[24] G. Destefanis, M. T. Barge, A. Brugiapaglia and S. Tassone, “The use of principal component analysis
(PCA) to characterize beef,” Meat Science, vol. 56, no. 3, pp. 255–259, 2006.

[25] J. Shlens, “A tutorial on principal component analysis,” International Journal of Remote Sensing, vol. 51,
no. 2, 2014.

[26] H. S. Jo, C. Park, E. Lee, H. K. Choi and J. Park, “Path loss prediction based on machine learning
techniques: Principal component analysis, artificial neural network and Gaussian process,” Sensors, vol.
20, no. 7, pp. 1927, 2020.

[27] F. Song, Z. Guo and D. Mei, “Feature selection using principal component analysis,” in Proc. Int. Conf.
on System Science, Engineering Design and Manufacturing Informatization, Yichang, China, vol. 1, pp.
27–30, 2010.

[28] T. Howley, M. G. Madden, M. L. O’Connell and A. G. Ryder, “The effect of principal component
analysis on machine learning accuracy with high dimensional spectral data,” in Proc. Int. Conf. on
Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, pp. 209–222, 2005.

[29] W. Zhang, C. Wu, H. Zhong, Y. Li and L. Wang, “Prediction of undrained shear strength using
extreme gradient boosting and random forest based on Bayesian optimization,” Geoscience Frontiers,
vol. 12, no. 1, pp. 469–477, 2021.

[30] D. Sun, J. Xu, H. Wen and D. Wang, “Assessment of landslide susceptibility mapping based on
Bayesian hyperparameter optimization: A comparison between logistic regression and random forest,”
Engineering Geology, vol. 281, pp. 105972, 2021.

[31] C. C. Chern, W. U. Lei, K. L. Huang and S. Y. Chen, “ “A decision tree classifier for credit assessment
problems in big data environments,” Information Systems and e-Business Management, vol. 19, no. 1, pp.
363–386, 2021.

[32] S. Hakak, M. Alazab, S. Khan, T. R. Gadekallu, P. K. R. Maddikunta et al., “An ensemble
machine learning approach through effective feature extraction to classify fake news,” Future Generation
Computer Systems, vol. 117, pp. 47–58, 2021.

[33] E. Winska, E. Kot and W. abrowski, “Reducing the uncertainty of agile software development using
a random forest classification algorithm,” in Proc. Int. Conf. on Lean and Agile Software Development,
Gdask, Poland, pp. 145–155, 2021.

[34] S. L. Smith, B. Dherin, D. G. Barrett and S. De, “On the origin of implicit regularization in stochastic
gradient descent,” in Int. Conf. on Learning Representation, Vienna, Austria, 2021.

[35] Y. Deng and M. Mahdavi, “Local stochastic gradient descent ascent: Convergence analysis and com-
munication efficiency,” in Int. Conf. on Artificial Intelligence and Statistics, San Diego, California, USA,
vol. 130, pp. 1387–1395, 2021.

[36] S. T. Nguyen, H. Y. Kwak, S. Y. Lee and G. Y. Gim, “Featured hybrid recommendation system using
stochastic gradient descent,” International Journal of Networked and Distributed Computing, vol. 9, no. 1,
pp. 25–32, 2021.

[37] P. J. Chun, S. Izumi and T. Yamane, “Automatic detection method of cracks from concrete sur-
face imagery using two-step light gradient boosting machine,” Computer-Aided Civil and Infrastructure
Engineering, vol. 36, no. 1, pp. 61–72, 2021.

[38] M. De Cock, R. Dowsley, A. C. Nascimento, D. Railsback, J. Shen et al., “High performance logistic
regression for privacy-preserving genome analysis,” BMC Medical Genomics, vol. 14, no. 1, pp. 1–18,
2021.

[39] S. Milanoviác, N. Markoviác, D. Pamuçar, L. Gigoviác, P. Kostiác et al., “Forest fire probability
mapping in eastern Serbia: Logistic regression versus random forest method,” Forests, vol. 12, no. 1,
pp. 5, 2021.

[40] M. Kück and M. Freitag, “Forecasting of customer demands for production planning by local
k-nearest neighbor models,” International Journal of Production Economics, vol. 231, pp. 107837, 2021.

[41] A. Onyezewe, A. F. Kana, F. B. Abdullahi and A. O. Abdulsalami, “An enhanced adaptive k-nearest
neighbor classifier using simulated annealing,“ International Journal of Intelligent Systems &Applications,
vol. 13, no. 1, pp. 34–44, 2021.



CMC, 2022, vol.71, no.1 515

[42] A. X. Liu and R. Li, “K-nearest neighbor queries over encrypted data,” in Algorithms for
Data and Computation Privacy, Cham: Springer International Publishing pp. 79–108, 2021.
https://doi.org/10.1007/978-3-030-58896-0_4.

[43] F. Rustam, A. A. Reshi, I. Ashraf, A. Mehmood, S. Ullah et al., “Sensor based human activity recog-
nition using deep stacked multilayered perceptron model,” IEEE Access, vol. 8, pp. 218898–218910,
2020.

[44] B. Pavlyshenko, “Using stacking approaches for machine learning models,” in Proc. Int. Conf. on Data
StreamMining & Processing (DSMP), Lviv, Ukraine, pp. 255–258, 2018.

[45] A. Aleesa, M. Younis, A. A. Mohammed and N. Sahar, “Deep-intrusion detection system with
enhanced unsw-Nb15 dataset based on deep learning techniques,” Journal of Engineering Science and
Technology, vol. 16, no. 1, pp. 711–727, 2021.

[46] M. Ahmad, Q. Riaz, M. Zeeshan, H. Tahir, S. A. Haider et al., “Intrusion detection in internet
of things using supervised machine learning based on application and transport layer features using
UNSW-NB15 data-set,” EURASIP Journal on Wireless Communications and Networking, vol. 2021, no.
1, pp. 1–23, 2021.

[47] P. Maniriho, E. Niyigaba, Z. Bizimana, V. Twiringiyimana, L. J. Mahoro et al., “Anomaly-based
intrusion detection approach for IoT networks using machine learning,” in Proc. Int. Conf. on Computer
Engineering, Network, and Intelligent Multimedia (CENIM), Surabaya, Indonesia, pp. 303–308, 2020.

[48] M. D. Smucker, J. Allan and B. Carterette, “A comparison of statistical significance tests for infor-
mation retrieval evaluation,” in Proc. ACM Conf. on Information and Knowledge Management, Lisbon,
Portugal, pp. 623–632, 2007.

https://doi.org/10.1007/978-3-030-58896-0_4

