
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.020098

Review

Optimization of Reliability–Redundancy Allocation Problems: A Review of the
Evolutionary Algorithms

Haykel Marouani1,2 and Omar Al-mutiri1,*

1College of Engineering, Muzahimiyah Branch, King Saud University, Riyadh, 11451, Saudi Arabia
2University of Monastir, LGM, ENIM, Avenue Ibn-Eljazzar, 5019, Monastir, Tunisia

*Corresponding Author: Omar Al-mutiri. Email: 437170093@student.ksu.edu.sa
Received: 09 May 2021; Accepted: 25 June 2021

Abstract: The study of optimization methods for reliability–redundancy allo-
cation problems is a constantly changing field. New algorithms are con-
tinually being designed on the basis of observations of nature, wildlife,
and humanity. In this paper, we review eight major evolutionary algorithms
that emulate the behavior of civilization, ants, bees, fishes, and birds (i.e.,
genetic algorithms, bee colony optimization, simulated annealing, particle
swarm optimization, biogeography-based optimization, artificial immune sys-
tem optimization, cuckoo algorithm and imperialist competitive algorithm).
We evaluate the mathematical formulations and pseudo-codes of each algo-
rithm and discuss how these apply to reliability–redundancy allocation prob-
lems. Results from a literature survey show the best results found for series,
series–parallel, bridge, and applied case problems (e.g., overspeeding gas tur-
bine benchmark). Review of literature from recent years indicates an extensive
improvement in the algorithm reliability performance. However, this improve-
ment has been difficult to achieve for high-reliability applications. Insights and
future challenges in reliability–redundancy allocation problems optimization
are also discussed in this paper.

Keywords: Reliability; redundancy; evolutionary algorithms

1 Introduction

Continuous advancements in technology combined with the expectation for high performance
by manufacturers and consumers add increasing complexity to modern manufactured systems.
However, human errors during utilization (e.g., processing error, improper storage, poor equip-
ment maintenance, or environmental impact) negatively affect the global performance and the
designed life cycle of a manufactured system. Thus, system reliability is an important concern
when designing and improving the efficiency of any engineering system. Reliability is defined as
the likelihood of effectively achieving a set of functionality goals or product functions within
a specified timeframe and in a regulated environment, even given uncertainty and inadequate
knowledge of system actions.

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.020098

538 CMC, 2022, vol.71, no.1

System reliability design problems are divided into three categories: redundancy allocation
problems, reliability allocation problems, and reliability–redundancy allocation problems (RRAPs).
Common elements for all of these include decision variables, constraints, and objective function(s).
Decision variables represent factors that can be altered or decisions that can be made to enhance
system reliability. Constraints are factors that limit design, such as price, volume, weight, and
reasonable specified reliability. An objective function(s) calculates the overall reliability function on
the basis of defined values for the decision variables that comply with constraints of the optimal
solution. The objective function may consist of a single function (e.g., system reliability to be
maximized) or multiple functions (e.g., adding system costs while needing to minimize system
volume).

System reliability optimization techniques evolved during the first half of the 20th century to
support developments in mathematics, computing capabilities, optimization methodologies, system
complexity, design, and management requirements [1–6]. Originally, these techniques applied the
application of advanced mathematics to produce optimal solutions from equations that could
be solved analytically. This limited the size and complexity of the studied problems. The inven-
tion of the computer greatly increased the number and types of mathematical approaches and
allowed the handling of large datasets. The fields of dynamic programming [3], linear program-
ming [7], nonlinear programming [8], and integer programming [9] were born. These mathematical
approaches were needed because reliability problems are often highly nonlinear because of a
nonlinear objective function(s) and the type of decision variable (continuous or integer).

The first use of dynamic programming to solve reliability problems was done for redundancy
allocation problems [3,10,11]. This early work was very simplified with only a single component
choice for each subsystem and a goal of maximizing reliability from a single cost constraint.
The issue for each subsystem was to identify the optimal redundancy levels. The struggle to
solve problems with various restrictions is a recognized weakness of the dynamic programming
approach. Later, [12] applied dynamic programming to a more complicated system with 14 sub-
systems. This application had 3–4 component choices for each subsystem, with different reliability,
cost, and weight for each component choice. To accommodate these multiples constraints, [12]
used a Lagrangian multiplier for the weight constraint within the objective function. Reference [13]
used a surrogate constraint that merged the cost and weight constraints. These techniques were
applied to various redundancy allocation problems. However, the programming generated some
infeasible optimal solutions despite feasible solutions to the problem existing in reality [14].
Reference [4] was the first to use integer programming to solve an redundancy allocation problem
by applying a branch-and-bound approach to systems. This application involved 99 subsystems
with 10 constraints each. Additional examples with integer programming were studied by [15–17].
Linear programming was used to generate solutions for redundancy allocation problems [18–21].
The weakness of linear/integer programming is the limitation on the size of the problem and the
associated computational costs [14]. Nonlinear programming operates using almost the same main
principles as linear programming, except that at least the objective function and its constraints are
a nonlinear equation [22–24]. The drawback of nonlinear programming is that the problem may
have multiple disconnected feasible regions and multiple locally optimal points within each region
if the target or any constraints are non-convex. Additionally, the numerical approach selected
to get to the solution will lead to two different starting points, thus leading to two different
solutions [14]. Presently, to overcome these limitations, evolutionary algorithms (EA) have replaced
mathematical-based techniques to solve redundancy allocation problems.

CMC, 2022, vol.71, no.1 539

EAs are a large family of optimization methods that can evolve from an initial and random
solution to the best optimum by successive iterations. This technique is based on the Darwinian
concept: weak solutions face extinction, whereas the better ones combine to produce new solutions
that potentially can improve the convergence to an optimal solution. These strategies are based
on natural observations and try to mimic animal behaviors (e.g., those of ants, bees, fish, and
birds), human phenomena (e.g., immigration and colonization), and even biological interactions
(e.g., an immune system). Presently, genetic algorithms (GAs), bee colony optimization (BCO),
simulated annealing (SA), particle swarm optimization (PSO), biogeography-based optimization
(BBO), artificial immune system optimization (AISO), cuckoo algorithm (CA), and imperialist
competitive algorithm (ICA) are among the most widely used EAs in different optimization fields
such as consecutively connected systems [25], flow transmission systems [26], pressurized water
reactors [27], nuclear power plants [28], pharmaceutical plants [29] and several other redundancy
allocation problems.

In this paper, we discuss and review the evolution of improvements to the optimization of
complex system reliability for EA solutions. We focus on the problem of reliability–redundancy
allocation and present the concepts and findings of the key EAs currently in use. This review
paper summarizes the best obtained results for series, series–parallel, and complex systems. The
remainder of this paper is organized as follows. In Section 2, the reliability–redundancy allocation
problems are introduced. The detail of their mathematical formulation is described in section 3.
In section 4, a detailed discussion about a major effort to apply an EA for an RRAP optimization
is included. A review of constraint handling techniques for constrained mixed-integer nonlinear
problems is included in section 5. The latest results findings are resumed in section 6. In section
7, future challenges in RRAP optimization are discussed. Finally, the conclusion is included in
section 8.

2 Reliability–Redundancy Allocation Problems

Engineering systems can be generally structured in four types: series, parallel, series–parallel,
and complex systems (Fig. 1). Series structure is the simplest structure: if a subsystem fails then all
the system fails. The bridge (complex) system contain an interconnection subsystem that transmit
the surplus capacity to other subsystems. Each subsystem is composed of x parallel components
(Fig. 2).

Three typical forms of the reliability optimization problem exist for these types of sys-
tems: The redundancy allocation problem, the reliability allocation problem and the reliability-
redundancy allocation problem (RRAP). Due to the assumptions and type of the problem, the
solution approaches for each are different.

Redundancy allocation problems designate systems composed of discrete component types,
with fixed reliability, cost and weight. The practical problem is choosing the optimal set of
components types (decision variables) to meet constraints (reliability, weight, cost, volume) to
achieve the objective function (maximize reliability, minimize weight, etc.). In this type of problem,
there are ci discrete component type choices available for each subsystem. For each subsystem, ni
components must be selected from the ci available choices. Redundancy allocation problems are
often considered for series-parallel systems.

540 CMC, 2022, vol.71, no.1

Figure 1: Representation of (a) series system; (b) series–parallel system; and (c) complex (bridge)
system

For the reliability allocation problem, the system structure is fixed and the component relia-
bility values are continuous decision variables. Component parameters (cost, weight, volume) are
functions of the component reliability. Increasing the system reliability by using more reliable
components rises the cost, and probably weight and volume, which may be incorporated as part
of the constraints or the objective function.

The reliability-redundancy allocation problem is the most general problem formulation. Each
subsystem has ni components with reliability of ri as decision variables. The challenge then is
to assign redundancy and reliability optimally to the components of each subsystem in order
to optimize the overall reliability of the system. The system and subsystems can be in any
arrangement.

CMC, 2022, vol.71, no.1 541

Figure 2: Representation of subsystem

3 RRAP Formulation

For each series, series–parallel, and bridge system, the reliabilities are defined, respectively, as:

Rsystem =R1R2R3R4 (1)

Rsystem = 1− (1−R1R2)(1− (1−R3)(1−R4)R5) (2)

Rsystem =R1R2+R3R4+R1R4R5−R1R2R3R4−R1R2R3R5−R1R3R4R5−R1R2R4R5

+ 2R1R2R3R4R5 (3)

where Ri is the reliability of the ith parallel subsystem, as defined by:

Ri = 1− (1− ri)xi (4)

where xi is the redundancy allocation of the ith subsystem and ri is the individual component
reliability of this subsystem. In all the following configurations, we consider xi as a discrete integer
that ranges from 1 to 10 and ri as a real number that ranges from 0.5 to 1× 10−6.

The aim of the RRAP is to improve the reliability of the entire system under a specified
controlled environment, based on the cost, weight, and volume of the system. The system cost

542 CMC, 2022, vol.71, no.1

function f systemcost , which depends on the number of components per subsystem, the number of
subsystems, and the reliability of the components, can be defined as [30]:

f systemcos t =
n∑
i=1

f sybsystemicos t =
n∑
i=1

αi

(−1000
ln ri

)βj (
xi+ e

xi
4

)
(5)

where n is the number of subsystems, and αi and βi are the parameters of the cost function of
subsystems. The value 1000 in the equation is supposed to be the mean time between failures (i.e.,
the operating time during which the component must not fail).

Fig. 3 shows the evolution of the cost function of the reliability, in the cases of having 1
and 10 redundant components for one subsystem. The associated cost exponentially increases
with reliability and the number of redundancy allocations. Fig. 4 shows the evolution of the cost
function of redundancy allocation for two levels of reliability (i.e., 0.9 and 0.99), where the cost
ration is 33.94 (for β = 1.5).

Figure 3: Evolution of the cost function of reliability (α = 2.3× 10−5 and β = 1.5)

Figure 4: Evolution of the cost function of redundancy allocation (α = 2.3× 10−5 and β = 1.5)

CMC, 2022, vol.71, no.1 543

The weight function of the system depends on the number of components per subsystem and
the number of subsystems, and can be defined as [30]:

f systemweight =
n∑
i=1

f sybsystemiweight =
n∑
i=1

wi.xi.e
xi
4 (6)

where wi is the weight function parameter.

Early studies used a range of 3 to 9 for the weight function parameter [14,31–33]. The weight
is found to increase exponentially with the reliability and the amount of redundancy allocation
(Fig. 5).

Figure 5: Evolution of the weight function of redundancy allocation

The system volume function also depends on the number of components per subsystem and
the number of subsystems, and it can be defined as [30]:

f systemvolume =
n∑
i=1

f sybsystemivolume =
n∑
i=1

vi.x
2
i (7)

where vi is the volume function parameter.

Fig. 6 shows the evolution of the subsystem volume function of redundant components.

In summary, the general RRAP can be expressed in the following formulation, in which the
reliability is considered as the objective function:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
maxRsystem(ri,xi)

s.t

⎧⎪⎨
⎪⎩
f systemcos t (ri,xi,αi,βi)≤C
f systemweight (xi,wi)≤W

f systemvolume (xi, vi)≤V

(8)

where C, W, and V are the upper bounds of the cost, weight, and volume of the system,
respectively.

544 CMC, 2022, vol.71, no.1

Figure 6: Evolution of the volume function of redundancy allocation (w=3)

4 Evolutionary Algorithms Used for RRAP

All EAs share three common features: population, fitness, and evolution. Population repre-
sents the set of individual solutions that are initially randomized and then optimized to attain
a final solution. A constant population size is generally maintained during the evolution pro-
cess. Fitness ranks the population/solution according to some established performance criteria.
Fitter individuals impact the remaining individuals through the evolutionary process. To explore
a problem’s solution space to attain the best population, random or controlled variation is
important.

The first use of an EA for a system reliability problem was in the field of GA [34–36].
This work demonstrated that GAs are efficient, robust, cost-effective, and capable of finding
the optimum in a high-dimensional nonlinear space [35]. evaluated the robustness of a GA and
found that the optimum for a high-dimensional nonlinear space was identified in a significantly
shorter time than required by enumeration. To improve the reliability of a personal computer,
the authors defined the key components and their modes of failure to assess potential levels of
improvement [36]. used GAs to improve the design, operation, and safety of new and/or existing
nuclear power plants (subject to an overall plant safety objective) by optimizing the reliability
allocation and minimizing total operating costs. In conjunction with a set of top-level performance
targets, these authors determined the reliability characteristics of reactor systems, subsystems,
main components, and plant procedures. Also, this GA had a multi-objective problem formulation
that included the cost for enhancing and/or deteriorating a system’s reliability into the reliability
allocation process. GA has been shown to find successful solutions for a traditional pressurized
water reactor that included multi-objective reliability optimization [37–41].

SA was first introduced by [42] and subsequently used in RRAP by [43]. Reference [43]
proposed an SA algorithm for optimizing the reliability of the communication network. This
SA selects an optimal set of links that optimize the overall reliability of the network. This
is subject to cost constraints and permissible incidences of node links, connection costs, and
connection reliability. SA has also been used to identify the best solution to system stability
problems with redundancy allocation [44], which considers nonlinear resource constraints [45].
Additionally, various SA techniques have been applied to solve multi-objective system reliability
optimization problems [46].

Reference [47] introduced PSO for optimization of continuous unconstrained functions. Ini-
tially, PSO did not attract much interest from the reliability community since most issues with

CMC, 2022, vol.71, no.1 545

reliability optimization are distinct and have constraints. However, properly adopted PSOs have
been shown to be effective tools for solving some discrete problems of restricted reliability
optimization [48,49]. applied PSO to solve reliability optimization for complex RAP systems.

Reference [50] introduced BCO. Later, [51,52] used BCO for application to RRAP [53]. intro-
duced BBO for RRAP application. Later, BBO was also applied to RRAP by [32,54], and [55,56].
and [57] introduced AISO. Later, [58] applied AISO to an RRAP [59]. introduced the ICA [60–62]
applied ICA to RRAP.

Timeline of the cited evolutionary algorithms is shown in Fig. 7.

Figure 7: Timeline of the main evolutionary algorithms used for RRAP

The following algorithm descriptions are applied for RRAPs with these assumptions:

(1) The component supply is infinite, and all redundant components are similar for each
individual subsystem.

(2) The failures of individual components are independent. Failed components do not harm
the system and are not fixed.

(3) The weight, cost, and volume of the components are known and deterministic.

4.1 Genetic Algorithms
GA is based on genetic mechanism and the evolution of species by Darwin using concepts

such as mutation, crossing over, the survival of the best individual, and natural selection [6,63,64].
Each individual of a population has two characteristics: a chromosome and a fitness value
representing its quality. A chromosome is represented as a sorted string or vector. Chromosome
representation is an essential task in GA, and a chromosome can be represented by different
forms. In this paper, each chromosome/solution has 2n number of genes with the first n genes
corresponding to the first n integer variables (redundant components) and the second n genes
corresponding to floating point variables (reliability of components).

The evolutionary process begins when all fitness values of the initial population have been
assigned. Each individual is evaluated on the basis of the results from the fitness function. The
individual follows a selection process where the best (fittest) survives and is selected to continue
regeneration and the others disappear. Parents exchange their genetic information randomly to
produce an innovative child population. This process includes the selection of crossover and
mutation operators. To maintain constant population size, parents are then replaced by children
in the population. This reproduction (selection, crossover, and mutation) is repeated and takes
place on the basis of the probability of crossover (Pc) and the probability of mutation (Pm). The
procedure is iteratively subjected to an assessment of the solution’s relevance until the solution
reaches the global optimum with a defined iteration number.

The selection operator plays an essential role because it is the first operator applied to the
population. The goal of this operator is to select above average solutions and to remove below
average solutions from the population of the next generation using the Principle “survival of the

546 CMC, 2022, vol.71, no.1

relatively fit.” In this review, we define a size two tournament selection processes with replacement
as the selection operator [65]:

• When both the chromosomes are feasible, the one with the higher fitness value is chosen.
• When one chromosome is feasible and the other is infeasible, the one that is feasible is

chosen.
• When both chromosomes are infeasible with unequal constraint violations, the chromosome

with the less constraint violation is chosen.
• When both the chromosomes are infeasible with equal constraint violations, then either

chromosome is chosen.

A crossover operator is added to the surviving chromosomes after the selection process. This
is the operation that really empowers a GA. It simultaneously acts on two or more parent
chromosomes and produces offspring by recombining features of the parent solutions. In this
review, we describe an intermediate crossover for integer variables and a power crossover for
floating point variables [65]. Crossover processes begin by defining the crossover population size
(Pc·Ps). Then, two parent chromosomes stk and sti are randomly selected, and the components s̄tkj
and s̄tij (j =1,. . ., n) of two offspring are computed.

In the case of intermediate crossover,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
s̄tkj = stkj − g
s̄tij = stij + g

if stkj > stij{
s̄tkj = stkj − g
s̄tij = stij + g

if stkj > stij otherwise
(9)

where g is a random integer between 0 and. |stkj − stij|
In the case of power crossover,{

s̄tkj = (stkj)
λ
(stij)

1−λ

s̄tij = (stkj)
1−λ

(stij)
λ (10)

where λ is a random number from a uniform distribution with the interval [0,1].

Finally, the new two children st+1
k and st+1

i are created from the two parent chromosomes stk
and sti defined as{
st+1
k = argument of best of {f (stk), f (sti), f (s̄tk), f (s̄ti)}
st+1
i = argument of 2nd best of {f (stk), f (sti), f (s̄tk), f (s̄ti)}

(11)

The purpose of the mutation procedure is to introduce random variations into the population.
These random variations are used to prevent the search process from converging to local optima.
The mutation process sometimes helps recover the data lost in previous generations and is respon-
sible for the system’s fine tuning. This operator only applies to a single chromosome. Usually, its
rate is very low. In this review, we discuss the one-neighborhood mutation for integer variables
method [66] and non-uniform mutation for floating point variables [65]. The mutation process
starts by defining the mutation population size (Pm·Ps). Then, particular genes of chromosome

CMC, 2022, vol.71, no.1 547

stik (k=1,. . ., n) and chromosome sti of the tth generation are selected for mutation where the

domain of stik is [lk, uk]). The new mutated genes s′tik (k= 1,. . ., n) are expressed as follows:

In the case of one-neighborhood mutation,

s′tik =

⎧⎪⎪⎨
⎪⎪⎩
stik+ 1 if stik = lk
stik− 1 if stik = uk
stik+ 1 if ρ < 0.5
stik− 1 ifρ ≥ 0.5

(12)

where ρ is a uniformly distributed random number in [0,1].

In the case of non-uniform mutation,

s′tik =

⎧⎪⎨
⎪⎩
stik+ (stik− lk)ρ1

(
1− t

Mg

)2
if ρ2 < 0.5

stik+ (uk− stik)ρ1
(
1− t

Mg

)2
if ρ2 ≥ 0.5

(13)

where ρ1 and ρ2 are two uniformly distributed random numbers in [0,1]. Mg is the maximum
number of generations.

Thus, the final gene is

st+1
i = argument of best of {f (sti), f (s′ti)} (14)

The different steps of a GA are summarized in the following pseudo-codes (Algorithms 1–3):

Algorithm 1: Pseudo-code of a genetic algorithm
Step 1. Set the population size (Ps), maximum number of generations (Mg), probability of
crossover (Pc), probability of mutation (Pm), and the bounds of decision variables. Set t=0.
Step 2. Initialize the chromosomes of population P(t).
Step 3. Compute the fitness function for each chromosome of P(t), and identify the chromosome
with the best fitness value.
Step 4. Set t= t + 1.
Step 5. Select the population P(t) from the population P(t − 1) of (t − 1)th generation using
tournament selection.
Step 6. Apply crossover (Algorithm 2) and mutation (Algorithm 3) operators to P(t) to produce
new population P(t).
Step 7. Compute the fitness function value for each chromosome of P(t).
Step 8. Find the best-fit chromosome from P(t).
Step 9. Identify the better between the two chromosomes P(t) and P(t − 1), and store it. If the
termination condition is satisfied, then go to the next step; otherwise, go to Step 4.
Step 10. Print the best chromosome and its fitness value.

548 CMC, 2022, vol.71, no.1

Algorithm 2: Pseudo-code for crossover operation
Step 1. Find the integral value of Pc·Ps, and store it in Nc.
Step 2. Select two parent chromosomes stk and sti randomly from the population.
Step 3. Compute the components s̄tkj and s̄tij (j =1,. . ., n) of two offspring from the parent
chromosomes stk and sti .
Step 4. Compute st+1

k and st+1
i .

Step 5. Repeat Steps 2–4 for Nc/2 times.

Algorithm 3: Pseudo-code for mutation operation
Step 1. Find the integral value of Pm·Ps and store it in Nm.
Step 2. Select specific genes of chromosome stik (k=1,. . ., n) and chromosomes sti .
Step 3. Create new genes s′tik (k=1,. . ., n) by mutation process.
Step 4. Compute st+1

i .
Step 5. Repeat Steps 2–4 for Nm times.

4.2 BCO
Developed by [50,67], the BCO algorithm mimics honey bee behavior. Bees in a colony are

divided into three groups: employed bees (forager bees), onlooker bees (observer bees), and scouts.
There is only one employed bee associated with each food source. An employed bee of a discarded
food site is forced to become a scout who randomly searches for a new food source. Employed
bees share information with onlooker bees in a hive so that onlooker bees can choose a food
source for the forager.

In the initialization stage of a BCO, bees randomly select food source positions and nectar
amounts are determined by a fitness function. These bees return to the hive and share this nectar
source information with bees waiting in the dance area of the hive. Next, the second stage occurs,
where every employed bee goes back to the same food source area visited during the previous
cycle. Thus, the probability ph of an onlooker bee choosing a preferred food source at Xh is
defined as

ph=
fh∑N
n=1 fh

(15)

Here, N is the number of food sources and fh = f (Xh) is the amount of nectar evaluated by
the employed bee. If a food source is tried/foraged without improvement for a specified number
of explorations, then it is abandoned and the bee at this location will randomly move to explore
new locations.

After a solution is generated, this solution is improved by using a local search by a process
called the “greedy selection process” carried out by onlooker and employed bees. The greedy
selection process is defined by the following equation:

Zhj =Xhj+φ(Xhj−Xkj) (16)

where k ∈ {1, 2,. . ., N} and j ∈ {1, 2,. . ., D} are randomly chosen indices and D is the
number of solution parameters. Although k is determined randomly, it has to be different from
h. φ is a random number between [−1, 1] and Zh is the solution in the neighborhood of

CMC, 2022, vol.71, no.1 549

Xh = (Xh1, Xh2, . . ., XhD). With the exception of the selected parameter j, all other parametric
values of Zh are the same as those for Xh (i.e., Zh= (Xh1,Xh2, . . . ,Xh(j−1),Xhj,Xh(j+1), . . . ,XhD)).

If a particular food source solution does not improve for a predetermined number of iter-
ations, then a new food source will be searched for by its associated bee, who now becomes
a scout. Then, this randomly generated food source is similarly allocated to this scout and its
status is changed to scout for hire. Hence, another algorithm iteration/cycle begins until either the
termination condition, maximum number of cycles, or relative error limit is reached.

The different steps of a BCO are summarized in the following pseudo-code:

Algorithm 4: Pseudo-code of bee colony optimization
Step 1. Initialization of parameters for employed bees. Set t=0.
Step 2. Evaluation of the fitness of each bee.
Step 3. Generation of the new population Zh.
Step 4. Evaluation of the fitness of each bee.
Step 5. Apply the greedy selection process.
Step 6. Calculate the probability for fitness values.
Step 7. Assign onlooker bees, and calculate their fitness values.
Step 8. Apply the greedy selection process to determine the best solution.
Step 9. Determine the abandoned solution, and replace it with a randomly generated solution for
scout bees.
Step 10. If termination criteria are satisfied, print the best solution. Otherwise, go back to Step 3.

4.3 SA
SA [42,68,69] is an approach to look for the global optimal solution (i.e., the lowest point

in an energy landscape) by avoiding entrapment in poor local optima. This is accomplished by
allowing an occasional uphill move to inferior solutions. The technique was developed on the basis
of observations of how a normal crystalline structure arises from slowly cooled molten metal.
A distinctive characteristic of this algorithm is that it combines random leaps into possible new
solutions. This ability is controlled and reduced as the algorithm progresses.

SA emulates the physical concepts of temperature and energy. The objective function of an SA
is treated as the energy of a dynamic system while the temperature is subjected to a randomized
search for a solution. For a simulation, the state of the dynamic system is connected to the state
of the system that is being optimized. The procedure is the following: The system is submitted
to a high temperature and is then cooled slowly through a sequence of changes in temperature
degrees. At each step, the algorithm searches for the state of system equilibrium using a series of
elementary changes that are accepted if the energy system decreases. Smaller energy increments
can be tolerated as the temperature decreases, and the device gradually falls into a low energy
state. This property allows the algorithm to escape and close if the conditions are not similar to
the global minimum from a local optimal configuration. The likelihood of acceptance and uphill
movement depends on the temperature and the extent of the rise (�).

The algorithm begins by randomly choosing an initial solution (s) and then calculates the
energy (Es) for s. After setting an initial temperature T, a neighbor finding strategy is used to
produce a neighbor solution n to the current solution s and to determine the corresponding energy
En. In the neighbor solution n, if the energy En is lower than the current energy Es, then the

550 CMC, 2022, vol.71, no.1

neighbor solution is set as the current solution. Otherwise, a probability function is evaluated
to decide if the neighbor’s solution can be recognized as the current solution. After thermal
equilibrium is reached at the current temperature T , the value of T is reduced by a cooling factor
χ and the number of internal repetitions is increased by an increasing factor β. The algorithm
starts from the current solution point to pursue thermal equilibrium at the new temperature. The
entire process stops when either the lowest energy point is found or no upward/downward jumps
have been taken for a specified number of consecutive thermal equilibriums.

The SA algorithm requires several decisions to be made. These decisions concern the choice
of energy function, cooling schedule, neighborhood structure, and parameters for annealing (i.e.,
initial temperature, cooling factor, increasing repetition factor of the inner loop, and stopping
condition). Each decision must be made carefully because it affects the speed of the algorithm
and the consistency of the solutions.

The key to success for the SA algorithm is the energy function. It forms the energy landscape
and influences how a solution is found by the algorithm. The energy function reflects the objective
function to be optimized for an allocation problem. The neighborhood determines the process to
switch from a solution point to another solution point.

The cooling schedule describes the temperature reduction mechanism when an equilibrium
state is reached. The number of inner loop repetitions (nrep) and the cooling rate (χ) control this
process [70]. discussed a geometric cooling schedule, where the temperature (T) is lowered so that
T = α∗ T, where α is a constant less than 1. The chain (i.e., the number of repetitions of the
inner loop) is modified at each temperature similarly: nrep = β∗ nrep, where β is a constant greater
than 1.

The annealing parameters are associated with the choice of initial temperature T , cooling
factor α, increasing factor β, and stopping condition. These parameters are defined as follows:

• Initial temperature T : One of the most critical parameters in the SA algorithm representing
the initial temperature. If the initial temperature is very high, the algorithm’s execution
duration becomes very long. By contrast, low initial temperature results in weak results. The
initial temperature must be hot enough to allow neighboring solutions to be freely shared. A
solution to this problem is to quickly heat the device until the ratio of accepted movements
to rejected movements exceeds the necessary value. The ratio of approved movements
to rejected movements (which reflects a volatile suitability scheme) can be determined in
advance. The cooling schedule starts at this stage. A physical analogy of this technique is
when a material is rapidly heated to its liquid state before slowly cooling according to an
annealing plan.

Let T be the initial temperature; cr and ci be numbers corresponding to cost reduction and
cost increase, respectively; ca be the average cost increase value of the ci trials; and a0 be the
desired initial acceptance value. Then, the following relation may be represented by

a0 =
cr+ ciexp

(− ca
T

)
cr+ ci

(17)

which can be rearranged to give the initial temperature as

T =− ca

log
(
cr
ci

(a0− 1)+ a0
) (18)

CMC, 2022, vol.71, no.1 551

• Cooling factor χ : The cooling factor χ represents the rate at which the temperature T is
decreased. For the success of any annealing operation, this aspect is crucial. A fast decrease
yields a poor local optimum and causes a slow cooling time. Most of the literature report
values between 0.8 and 0.95, with a bias toward the higher end of the range.

• Increasing factor β: The increasing factor β (>1) is the rate at which the internal number
of repetitions increases as the temperature decreases. It is necessary to spend a long time
at a lower temperature to assure that a local optimum has been thoroughly explored. The
lower the temperature, the greater the number of repetitions of the inner loop.

• Stopping condition: The stop condition is expressed in terms of either the temperature
parameter or the steady state of the system with the current solution. Other approaches
describe a stopping state by designating several iterations or temperature thresholds that
must have pass without approval. The simplest rule is to specify a total number of iterations
and then stop when this number has been completed. In this paper, the final temperature
is chosen to give a low acceptance value.

The different steps of SA are summarized in the following pseudo-code:

Algorithm 5: Pseudo-code of simulated annealing
Step 1. Set initial temperature T , cooling factor χ < 1, initial chain nrep, and chain increasing
factor β > 1; Set n= 1.
Step 2. Randomly select an initial solution (s) and compute the energy of this solution (Es).
Step 3. Select a neighbor solution n to s.
Step 4. Compute the cost at n, En, and �=En−Es.
Step 5. If � < 0 then s = n and Es = En. Otherwise, generate a random value x in the range
(0, 1). If x< exp(−�/T), then s= n and Es = En.
Step 6. n= n+ 1
Step 7. If n<nrep, then go back to step 3. Otherwise, continue.
Step 8. Set T = α∗T and nrep = β∗nrep.
Step 9. If a stop condition is reached, print Es (energy) and s (solution). Otherwise, go back to
Step 3.

4.4 PSO
PSO was initially proposed and designed by [47]. It is inspired by the social behavior of

bird flocking or fish schooling. The PSO algorithm works by randomly initializing a flock over a
searching space, where each bird is called a “particle.” These “particles” fly at a certain velocity
and find the global best position after iteration. At each iteration, each particle can adjust its
velocity vector on the basis of its momentum, the influence of its best position (pbest), and the
best position of its neighbors (gbest). Next, a new position is computed that the “particle” flies
to. Suppose the dimension of the searching space is D, and the total number of particles is N,
then the -position of the ith particle can be expressed by a vector xi = [xi1, xi2, . . ., xiD], the
best position of the ith particle by the vector pbesti = [pbesti1, pbesti2, . . ., pbestiD], and the best
position of the total particle swarm by the vector gbest = [gbest1, gbest2, . . ., gbestD]. If the
velocity of the ith particle is represented by the vector vi = [vi1, vi2, . . ., viD], then its position
and velocity at the (t+ 1) iteration are updated using the following equations [29]:

Vi(t+ 1)=w.Vi(t)+ c1.ud.(pbesti(t)−xi(t))+ c2.Ud.(gbest(t)−xi(t)) (19)

552 CMC, 2022, vol.71, no.1

xi(t+ 1)= xi(t)+Vi(t+ 1) (20)

where c1 and c2 are constants, ud and Ud are random variables with a uniform distribution
between 0 and 1, w is inertia weight (representing the effect of the previous velocity vector on
the new vector).

The different steps of PSO are summarized in the following pseudo-code:

Algorithm 6: Pseudo-code of particle swarm optimization
Step 1. Set the PSO parameters and the objective function.
Step 2. Initialize particle position and velocity for each particle.
Step 3. Calculate the fitness value for each particle. If the fitness value is better than the historical
best fitness value (pbest), then set a new pbest to the current value.
Step 4. For each particle, search the particle neighborhood for the particle with the best fitness,
then calculate particle velocity according to the velocity equation. Update particle position accord-
ing to the position equation with the application of the position constriction.
Step 5. If the maximum iterations or minimum error criteria are not attained, go back to step 3.
Step 6. Print the best solution.

4.5 BBO
Based on the concept of biogeography, BBO mimics the distribution of species that depend

on rainfall, diversity of topographic features, temperature, land area, etc [32,53–55]. Biogeography
describes how species migrate from one habitat to another, the creation of new species, and the
extinction of species. A habitat is an island that is geographically isolated from other habitats.
Each habitat is defined by a high habitat suitability index (HSI), which describes how geograph-
ically well suited it is for species living. Species have to emigrate or immigrate. If the high HSI
habitats have more species, these species have more opportunities to emigrate to a neighboring
habitat. For immigration, a species moves toward a high-HSI habitat that has fewer species.

The migration (i.e., immigration or emigration) of species in a single habitat is explained in
Fig. 8. When there are no species in a single habitat, then the immigration rate λ of the habitat
will be maximized (I). Conversely, when the number of species increases, then only a few species
can successfully survive. Thus, the immigration rate is decreased and becomes zero when the
maximum species count (Smax) is reached. The emigration rate (μ) increases with the increasing
number of species. Hence, the emigration rate is higher for a more crowded habitat than a less
populated habitat.

The first stage of the BBO algorithm is to assign the parameter values. These parameters are
maximum species count (Smax), maximum migration rate (E), immigration rate (I), the maximum
mutation rate (mmax), habitat modification probability (pmod), number of habitats, and number of
iterations.

In the BBO algorithm, each individual or decision variable is considered to be a “habitat.” An
HSI represents the measurement of an individual, and the length of the habitat depends on the
number of decision variables. This HSI is a measure of the goodness of fit of the solution and
is equivalent to the fitness value in population-based optimization algorithms. The correspond-
ing variables of individuals that characterize the habitability feature are called suitability index

CMC, 2022, vol.71, no.1 553

variables (SIVs). These are randomly initialized within the maximum and minimum limits by

SIVi = xmini +Ud.(xmaxi −xmini) (21)

where Ud is a uniformly distributed random number between (0, 1). Each habitat in a population
of size NP is represented by N-dimensional vector H = [SIV1, SIV2, . . .SIVN], where N is the
number of SIVs (i.e., features) to be evolved to achieve an optimal HSI. HSI is the degree of
acceptability calculated by evaluating the objective function (i.e., HSI = f (H)).

Figure 8: Evolution of immigration and immigration

Migration is an adaptive process that is used to change an existing habitat’s SIV. Each
individual has its own immigration rate (λ) and emigration rate (μ) to improve the solution and
thus evolve a solution to the optimization problem. This solution is modified on the basis of its
probability (Pmod), which is a user-defined parameter. Based on this probability, the immigration
rate (λ) of each habitat is used to decide whether or not to modify each SIV. Then, another
habitat is selected on the basis of emigration rate (μ). This habitat’s SIV will randomly migrate
to the previous habitat’s SIV. A good solution is a habitat with a relatively high μ and low λ,
whereas the converse is true for a poor solution.

High-HSI habitats resist change more than low-HSI habitats. Weak solutions consider more
helpful knowledge from successful solutions that increase the algorithm’s ability to exploit. The
immigration and emigration rates are initially based on the number of species in the habitat and
are calculated by

λk = I
(
1− k

Smax

)
(22)

μk =E
k

Smax
(23)

where I is the maximum possible immigration rate, E is the maximum possible emigration rate,
k is the number of species for the kth individual, and Smax is the maximum number of species. I
and E are often set equal to1 or slightly less than 1.

554 CMC, 2022, vol.71, no.1

Besides migration, BBO includes a mutation feature. Mutation is used to improve population
diversity to obtain the best solution. Low- and high-HIS-valued habitats have less possibility to
mutate than average-HIS-valued habitats. For instance, let us assume that there are a total of
Smax habitats and there are S Species in the Sth habitat. For the Sth island, the immigration rate
is λs and the emigration rate is μs. By considering PS as the probability that there are exactly S
species living in a habitat, PS changes from time t to t+�t by

PS(t+Δt)=PS(t)(1−λSΔt−μSΔt)+PS−1(t)λS−1Δt+PS+1(t)μS+1Δt (24)

By taking the limit of the previous equation:

PS =̇
⎧⎨
⎩
−PS(λS +μS)+PS+1μS+1
−PS(λS +μS)+PS−1μS−1+PS+1μS+1
−PS(λS +μS)+PS−1μS−1

; S= 0
; 1≤ S≤ Smax− 1
; S= Smax

(25)

where PS−1, PS, and PS+1 are the species count probabilities; λS−1, λS, and λS+1 are immigration
rates; and μS−1, μS, and μS+1 are emigration rates of the habitat for S − 1, S, and S + 1
species, respectively. Smax is the maximum species count in the habitat. The steady state probability
of the quantity of each species is as follows:

Pk =
1

1+∑Smax
j=1

∏l
i=1

λi−1
μi

k∏
i=1

λi−1

μi
, 1≤ k≤ Smax (26)

Thus, on the basis of the randomly selected SIV habitat modified based on mutation rate m
and for the case of E = I , m is calculated as

mi =mmax

(
1− Pi

Pmax

)
(27)

where mmax ∈ [0,1] is the predefined parameter called the maximum mutation probability, pmax =
max (P1, P2, . . ., PNP), where NP is the number of habitats and Pi is the probability of habitat i,
which can be calculated using Eq. (6). The goal of this mutation scheme is to increase population
diversity, thus, minimizing the risk of the solution being stuck in local optima.

The different steps of BOO are summarized in the following pseudo-codes (Algorithms 7–9).

Algorithm 7: Pseudo-code of biogeography-based optimization
Step 1. Initialize the BBO parameters.
Step 2. Generate random initial population N × n, where N is the number of habitats and n is
the number of species.
Step 3. Evaluate the HSI for each habitat to minimize the tardiness objective function.
Step 4. Sort the population from best fit to least fit.
Step 5. Map the HSI to the number of species.
Step 6. Calculate λi and μi.
Step 7. Modify the non-elite members of the population probabilistically with the migration
operator according to the sub-algorithm “migration.”
Step 8. Mutate the non-elite members of the population with the mutation operator according to
the sub-algorithm “mutation.”

(Continued)

CMC, 2022, vol.71, no.1 555

Step 9. Evaluate new habitats.
Step 10. Substitute the old habitats with the new ones.
Step 11. Replace the worst habitats with the elite habitats from the previous step.
Step 12. Set iteration = iteration + 1.
Step 13. Go back to step 3 until the maximum iteration is reached.
Step 14. Print the best solution.

Algorithm 8: Pseudo-code of migration
Step 1. Copy the random number from the emigrating habitat to the immigrating habitat to
replace the random number of the same order from the emigrating habitat. This step is performed
on the basis of μi to define which habitat will be the emigration habitat.
Step 2. Do step 1 for all SIVs (random number) in habitats.
Step 3. Calculate λscale to normalize the emigration rate.
Step 4. Generate a random number, and then, compare it with the λscale. If the random number
is less than the λscale, then SIV will be chosen to emigrate.
Step 5. Do step 4 for all SIVs and habitats.
Step 6. Replace the initial habitat with the habitat from the migration operation.
Step 7. Transform the SIV (random number) into a sequence of the job.
Step 8. Repeat step 1 until every habitat is selected to migrate.

Algorithm 9: Pseudo-code of mutation
Step 1. Calculate mutation rate.
Step 2. Use mutation rate to choose the habitat to be mutated.
Step 3. Mutate the habitat with the flip method.
Step 4. Repeat step 1 for every non-elite habitat.

4.6 AISO
AISO was first introduced by Rechenberg [71]. The natural immune system is a very complex

mechanism of protection against pathogenic species. The immune system is divided into a two-tier
line of defense: the innate immune system and the adaptive immune system. The fundamental
components are lymphocytes and antibodies [56,72]. The cells of the innate immune system are
readily available to defend against a wide range of antigens without prior exposure. In response
to a particular infectious agent (antigen), the generation of antibodies is a lymphocyte-mediated
adaptive immune response responsible for the identification and removal of pathogenic agents [73].
The cells in the adaptive system can establish an immune memory so that when exposed again,
the system will identify the same antigenic stimulus. Additionally, all antibodies are only devel-
oped in response to particular infections. B-cells (B-lymphocytes) and C-cells (T-lymphocytes)
are two major types of lymphocytes. They carry surface receptor molecules that can recognize
antigens. The B-cells produced by the bone marrow display a distinct chemical structure and
can be programmed to produce only one antibody that acts as a receptor on the outer surface
of the lymphocyte. The antigens only bind to these receptors, thus, making them a compatible
match [74].

556 CMC, 2022, vol.71, no.1

The immune system’s main role is to recognize and remove intruders so that the immune
system has the potential for self/non-self-discrimination. As previously discussed, different anti-
bodies can be produced and specific antigens can be recognized. The antibody-recognized part
of the antigen is called the epitope, which functions as an antigen determinant. Every type of
antibody has its own specific antigen determinant, which is called an idiotope. Additionally, an
activated lymphocyte needs to proliferate and then differentiate into effector cells to generate
sufficient unique effector cells to counter an infection. This approach is called clonal selection [75]
and is accompanied by genetic operations to form a large plasma cell clone. The antibodies can
then be secreted and made ready for binding to antigens. On the basis of the above facts, [76]
proposed an idiotope network hypothesis that is based on the clonal selection theory. In this
hypothesis, some types of recognizing sets are activated by some antigens and create an antibody
that activates other types of recognizing sets. Activation is propagated through antigen-antibody
reactions throughout the entire network of recognition sets. It should be noted that detection
of an antigen is not achieved by a single or multiple recognition sets but rather by interactions
between an antigen and an antibody.

From this viewpoint, an antibody and an antigen can be viewed as the solution and objection
function, respectively, to solve the problem of reliability–redundancy allocation optimization.

The different steps of an AIS are summarized in the following pseudo-code:

Algorithm 10: Pseudo-code for artificial immune system optimization
Step 1. Randomly generate an initial population of antibodies.
Step 2. Evaluate the corresponding affinity value for each individual.
Step 3. Choose the best k individual with the highest affinity value and then clone this k antibody.
Step 4. The set of clones from the previous step will endure the genetic operation process, i.e.,
crossover and mutation.
Step 5. Update the memory set. This process includes replacement and elimination.

(1) Calculate a new affinity value for each new individual (i.e., antibody). Select those indi-
viduals who are superior to the individuals in the memory set. Next, replace the inferior
individuals with the superior individuals in the memory set.

(2) Eliminate antibodies when their structures are too similar so that the individuals in the
memory set can maintain diversity.

Step 6. Check the stopping criteria. If stopping criteria are not met, go back to Step 2. Otherwise,
proceed to the next step.
Step 7. Stop the optimal or near-optimal solution(s) can be obtained from the memory set.

4.7 CA
CS was introduced by [77]. It was inspired by the aggressive reproduction strategy of cuckoos.

Cuckoos lay their eggs in the nests of other host birds, which may be of various species. The host
bird may notice that the eggs do not belong, in which case, either the eggs are destroyed or the
nest is abandoned altogether. This contributed to the creation of cuckoo eggs that resemble the
eggs of local host birds. CS is based on three idealized rules:

• Each cuckoo lays one egg at a time and deposits it in a randomly picked nest.
• The best nests with high-quality eggs (i.e., solutions) will be passed on to the next

generations.

CMC, 2022, vol.71, no.1 557

• The number of available host nests is set, and an alien egg can be discovered by a host
with a probability of pa ∈ [0,1]. In this scenario, the host bird may either throw the egg
away or leave the nest to establish an entirely new nest in a new location.

For simplicity, this last statement can be approximated by the fraction of nests that are
replaced by new nests with new random solutions. As with other evolutionary methods, the
solution’s fitness function is described similarly. In this process, an egg already present in the nest
will represent the previous solution, whereas the cuckoo’s egg represents the new solution. The
goal is to replace worse solutions that are in the nests with new and theoretically better solutions
(cuckoos). The basic steps of a cuckoo search are defined in Algorithm 11 on the basis of these
three rules.

The new solution xi(t+ 1) of the cuckoo search is based on its current location xi(t) and its
probability of transition with the following equation:

xi(t+ 1)= xi(t)+α ⊕Levy(λ) (28)

where α (α > 0) represents the step size. This step size should be related to the problem specifi-
cation, and t is the current iteration number. The product ⊕ represents entry-wise multiplications
that are similar to other EAs such as PSO but contain a random walk via Levy flight. This is
much more efficient to explore the search space because the step length is much longer in the
long run.

In Mantegna’s algorithm, the step length is calculated by

Levy(α)∼ u

|v| 1α
(29)

where u and v are drawn from the normal distribution, i.e.,

u∼N(0,σ 2
u);σu=

(
Γ (1+α)sin(πα

2)

Γ
(
1+α
2

)
α2

α−1
2

) 1
α

v∼N(0,σ 2
v); σv = 1

(30)

where the distribution parameter α ∈ [0.3,1.99] and denotes the gamma function.

The steps of a CS are summarized in the following pseudo-code:

Algorithm 11: Pseudo-code for cuckoo search
Step 1. Initialize the CS parameters.
Step 2. Generate an initial population of n host nests, xi where i= 1, 2, . . ., n.
Step 3. While (t<max generation) or (stop criterion).
Step 4. Randomly get a cuckoo (say, i).
Step 5. Generate a new solution by performing Levy flights.
Step 6. Evaluate its fitness.
Step 7. Randomly choose a nest among n (say, j).
Step 8. If fi > fj, then replace j with the new generation.

(Continued)

558 CMC, 2022, vol.71, no.1

Step 9. A fraction of the worst nests are abandoned, and new ones are built.
Step 10. Keep the best nests (solutions).
Step 11. Rank the nests (solutions), and find the current best nest.
Step 12. Pass the current best solution to the next generation.
Step 13. End While.
Step 14. Print the best solution.

4.8 ICA
The ICA was recently introduced by [59]. The imperialist competitive uses imperialism and

the imperialistic competition process as its source of inspiration. ICA is based on the actions
of imperialists attempting to conquer colonies. It attempts to mimic the sociopolitical evolution
of humans. Similar to other population-based algorithms, ICA starts with a randomly generated
population called “countries.” These countries are divided into imperialists and colonies. The
imperialists are the best candidate solutions, and the colonies are the remaining solutions. All the
colonies will be shared among the imperialists according to each imperialist’s powers. The more
powerful the imperialist, the more colonies it possesses. An imperialist with its colonies forms an
empire. In an ICA, the main action that leads the search for better solutions is colony movement
toward the imperialists. This mechanism makes the population converge to certain spots in the
search space where the best solution found so far is located.

One characteristic of the imperialism policy is that over time, colonies start to change their
culture to be more similar to their respective imperialist. In ICA, this process is implemented by
moving the colonies toward their imperialist in the search space domain and is called assimilation.
During this event, a colony may become more powerful than its imperialist. In this case, the
colony takes the place of the imperialist and the imperialist becomes the colony.

Imperialistic competition is ruled by the fact that the most powerful empires tend to increase
their power, whereas the poorest ones tend to collapse. This phenomenon makes the number of
imperialistic countries decrease during the run of the algorithm and the colonies of the defeated
imperialist become part of another empire.

These two mechanisms force the algorithm to converge into a single empire, in which the
imperialist and the colonies will have the same culture. Translating the ICA’s metaphor into
optimization language, the culture is a possible solution and the power is used to measure a
country’s objective function evaluation.

ICA starts by the initialization process (i.e., initialization of the empires) and then the medi-
alization of the movement of colonies toward the imperialist (i.e., assimilation), the evaluation of
the total cost of the empire, and finally the realization of imperialist competition.

In ICA, the countries are the possible solutions in the search space. They are represented by
a 1xNvar dimension array defined by

countries= [p1,p2, . . . ,pNvar] (31)

In the beginning, an initial population is randomly created from a uniform distribution and it
is divided into imperialists and colonies. Since ICA is a maximization algorithm, the imperialists
will be the countries with the highest costs. Since the proposed problems are maximization

CMC, 2022, vol.71, no.1 559

problems, the cost of a country is given by the inverse of the cost function f defined by

f (country)= cost= 1
f ([p1,p2, . . . ,pNvar])

(32)

The colonies will be distributed among the imperialists concerning the power of each
imperialist. For this purpose, the normalized cost is defined by

Cn= cn−maxi(ci) (33)

where cn is the cost of nth imperialist and Cn is its normalized cost.

Finally, the normalized power for each imperialist is defined by

pn= |Cn|∣∣∣∑Nimp
i=1 Ci

∣∣∣ (34)

where Nimp is the number of imperialists. The normalized power of an imperialist represents the
number of initial colonies this imperialist possesses, and it is given by

N ·Cn = round(pn ·Ncol) (35)

where N·Cn is the initial number of colonies of the nth empire and Ncol is the number of colonies.

The assimilation process (i.e., movement of colonies toward the imperialist) depends on
the distance between the colonies and their imperialist, a real constant called an “assimilation
coefficient,” and a random number in the range [0,1]. The following equation represents the new
position of a colony:

Posi+1 =Posi+ γ · δ · d (36)

where Posi is the vector of a colony’s position on the ith iteration, γ is the assimilation coefficient,
δ is a random number normally distributed between [0,1], and d is an Nvar dimension vector
containing the distance between the colony and its imperialist. In imperialistic terms, d represents
how different the culture of a colony is from the imperialist culture.

After this movement, a colony may reach a position with a higher cost than the imperialist.
In this case, the colony will become the new imperialist, whereas the old imperialist will become
a colony of the same empire.

The cost of an empire is most affected by the imperialist cost, although it is also affected by
the colonies’ costs. This event is stated by

T ·Cn =Cost(Imperialistn)+ ε ·mean{cost(Colonies of Empiren)} (37)

where T ·Cn is the total cost of the nth empire and ε is a positive constant that represents the
significance of the colonies’ costs.

The imperialistic competition comprises disputes between empires to possess the colonies. This
event increases the powers of the most powerful empires, whereas the poorest empires tend to
decrease their powers. Imperialistic competition is proposed by choosing the poorest colony (the
colony with the higher cost) from the poorest empire to be disputed by the other empires. For
this purpose, it is assumed that

N ·T ·Cn =T ·Cn−maxi(T ·Ci) (38)

560 CMC, 2022, vol.71, no.1

where T ·Cn is the total cost of the nth empire and N ·T ·Cn is its normalized cost. The possession
probability ppn for the nth empire is given by

PPn =
|N.T .Cn|∣∣∣∑Nimp
i=1 N.T .Ci

∣∣∣ (39)

This creates the vector P with the possession probability of each empire and the vector R (of
the same size of P) with random numbers uniformly distributed between [0,1] defined as

P= [PP1,PP2 , . . . ,PNimp] (40)

R= [r1, r2, . . . , rn] (41)

The vector D is defined by

D=P−R= [D1,D2, . . . ,DNimp] (42)

Finally, the empire chosen to possess the colony is the one that has the highest value of D.

Different steps of ICA are summarized in the following pseudo-code:

Algorithm 12: Pseudo-code for imperialist competitive algorithm
Step 1. Initialize the control factors.
Step 2. Randomly generate a population of countries, and construct the initial colonies.
Step 3. Normalize the assimilated colonies.
Step 4. Revolve some colonies.
Step 5. Evaluate the fitness of colonies.
Step 6. For each empire, if fitness (colony) < fitness (imperialist), then exchange the position of
that imperialist and the colony.
Step 7. Update the fitness of all empires.
Step 8. If an empire contains no colonies, then eliminate it.
Step 9. If the stop condition is satisfied, then stop. Otherwise, go back to step 3.
Step 10. Print the best solution.

5 Constraints Handling Techniques for Constrained Mixed Integer Nonlinear Problems

With the aid of an EA, several approaches have been suggested to deal with the constraints
for solving restricted optimization problems. The penalty function method is a very common
technique in RRAP. With this method, the restricted optimization problem is translated into an
unrestricted one. Here, the reduced objective function contains the original objective function,
and a penalty is imposed for breaching the constraints. Recently, a penalty function approach
to handle the constraints has been proposed [78,79]. In this approach, when converting the
constrained optimization problem into an unconstrained one, a large negative value (say, −M) is
blindly assigned to the objective function for the infeasible solution for a maximization problem.
In this case, if the constrained optimization problem is{
Maximize RS = f (x, r)
subject to gi(x, r)≤ bi, i= 1..m (43)

CMC, 2022, vol.71, no.1 561

then the reduced unconstrained optimization problem is as follows:

Maximize f̂ (x, r)=
{
f (x, r) if (x, r)∈ S
−M if (x, r) /∈ S (44)

And S= {(x, r) : gi(x, r)− b≤ 0, i= 1 . . .m} is the feasible space for the optimization problem.

For a minimization problem, instead of −M, +M is used. In this work, we used the value of
99,999 for M.

6 Latest Results Summary

Besides these “classical” problems, we consider a fourth benchmark problem for RRAP.
This problem represents the overspeed protection system for a gas turbine (Fig. 9). Overspeed
detection is continuously provided by electrical and mechanical systems. When overspeed occurs, it
is necessary to cut off the fuel supply. For this purpose, four control valves Vi (i=1, . . ., 4) must
close. The control system is constructed as a four-stage series system. The goal of the optimization
process is to determine an optimal level of ri and ni at each stage i with a maximum overall
reliability system. The reliability is formulated as [72]:

Rsystem =
4∏
i=1

(1− (1− ri)ni) (45)

The values of the input parameters for series and bridge, series–parallel, and overspeed gas
turbine system problems are provided in Tabs. 1–3, respectively (i.e., number of subsystems; com-
ponent cost, volume, and weight values; and maximum value for the cost, volume, and weight),
as stipulated in the literature.

Figure 9: Overspeed gas turbine system

Table 1: Input parameters for series and bridge systems

Subsystem αi (×10−5) βi vi wi V C W

1 2.33 1.5 1 7 110 175 200
2 1.45 2 8
3 0.54 3 8
4 8.05 4 6
5 1.95 2 9

562 CMC, 2022, vol.71, no.1

Table 2: Input parameters for the series–parallel system

Subsystem αi (×10−5) βi vi wi V C W

1 2.50 1.5 2 3.5 180 175 100
2 1.45 4 4
3 0.54 5 4
4 0.54 8 3.5
5 2.10 4 4.5

Table 3: Input parameters for the overspeed gas turbine system

Subsystem αi (×10−5) βi vi wi V C W

1 1.0 1.5 1 6 250 400 500
2 2.3 2 6
3 0.3 3 8
4 2.3 2 7

To compare the performance of each EA results, we define the maximum possible improve-
ment (MPI) index [80] as follows:

MPI = R(EABest)−R(EACurrent)
1−R(EACurrent)

(46)

where R(EABest) and R(EACurrent) are the best-known solution obtained from different EA and
the current solution, respectively.

Tabs. 4–7 detail the best found solution of each EA for series, series–parallel, complex, and
overspeed gas turbine system problems, respectively. The literature MPI values ranged from 1998
(GAs) to 2016 (ICAs). For the series problem, we note that for all of the EA (except PSO), the
overall reliabilities were close (Rsys = 0.931xxx) with an MPI less than 0.32%. The best result was
obtained by BBO and the worst by PSO. For the series–parallel problem, we also note that for
all EAs (except PSO), the overall reliabilities were close (Rsys = 0.99997xxx) with an MPI range
of 0.13%–9.53%. The best result was obtained by CA, and the worst, by PSO. For the bridge
problem, all EA results were relatively small. The overall reliabilities were close (Rsys = 0.9998xxx).
Except for GA (which has an MPI of 8.66%), the MPI range was 0.04%–1.77% for the other EAs.
The best results were obtained by BBO, CA, and ICA, and the worst, by GA. For the gas turbine
problem, the results from the literature ranged from 2006 to 2016. The results are considered to be
disruptive. Indeed, the MPI range from 3.55% to 21.84%, corresponding to an overall reliability
system close to 0.9999xxx. The best result was obtained by BCO, BBO, CA, and ICA, and the
worst, by SA.

Generally, even if the improvement in the proposed approaches seems extremely small, small
improvements in reliability are often hard to achieve in high-reliability applications. The best
results are obtained by the latest developed approaches such as BBO (2015), CA (2016), and
ICAA (2016). Recently, new approaches combine different EAs sequentially or in parallel. Tab. 8
shows the best found results using hybrid approaches. For series and gas turbine problems,

CMC, 2022, vol.71, no.1 563

CDEPSO [81] seems to be the best technique. CDEPSO combines PSO with differential evolution
and chaotic local search. However, the results are the same as previously detailed in Tabs. 4 and 7.
Hybrid techniques are more efficient with series–parallel and bridge problems. Indeed, combined
GA-PSO [65] improves the overall reliability by 99% (i.e., MPI calculation).

Table 4: Comparison of the best solution with EA approaches for series problem

GA [82] BCO [52] SA [45] PSO [33] BBO [32] AISO [72] CA [83] ICA [61]

Rsystem .931578 .93167841 .931460 .8885037 .93168238 .931678 .93168210 .93168138
n1 3 3 3 2 3 3 3 3
r1 .779427 .779403 .782391 .800592 .779405 .779266 .779439 .779760
n2 2 2 2 3 2 2 2 2
r2 .869482 .871833 .866712 .740493 .871833 .872513 .871995 .872088
n3 2 2 2 2 2 2 2 2
r3 .902674 .902886 .901747 .829143 .902881 .902634 .902873 .902689
n4 3 3 3 4 3 3 3 3
r4 .714038 .711398 .717266 .636861 .711401 .710648 .711127 .711405
n5 3 3 3 2 3 3 3 3
r5 .786896 .787808 .783795 .887042 .787805 .788406 .787986 .787208
MPI (%) 0.15 0.01 0.32 38.73 Best 0.01 ≈ 0 ≈ 0

Table 5: Comparison of the best solution with EA approaches for series-parallel problem

GA [82] BCO [52] SA [45] PSO [33] BBO [32] AISO [72] CA [83] ICA [62]

Rsystem .99997418 .99997661 .99997631 .99985845 .99997664 .99997658 .99997664 .99997661
n1 2 2 2 4 2 2 2 2
r1 .785452 .822437 .812161 .840252 .819658 .812485 .819483 0.822012
n2 2 2 2 3 2 2 2 2
r2 .842998 .842382 .853346 .888650 .844910 .843155 .844783 .843656
n3 2 2 2 2 2 2 2 2
r3 .885333 .897571 .897597 .623750 .895487 .897385 .895810 .891290
n4 2 2 2 1 2 2 2 2
r4 .917958 .8918627 .900710 .939849 .895514 .894516 .895220 .898698
n5 4 4 4 2 4 4 4 4
r5 .870318 .8685979 .866316 .751586 .868468 .870590 .868542 .868249
MPI (%) 9.53 0.13 1.39 83.50 Best 0.26 Best 0.13

7 Future Challenges in RRAP Optimization

Nowadays, the modern complex system reliability optimizations arise a certain challenges
linked to ‘pragmatism’ by dealing with more realistic reliability behaviors of the compo-
nents. Indeed, the previous problem formulations and assumptions are considering notions
like the active redundancy, perfect switching of redundant components, binary behavior of
components/systems,. . . which make the ideal problem far away from the realistic case.

564 CMC, 2022, vol.71, no.1

Table 6: Comparison of the best solution with EA approaches for bridge problem

GA [82] BCO [52] SA [45] PSO [80] BBO [32] AISO [72] CA [83] ICA [61]

Rsystem .99987916 .99988959 .99988764 .99988957 .99988963 .99988921 .99988963 .99988963
n1 3 3 3 3 3 3 3 3
r1 .814090 .827222 .807263 .826678 .828060 .812485 .827855 .827642
n2 3 3 3 3 3 3 3 3
r2 .864614 .856301 .868116 .857172 .858040 .867661 .857626 .857478
n3 3 2 3 2 2 3 2 3
r3 .980291 .914575 .872862 0.914629 .914148 .861221 .914752 .914196
n4 3 4 3 4 4 3 4 3
r4 .701190 .651220 .712673 0.648918 .647968 .713852 .648217 .649273
n5 1 1 1 1 1 1 1 1
r5 .734731 .701774 .751034 0.715291 .704204 .756699 .702670 .704092
MPI (%) 8.66 0.04 1.77 0.05 Best 0.38 Best Best

Table 7: Comparison of the best solution with EA approaches for overspeed gas turbine problem

GA BCO [52] SA [45] PSO [80] BBO [32] AISO [72] CA [83] ICA [61]

Rsystem - .99995467 .999945 .99995300 .99995467 .999942 .99995467 .99995467
n1 - 5 5 5 5 5 5 5
r1 - .901840 .895644 .902231 .901562 .903800 .901598 .901489
n2 - 5 5 6 5 5 5 6
r2 - .888208 .885878 .856325 .888224 .874992 .888226 .850035
n3 - 4 5 4 4 5 4 4
r3 - .948134 .912184 .948145 .948155 .919898 .948101 .948129
n4 - 6 5 5 6 5 6 5
r4 - .849942 .887785 .883156 .849952 .890609 .849980 .888238
MPI (%) - Best 17.58 3.55 Best 21.84 Best Best

For example, considering the ideal binary state (functioning/failed) for components and sys-
tems is not a realistic description of the multi-state system reliability behavior [84]. The first
attempts to optimize such problems was presented by [48,85]. Substantial research efforts have
been dedicated to the solution of RAP for series-parallel multi-state systems [48,86–89] over the
last two decades. Parallel series structures are generally taken into account because they are very
common in practice, but potentially mathematically cumbersome.

Moreover, with active redundancy assumption, the failure time of a parallel subsystem of
components is the maximum of individual component failure times, and the reliability is defined
by standard probability approaches [14]. Many real subsystem design issues, however, use a
number of active, cold, warm or hot standby, sometimes within the same design, and thus the
original formulations and methods of solution were not feasible or relevant to many real problems.

System designs with active redundancy have fully activated components that, in the event
of a primary component failure, will continue to provide the requisite design functions until all
redundant components have also failed. The use of non-activated components that can be turned

CMC, 2022, vol.71, no.1 565

on in response to a primary component failure includes cold standby redundancy. Cold standby
redundancy includes failure detection switches and redundant unit activation. When active or cold-
standby redundancies can be selectively selected for individual subsystems, researchers prefer to
optimize reliability [90–95].

Table 8: Best solutions to date using hybrid approaches

Series problem Series-parallel problem Bridge problem Overspeed gas turbine problem

CDEPSO [81] GA-PSO [65] GA-PSO [65] CDEPSO [81]

Rsystem .93168239 0.99999988 0.99999952 .99995467
n1 3 4 4 5
r1 .779398 0.860328 0.858430 0.90151342
n2 2 3 3 5
r2 .871836 0.827071 0.700000 0.88811463
n3 2 2 3 4
r3 .902886 0.872994 0.922386 0.94838428
n4 3 3 3 6
r4 .711402 0.937884 0.700000 .84991061
n5 3 2 1 -
r5 .787799 0.701148 0.700000 -
MPI (%) ≈ 0 99.49 99.57% 0

Another weakness of the idealization reliability assessment is the certainty approach consider-
ing the input parameter values. Intrinsic uncertainty and imperfect knowledge of system behavior,
however, are still present. As aspects, factors and causes of uncertainty, we note lack of informa-
tion and knowledge, model approximation, conflicting nature of information, measurement errors,
. . . [14,96,97]. Uncertainty analysis defines the uncertainty in the model output that outcomes
from uncertainty in the model inputs [98]. In the reliability engineering field, there is random
and epistemic uncertainty [99,100]. Random phenomenon obeys to probabilistic modeling and
Epistemic uncertainty consists in quantifying the degree of belief of the analysts on how well
it represents the actual system. Recent researches are focusing on modelling and optimizing of
multi-state systems under random and epistemic uncertainties [101–106].

8 Conclusion

System reliability optimization remains an ongoing topic of scientific improvement. New
methods and algorithms are produced on the basis of mathematical advancements and new
optimization approaches. This paper presented an overview of reliability–redundancy allocation
problems with a focus on series, series–parallel, bridge, and overspeed gas turbine systems. EAs
used for reliability–redundancy allocation problems were reviewed, along with their mathematical
background and pseudo-codes detail. We reviewed EA on the basis of mimicry of social behavior
of mankind and animals, biological interactions, and even the behavior of cooled molten metal
(i.e., GAs, ant colony optimization, BCO, SA, PSO, BBO, Tabu Search, AISO, CA, and ICA).

RRAP optimization was investigated by GAs in 1995. The literature review presented in this
paper summarized the best found results for each EA. All the cited techniques are promising and
viable tools to solve RRAP. However, recent techniques such as the BBO (2015), CA (2016), and

566 CMC, 2022, vol.71, no.1

ICA (2016) generate the best results. Additionally, recent investigations tend to merge different
techniques and sometimes generate better results than the use of a single algorithm.

Finally, we discussed current issues that require more complex systems with far more practical
component/system reliability behaviors and that contain multi-state, uncertain data. Nevertheless,
new perspectives are emerging, and effective approaches to addressing new challenges and more
complex systems will need to be sought.

Funding Statement: The authors extend their appreciation to the Deanship of Scientific Research
at King Saud University for funding this work through the Undergraduate Research Support
Program.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] V. M. Ordyntsev, “Some principles of design of a system for overall automation of large-scale chemical

plant and the optimizing of this system,” IFACProceedings Volumes, vol. 1, no. 1, pp. 1829–1836, 1960.
[2] B. Gluss, “An introduction to dynamic programming,” Journal of the Staple Inn Actuarial Society, vol.

16, no. 4, pp. 261–274, 1961.
[3] R. Bellman, “The theory of dynamic programming,” Proceedings of the National Academy of Science of

the United States of America, vol. 38, no. 8, pp. 716–719, 1952.
[4] P. M. Ghare and R. E. Taylor, “Optimal redundancy for reliability in series systems,” Operations

Research, vol. 17, no. 5, pp. 838–847, 1969.
[5] G. B. Dantzig, A. Orden and P. Wolfe, “The generalized simplex method for minimizing a linear form

under linear inequality restraints,” Pacific Journal of Mathematics, vol. 5, no. 2, pp. 183–195, 1955.
[6] H. J. Bremermann, “Optimization through evolution and recombination,” Self-Organizing Systems, vol.

93, pp. 1–12, 1962.
[7] G. B. Dantzig, “Reminiscences about the origins of linear programming,” Operations Research Letters,

vol. 1, no. 2, pp. 43–48, 1982.
[8] P. Wolfe, “Recent developments in nonlinear programming,” Advances in Computers, vol. 3, pp. 155–187,

1962.
[9] R. E. Gomory, “Some polyhedra related to combinatorial problems,” Linear Algebra and its Applications,

vol. 2, no. 4, pp. 451–558, 1969.
[10] R. Bellman and S. Dreyfus, “Dynamic programming and the reliability of multicomponent devices,”

Operations Research, vol. 6, no. 2, pp. 200–206, 1958.
[11] R. E. Bellman and S. E. Dreyfus, “Applied dynamic programming,” Princeton, NJ, USA: Princeton

University Press, 2015.
[12] D. E. Fyffe, W. W. Hines and N. K. Lee, “System reliability allocation and a computational algorithm,”

IEEE Transactions on Reliability, vol. R-17, no. 2, pp. 64–69, 1968.
[13] Y. Nakagawa and S. Miyazaki, “Surrogate constraints algorithm for reliability optimization problems

with two constraints,” IEEE Transactions on Reliability, vol. R-30, no. 2, pp. 175–180, 1981.
[14] D. W. Coit and E. Zio, “The evolution of system reliability optimization,” Reliability Engineering &

System Safety, vol. 192, pp. 106259, 2019.
[15] D. W. Coit and J. C. Liu, “System reliability optimization with k-out-of-n subsystems,” International

Journal of Reliability, Quality and Safety Engineering, vol. 7, no. 2, pp. 129–142, 2000.
[16] K. B. Misra and U. Sharma, “An efficient algorithm to solve integer-programming problems arising in

system-reliability design,” IEEE Transactions on Reliability, vol. 40, no. 1, pp. 81–91, 1991.
[17] M. Gen, K. Ida, M. Sasaki and J. U. Lee, “Algorithms for solving large-scale 0–1 goal programming

and its application to reliability optimization problem,” Computers & Industrial Engineering, vol. 17, no.
1–4, pp. 525–530, 1989.

CMC, 2022, vol.71, no.1 567

[18] R. B. Corotis and A. M. Nafday, “Application of mathematical programming to system reliability,”
Structural Safety, vol. 7, no. 2–4, pp. 149–154, 1990.

[19] D. Song, J. Liu, J. Yang, M. Su, S. Yang et al., “Multi-objective energy-cost design optimization for
the variable-speed wind turbine at high-altitude sites,” Energy Conversion andManagement, vol. 196, pp.
513–524, 2019.

[20] A. Der Kiureghian and J. Song, “Multi-scale reliability analysis and updating of complex systems by
use of linear programming,” Reliability Engineering & System Safety, vol. 93, no. 2, pp. 288–297, 2008.

[21] J. E. Byun and J. Song, “Linear programming by delayed column generation for bounds on reliability
of larger systems”, in 13th Int. Conf. on Applications of Statistics and Probability in Civil Engineering,
Seoul, South Korea, 2019.

[22] F. A. Tillman, C. L. Hwang and W. Kuo, “Determining component reliability and redundancy for
optimum system reliability,” IEEE Trans. Reliab, vol. R-26, 1977.

[23] F. A. Tillman, C. L. Hwang and W. Kuo, “Optimization techniques for system reliability with
redundancy—A review,” IEEE Transactions on Reliability, vol. R-26, no. 3, pp. 148–155, 1977.

[24] E. Pistikopoulos and C. A. Floudas, “Nonlinear and mixed-integer optimization. fundamentals and
applications,” Journal of Global Optimization, vol. 12, pp. 108–110, 1998.

[25] L. Qu, C. Han, Y. Li, K. Gao and R. Peng, “Recent advances on reliability evaluation and optimization
of linear multistate consecutively connected systems,” Recent Patents on Engineering, vol. 14, no. 3, pp.
314–325, 2020.

[26] S. Beygi, M. Tabesh and S. Liu, “Multi-objective optimization model for design and operation of water
transmission systems using a power resilience index for assessing hydraulic reliability,” Water Resources
Management, vol. 33, pp. 3433–3447, 2019.

[27] J. Wang, S. Liu, M. Li, P. Xiao, Z. Wang et al., “Multiobjective genetic algorithm strategies for burnable
poison design of pressurized water reactor,” International Journal of Energy Research, vol. 45, no. 8, pp.
11930–11942, 2020.

[28] A. Kumar, S. Pant and M. Ram, “Gray wolf optimizer approach to the reliability-cost optimization of
residual heat removal system of a nuclear power plant safety system,” Quality andReliability Engineering
International, vol. 35, no. 7, pp. 2228–2239, 2019.

[29] H. Garg and S. P. Sharma, “Multi-objective reliability-redundancy allocation problem using particle
swarm optimization,” Computers & Industrial Engineering, vol. 64, no. 1, pp. 247–255, 2013.

[30] A. K. Dhingra, “Optimal apportionment of reliability & redundancy in series systems under multiple
objectives,” IEEE Transactions on Reliability, vol. 41, no. 4, pp. 576–582, 1992.

[31] T. J. Hsieh, “Hierarchical redundancy allocation for multi-level reliability systems employing a bacterial-
inspired evolutionary algorithm,” Information Sciences, vol. 288, no. 1, pp. 174–193, 2014.

[32] H. Garg, “An efficient biogeography based optimization algorithm for solving reliability optimization
problems,” Swarm and Evolutionary Computation, vol. 24, pp. 1–10, 2015.

[33] C. L. Huang, “A particle-based simplified swarm optimization algorithm for reliability redundancy
allocation problems,” Reliability Engineering & System Safety, vol. 142, pp. 221–230, 2015.

[34] D. W. Coit and A. E. Smith, “Penalty guided genetic search for reliability design optimization,”
Computers & Industrial Engineering, vol. 30, no. 4, pp. 895–904, 1996.

[35] L. Painton and J. Campbell, “Genetic algorithms in optimization of system reliability,” IEEE Transac-
tions on Reliability, vol. 44, no. 2, pp. 172–178, 1995.

[36] J. E. Yang, M. J. Hwang, T. Y. Sung and Y. Jin, “Application of genetic algorithm for reliability
allocation in nuclear power plants,” Reliability Engineering & System Safety, vol. 65, no. 3, pp. 229–238,
1999.

[37] A. Konak, D. W. Coit and A. E. Smith, “Multi-objective optimization using genetic algorithms: A
tutorial,” Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[38] R. Kumar, P. P. Parida and M. Gupta, “Topological Design of Communication Networks Using Mul-
tiobjective Genetic Optimization,” in Proc. of the 2002 congress on evolutionary computation, Honolulu,
HI, USA, 2002.

568 CMC, 2022, vol.71, no.1

[39] J. R. Kim and M. Gen, “A genetic algorithm for solving bicriteria network topology design problems,”
Journal of Japan Society for Fuzzy Theory and Systems, vol. 12, no. 1, pp. 43–54, 2000.

[40] M. Marseguerra, E. Zio and L. Podofillini, “Optimal reliability/availability of uncertain systems via
multi-objective genetic algorithms,” IEEE Transactions on Reliability, vol. 53, no. 3, pp. 424–434, 2004.

[41] S. Martorell, J. F. Villanueva, S. Carlos, Y. Nebot, A. Sánchez et al., “RAMS+c informed decision-
making with application to multi-objective optimization of technical specifications and maintenance
using genetic algorithms,” Reliability Engineering & System Safety, vol. 87, no. 1, pp. 65–75, 2005.

[42] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol.
220, no. 4598, pp. 671–680, 1983.

[43] M. M. Atiqullah and S. S. Rao, “Reliability optimization of communication networks using simulated
annealing,” Microelectronics Reliability, vol. 33, no. 9, pp. 1303–1319, 1993.

[44] B. D. Mori, H. F. De Castro and K. L. Cavalca, “Development of hybrid algorithm based on simulated
annealing and genetic algorithm to reliability redundancy optimization,” International Journal of Quality
& Reliability Management, vol. 24, no. 9, pp. 72–987, 2007.

[45] H. G. Kim, C. O. Bae and D. J. Park, “Reliability-redundancy optimization using simulated annealing
algorithms,” Journal of Quality in Maintenance Engineering, vol. 12, no. 4, pp. 354–363, 2006.

[46] B. Suman, “Simulated annealing-based multiobjective algorithms and their application for system
reliability,” Engineering Optimization, vol. 35, no. 4, pp. 391–416, 2003.

[47] R. Eberhart and J. Kennedy, “New optimizer using particle swarm theory,” in Proc. of the Sixth Int.
Symposium on Micro Machine and Human Science, Nagoya, Japan 1995.

[48] G. Levitin, X. Hu and Y. S. Dai, “Particle swarm optimization in reliability engineering,” Computational
Intelligence in Reliability Engineering, vol. 40, pp. 83–112, 2007.

[49] S. Pant, D. Anand, A. Kishor and S. B. Singh, “A particle swarm algorithm for optimization of
complex system reliability,” International Journal of Performability Engineering, vol. 11, no. 1, pp. 33–42,
2015.

[50] D. Karaboga, An idea based on Honey Bee Swarm for Numerical Optimization, Technical Report,
Erciyes University, Turkey, 2005.

[51] Y. C. Hsieh and P. S. You, “An effective immune based two-phase approach for the optimal reliability-
redundancy allocation problem,” Applied Mathematics and Computation, vol. 218, no. 4, pp. 1297–1307,
2011.

[52] H. Garg, M. Rani and S. P. Sharma, “An efficient two phase approach for solving reliability-
redundancy allocation problem using artificial bee colony technique,” Computers & Operations Research,
vol. 40, no. 12, pp. 2961–2969, 2013.

[53] D. Simon, “Biogeography-based optimization,” IEEE Transactions on Evolutionary Computation, vol. 12,
no. 6, pp. 702–713, 2008.

[54] H. Ma, D. Simon, P. Siarry, Z. Yang and M. Fei, “Biogeography-based optimization: A 10-year review,”
IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 1, no. 5, pp. 391–407, 2017.

[55] D. Du and D. Simon, “Complex system optimization using biogeography-based optimization,” Mathe-
matical Problems in Engineering, vol. 2013, pp. 456232, 2013.

[56] J. D. Farmer, N. H. Packard and A. S. Perelson, “The immune system, adaptation, and machine
learning,” Physica D: Nonlinear Phenomena, vol. 22, no. 1–3, pp. 187–204, 1986.

[57] R. J. Bagley, J. D. Farmer, S. A. Kauffman, N. H. Packard, A. S. Perelson et al., “Modeling adaptive
biological systems,” BioSystems, vol. 23, no. 2–3, pp. 113–137, 1989.

[58] T. C. Chen and P. S. You, “Immune algorithms-based approach for redundant reliability problems with
multiple component choices,” Computers in Industry, vol. 56, no. 2, pp. 195–205, 2005.

[59] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: An algorithm for optimization
inspired by imperialistic competition,” in 2007 IEEE Congress on Evolutionary Computation, Singapore,
2007.

[60] H. A. Khorshidi, “Comparing two meta-heuristic approaches for solving complex system reliability
optimization,” Applied and Computational Mathematics, vol. 4, no. 2–1, pp. 1–6, 2015.

CMC, 2022, vol.71, no.1 569

[61] H. A. Khorshidi, I. Gunawan, A. Sutrisno and S. Nikfalazar, “An investigation on imperialist compet-
itive algorithm for solving reliability-redundancy allocation problems,” in IEEE Int. Conf. on Industrial
Engineering and Engineering Management, Singapore, 2015.

[62] L. D. Afonso, V. C. Mariani and L. Dos Santos Coelho, “Modified imperialist competitive algorithm
based on attraction and repulsion concepts for reliability-redundancy optimization,” Expert Systemswith
Applications, vol. 40, no. 9, pp. 3794–3802, 2013.

[63] A. Fraser, “Simulation of genetic systems by automatic digital computers I. introduction,” Australian
Journal of Biological Sciences, vol. 10, no. 4, pp. 484–491, 1957.

[64] J. H. Holland, “Adaptation in natural and artificial systems,” 1st ed., Cambridge, MA, USA: The MIT
Press, 1992.

[65] L. Sahoo, A. Banerjee, A. K. Bhunia and S. Chattopadhyay, “An efficient GA-pSO approach for solv-
ing mixed-integer nonlinear programming problem in reliability optimization,” Swarm and Evolutionary
Computation, vol. 19, pp. 43–51, 2014.

[66] A. K. Bhunia, L. Sahoo and D. Roy, “Reliability stochastic optimization for a series system with
interval component reliability via genetic algorithm,” Applied Mathematics and Computation, vol. 216,
no. 3, pp. 929–939, 2010.

[67] B. Basturk and D. Karaboga, “An artificial bee colony (ABC) algorithm for numeric function
optimization,” in Proc. of the IEEE Swarm Intelligence Symp., Indianapolis, IN, USA, 2006.

[68] V. Cerný, “Thermodynamical approach to the traveling salesman problem: An efficient simulation
algorithm,” Journal of Optimization Theory and Applications, vol. 45, pp. 41–51, 1985.

[69] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combina-
torial Optimization and Neural Computing. John Wiley & Sons, New York, USA, 1988.

[70] G. Attiya and Y. Hamam, “Task allocation for maximizing reliability of distributed systems: A simu-
lated annealing approach,” Journal of Parallel andDistributed Computing, vol. 66, no. 10, pp. 1259–1266,
2006.

[71] T. Bäck, F. Hoffmeister and H. P. Schwefel, “A survey of evolution strategies,” Proc. of the Fourth Int.
Conf. on Genetic Algorithms, San Francisco, CA, USA, 1991.

[72] T. C. Chen, “IAs based approach for reliability redundancy allocation problems,” Applied Mathematics
and Computation, vol. 182, no. 2, pp. 1556–1567, 2006.

[73] L. N. De Castro and J. Timmis, “Artificial immune systems: A novel approach to pattern recognition,”
in Artificial Neural Networks in Pattern Recognition, University of Paisley, Scotland, pp. 67–84, 2002.

[74] S. J. Huang, “Enhancement of thermal unit commitment using immune algorithms based optimization
approaches,” International Journal of Electrical Power & Energy Systems, vol. 21, no. 4, pp. 245–252,
1999.

[75] I. L. Weissman and M. D. Cooper, “How the immune system develops,” Scientific American, vol. 269,
no. 3, pp. 64–71, 1993.

[76] N. K. Jerne, “Towards a network theory of the immune system,” Annals of Immunology, vol. 125, no.
1–2, pp. 373–389, 1974.

[77] X. S. Yang and S. Deb, “Cuckoo search via lévy flights,” in Proc. of 2009World Congress on Nature and
Biologically Inspired Computing, Coimbatore, India, 2009.

[78] M. Agarwal and R. Gupta, “Penalty function approach in heuristic algorithms for constrained
redundancy reliability optimization,” IEEE Transactions on Reliability, vol. 54, no. 3, pp. 549–558, 2005.

[79] K. Deb, S. Gupta, D. Daum, J. Branke, A. K. Mall et al., “Reliability-based optimization using
evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1054–1074,
2009.

[80] L. dos S. Coelho, “An efficient particle swarm approach for mixed-integer programming in reliability-
redundancy optimization applications,” Reliability Engineering & System Safety, vol. 94, no. 4, pp. 830–
837, 2009.

[81] Y. Tan, G. Z. Tan and S. G. Deng, “Hybrid particle swarm optimization with differential evolution
and chaotic local search to solve reliability-redundancy allocation problems,” Journal of Central South
University, vol. 20, pp. 1572–1581, 2013.

570 CMC, 2022, vol.71, no.1

[82] Y. C. Hsieh, T. C. Chen and D. L. Bricker, “Genetic algorithms for reliability design problems,”
Microelectronics Reliability, vol. 38, no. 10, pp. 1599–1605, 1998.

[83] H. Garg, “An approach for solving constrained reliability-redundancy allocation problems using cuckoo
search algorithm,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 4, no. 1, pp. 14–25,
2015.

[84] R. E. Barlow and A. S. Wu, “Coherent systems with multi-state components,” Mathematics of
Operations Research, vol. 3, no. 4, pp. 265–351, 1978.

[85] L. Xing and G. Levitin, “Connectivity modeling and optimization of linear consecutively connected
systems with repairable connecting elements,” European Journal of Operational Research, vol. 264, no. 2,
pp. 732–741, 2018.

[86] W. Kuo and R. Wan, “Recent advances in optimal reliability allocation,” IEEE Transactions on Systems,
Man, and Cybernetics—Part A: Systems and Humans, vol. 37, no. 2, pp. 143–156, 2007.

[87] R. Gupta and M. Agarwal, “Penalty guided genetic search for redundancy optimization in multi-state
series-parallel power system,” Journal of Combinatorial Optimization, vol. 12, pp. 257–277, 2006.

[88] G. Levitin and A. Lisnianski, “A new approach to solving problems of multi-state system reliability
optimization,” Quality and Reliability Engineering International, vol. 17, no. 2, pp. 93–104, 2001.

[89] C. Y. Li, X. Chen, X. S. Yi and J. Y. Tao, “Interval-valued reliability analysis of multi-state systems,”
IEEE Transactions on Reliability, vol. 60, no. 1, pp. 323–330, 2011.

[90] D. W. Coit, “Cold-standby redundancy optimization for nonrepairable systems,” IIE Transactions, vol.
33, pp. 471–478, 2001.

[91] D. W. Coit, “Maximization of system reliability with a choice of redundancy strategies,” IIE Transac-
tions, vol. 35, no. 6, pp. 535–543, 2003.

[92] R. Tavakkoli-Moghaddam, J. Safari and F. Sassani, “Reliability optimization of series-parallel systems
with a choice of redundancy strategies using a genetic algorithm,” Reliability Engineering & System
Safety, vol. 93, no. 4, pp. 550–556, 2008.

[93] G. Levitin, L. Xing and Y. Dai, “Cold vs. hot standby mission operation cost minimization for 1-out-
of-n systems,” European Journal of Operational Research, vol. 234, no. 1, pp. 155–162, 2014.

[94] M. Sadeghi, E. Roghanian, H. Shahriari and H. Sadeghi, “Reliability optimization for non-repairable
series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang
time-to-failure distribution,” Proc. of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, vol. 235, no. 3, pp. 509–528, 2020.

[95] M. R. Valaei and J. Behnamian, “Allocation and sequencing in 1-out-of-n heterogeneous cold-standby
systems: Multi-objective harmony search with dynamic parameters tuning,” Reliability Engineering &
System Safety, vol. 157, pp. 78–86, 2017.

[96] H. J. Zimmermann, “Application-oriented view of modeling uncertainty,” European Journal of Opera-
tional Research, vol. 122, no. 2, pp. 190–198, 2000.

[97] R. L. Armacost and J. Pet-Edwards, “Integrative risk and uncertainty analysis for complex public sector
operational systems,” Socio-Economic Planning Sciences, vol. 33, no. 2, pp. 105–130, 1999.

[98] J. C. Helton, J. D. Johnson, C. J. Sallaberry and C. B. Storlie, “Survey of sampling-based methods
for uncertainty and sensitivity analysis,” Reliability Engineering & System Safety, vol. 91, no. 10–11, pp.
1175–1209, 2006.

[99] G. E. Apostolakis, “How useful is quantitative risk assessment?,” Risk Analysis, vol. 24, no. 3, pp.
515–520, 2004.

[100] J. C. Helton, J. D. Johnson and W. L. Oberkampf, “An exploration of alternative approaches to the
representation of uncertainty in model predictions,” Reliability Engineering & System Safety, vol. 85, no.
1–3, pp. 39–71, 2004.

[101]R. Y. Rubinstein, G. Levitin, A. Lisnianski and H. Ben-Haim, “Redundancy optimization of static
series-parallel reliability models under uncertainty,” IEEE Transactions on Reliability, vol. 46, no. 4, pp.
503–511, 1997.

CMC, 2022, vol.71, no.1 571

[102]M. Marseguerra, E. Zio, L. Podofillini and D. W. Coit, “Optimal design of reliable network systems
in presence of uncertainty,” IEEE Transactions on Reliability, vol. 45, no. 2, pp. 243–253, 2005.

[103]S. Destercke and M. Sallak, “An extension of universal generating function in multi-state systems
considering epistemic uncertainties,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 504–514, 2013.

[104]Y. F. Li, Y. Ding and E. Zio, “Random fuzzy extension of the universal generating function approach
for the reliability assessment of multi-state systems under aleatory and epistemic uncertainties,” IEEE
Transactions on Reliability, vol. 63, no. 1, pp. 13–25, 2014.

[105]H. Ghasemi, P. Kerfriden, S. P. A. Bordas, J. Muthu, G. Zi et al., “Probabilistic multiconstraints
optimization of cooling channels in ceramic matrix composites,” Composites Part B: Engineering, vol.
81, pp. 107–119, 2015.

[106]H. Ghasemi, R. Brighenti, X. Zhuang, J. Muthu and T. Rabczuk, “Optimal fiber content and distribu-
tion in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach,”
Structural and Multidisciplinary Optimization, vol. 51, pp. 99–112, 2015.

