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Abstract: We present a novel quantum algorithm to evaluate the hamming
distance between two unknown oracles via measuring the degree of entan-
glement between two ancillary qubits. In particular, we use the power of the
entanglement degree based quantum computing model that preserves at most
the locality of interactions within the quantum model structure. This model
uses one of two techniques to retrieve the solution of a quantum computing
problem at hand. In the first technique, the solution of the problem is obtained
based on whether there is an entanglement between the two ancillary qubits
or not. In the second, the solution of the quantum computing problem is
obtained as a function in the concurrence value, and the number of states that
can be generated from the Boolean variables. The proposed algorithm receives
two oracles, each oracle represents an unknown Boolean function, then it
measures the hamming distance between these two oracles. The hamming
distance is evaluated based on the second technique. It is shown that the
proposed algorithmprovides exponential speedup compared with the classical
counterpart for Boolean functions that have large numbers of Boolean vari-
ables. The proposed algorithm is explained via a case study. Finally, employing
recently developed experimental techniques, the proposed algorithm has been
verified using IBM’s quantum computer simulator.
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1 Introduction

Quantum algorithms have enormous technological and recent progress to solve the prob-
lem that needs high-performance computing on traditional computers [1–3]. Nowadays, quantum
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technologies stand at the crossroads between many areas of study, such as quantum information,
combinatorics, computational complexity, and statistical mechanics [4–7].

Boolean functions play a critical role in cryptography, particularly in the design of symmetric
key algorithms. Analyzing these functions can be done using many techniques, such as spectral
techniques. The Hamming distance H(f ,g) is the natural distance between two binary strings. In
2014, De et al. [6] showed a quantum algorithm based on the Chow parameters problem of any
n- bit linear threshold function f given that a high prodigality in the Hamming distance which

runs in time O(n2).
(
1
ε

)O(
log2

(
1
ε

))
.

Xie et al. [8] have calculated H(f ,g) with n inputs that require O(1) with probability at least
8/π2 in some special cases by taking advantage of Walsh transform. Moreover, they proposed an

optimal algorithm which requires θ(2n) the exact query complexity with accuracy O
(
N∇.ε2
t+1

)
clas-

sically. Other researchers proposed algorithms based on development of two Hamming distance
using unlike types of inner products like gnomic quantum classifier [9]. In the context of quantum
communication complexity, Doriguello et al. [10] proposed an efficient quantum communication
protocol to approximately measure the Hamming distance between two n bit strings in the SMP

model with some relative error ε. Their protocol uses O
(
logn
ε5

)
qubits of communication.

Recently, it was proposed that the degree of entanglement can be used efficiently to develop
new quantum computing model [7]. A generalized version of the Deutsch-Jozsa problem was
solved based on this quantum computing model [11]. Also, this model was used to propose quan-
tum machine leaning algorithms based on this quantum computing model to perform competitive
learning quantum mechanically [12,13]. Moreover, based on symmetric matrices in quantum sta-
bilizer codes, a construction of binary and non-binary quantum stabilizer codes is presented
by [14,15]. In this paper, a novel quantum algorithm computes the Hamming distance Ham(f, g)
between two unknown Boolean functions. Concretely, it is proposed based on adding four ancilla
qubits, and two extra CNOT gates in addition to the degree of entanglement-based quantum
computing model [7]. The proposed algorithm retrieves Ham(f, g) between two given oracles Uf
and Ug. Then, the complexity of the proposed algorithm is compared with the classical algorithm.
Finally, the proposed algorithm is verified using IBM’s quantum computer simulator.

The next part of this paper is organized, as follows: In Section 2, the methodology that is
used to propose the algorithm is explained. Section 3 shows the problem statement, the proposed
algorithm and analysis of the performance of the proposed algorithm via a case study. Also,
the complexity of the proposed algorithm compared with classical algorithm is investigated in
Section 3. Verification of the proposed algorithm on IBM’s quantum computer simulator, and
results discussion is performed in Section 4. Finally, main conclusions are discussed in Section 5.

2 Methodology

Recently, quantum computing model based on the degree of entanglement has been pro-
posed [7]. This model utilizes concurrence measure to find the solution of some quantum problems
based on the degree of entanglement C between two auxiliary qubits in a quantum system of
n + 2, where n ≥ 0 [7,11–13]. In this model, the concurrence value C is estimated quantum
mechanically via the operator Mz. Therefore, the solution of the quantum computing problems
is obtained based on C. Moreover, it was proved that the operator Mz has the potential to
distinguish between non-orthogonal states in the form a0|0〉 + b0|1〉 by quantifying the degree of
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entanglement between two qubits [12]. Suppose we have an arbitrary qubit in the state presented
in Eq. (1) and demonstrated in Fig. 1.

|f (x)〉 = a0 |0〉+ b0 |1〉, |a0|2+ |b0|2 = 1. (1)

Figure 1: The circuit model of the operator MZ that creates entanglement between the qubits
|f(x)〉 and |s〉. Then, it measures the concurrence value quantum mechanically via C =√
2(P0011+P1100)

Mz operator receives two decoupled replicas of two inputs. The first input is the qubit

|f (x)〉 which has a state described by Eq. (1). The second input is a qubit |s〉 which is
initialized in the state |0〉 while the operator Mz applies two operations.

In the first operation, the operator Mz creates entanglement between each replica of the two
qubits |f(x)〉 and |s〉 individually and simultaneously. Hence, the state of each replica is defined by
the state presented in Eq. (2).

|f (x)s〉 = a0 |00〉+ b0 |11〉. (2)

This operation is achieved by applying CNOT on each replica of the two qubits |f (x)〉
and |s〉 individually and simultaneously, where the control and the target qubits are |f (x)〉 and
|s〉, respectively. The concurrence value C for the state described by Eq. (2) is defined as in
Eq. (3) [12]:

C = 2|a0b0|. (3)

In the second operation, the operator Mz measures C between the two qubits |f(x)s〉 by
measuring the following two replica |f(x)s〉 ⊗ |f(x)s〉. Then, the concurrence value C between the
two qubits |f (x)〉 and |s〉 is quantified on a quantum chip as shown in Eq. (4).

C =
√
2(P0011+P1100), (4)

where P0011, P1100 are the probabilities of the states |0011〉, |1100〉, respectively. Therefore, the
first technique of this computing model [12] finds the solution of the problem at hand based on
the degree of entanglement C.

3 The Proposed Algorithm

In this section, we investigate the proposed algorithm for measuring the hamming distance
between two functions including the problem statement, proposed algorithm, and performance
analysis of the proposed algorithm by presenting a case study as in the following subsections.
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3.1 Problem Statement
The Hamming distance between two functions f and g, each acting on n-variable provided

via two black-boxes, is defined according to the following definition:

• Definition: The Hamming distance Ham(f, g) between two Boolean functions f (x) and g(x)
of n− Boolean variables is defined as:-

Ham(f (x),g(x))= |{x ∈ {0, 1}n : f (x) �= g(x)}|
The abstract problem of this paper can be defined, as follows:

• Given: Given two oracles represent two unknown Boolean functions such that

Uf : {0, 1}n→{0, 1},and Ug : {0, 1}n→{0, 1}.
• Goal: Retrieve the Hamming distance Hamε(f ,g) between f (x) and g(x) such that:

(1− ε)Ham(f ,g)≤Hamε(f ,g)≤ (1+ ε)Ham(f ,g).

3.2 The Proposed Algorithm
Now, the proposed algorithm that solves the above problem can be described, as follows:

(1) Step 1: Initialize the quantum register |ψ〉 of size n qubits, two disentangled qubits
namely: |yf 〉, |yg〉, and a two-qubit register |φ〉. All of them are initialized in the vacuum
state, |0〉, as follows:

|ζ0〉 = |ψ〉⊗n⊗ |yf ,yg,φ〉 = |0〉⊗n⊗ |0, 0, 00〉.
(2) Step 2: Apply the Hadamard gates to the first n qubits.

|ζ1〉 = (H⊗n⊗ I⊗4)|ζ0〉 = 1√
2n

2n−1∑
x=0

|x〉|0, 0, 00〉,

(3) Step 3: Apply the oracle Uf and on the first n qubits and the qubit |yf 〉, then the oracle
Ug and on the first n qubits and the qubit |yg〉:
Uf |x,yf 〉 = |x〉|yf ⊕ f (x)〉 = |x〉|0⊕ f (x)〉 = |x〉|f (x)〉,
Ug|x,yg〉 = |x〉|yg⊕ g(x)〉 = |x〉|0⊕ g(x)〉 = |x〉|g(x)〉.

So, the state of the system is as follows:

|ζ2〉 = 1√
2n

2n−1∑
x=0

|x〉|f (x),g(x), 00〉.

(4) Step 4: Apply the CNOT gate twice, as follows:

|ζ3〉 =CNOTyf φ1CNOTygφ1|ζ2〉.
(5) Step 5: Repeat steps 1, 2, 3 and 4 to get a novel decoupled copy of the system |ζ3〉.
(6) Step 6: Apply Mz between on the two replica of the two qubits |φ1〉and |φ2〉,
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If P0000>P1111, then Ham(f (x),g(x)) as in Eq. (5).

Ham(f (x),g(x))= N
2

(
1−

√
1−C2

)
. (5)

If P1111≥P0000, then Ham(f (x),g(x)) as in Eq. (6).

Ham(f (x),g(x))= N
2

(
1+

√
1−C2

)
, (6)

where C is determined as in Eq. (4).

3.3 Performance Analysis of the Proposed Algorithm: Case Study
Here, we analyze the performance of the proposed algorithm via a case study. Assume we

have the two Boolean functions f(x) and g(x), such that n = 2, and corresponding results are
defined as in Eq. (7).

f (00)= 0, f (01)= 0, f (10)= 1, and f (11)= 1,

g(00)= 0, g(01)= 1, g(10)= 0, and g(11)= 1. (7)

To determine the Hamming distance between f (x) and g(x), the steps of the proposed
algorithm act, as follows: In Step1, because the number of Boolean variables is 2, so the size of
the register |ψ〉 is n = 2 qubits. Consequently, the whole quantum system is in the following state:

|ζ0〉 = |ψ〉⊗n=2⊗ |yf ,yg,φ〉 = |ψ〉⊗2⊗ |yf ,yg,φ〉 = |00, 0, 0, 00〉.
In Step 2, the proposed algorithm applies 2 Hadamard gates on the first two qubits of the

system |ζ0〉, so the state of the system is transformed to the following state:

|ζ1〉 = (H⊗2 ⊗ I⊗4|ζ0〉 =
√
1
4
(|00, 0, 0, 00〉+|01, 0, 0, 00〉+ |10, 0, 0, 00〉+ |11, 0, 0, 00〉).

This step generates the whole domain of the two Boolean functions f (x) and g(x).

In Step 3, the proposed algorithm applies the oracle Uf on the first n qubits and the qubit
|yf 〉, and applies the oracle Ug and on the first n qubits and the qubit |yg〉 at the same time.
Therefore, the state of the system after applying the Oracle Uf is as in Eq. (8).

|ζ2〉 = |x0x1,yf ⊕ f (x0x1), 0, 00)= 1√
2

3∑
x=0

|x0x1, |f (x), 0, 00〉

=
√
1
4
[|00, 0, 0, 00〉+|01, 0, 0, 00〉+ |10, 1, 0, 00〉+|11, 1, 0, 00〉].

(8)

Similarly, the state of the system after applying the Oracle Ug is as in Eq. (9).

|ζ2〉 = |x0x1, f (x), yg⊕ g(x0x1), 00)= 1√
2

3∑
x=0

|x0x1, |f (x),g(x), 00〉

=
√
1
4
[|00, 0, 0, 00〉+|01, 0, 1, 00〉+ |10, 1, 0, 00〉+|11, 1, 1, 00〉].

(9)
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In Step 4, the proposed algorithm applies 2 CNOT gates simultaneously as follows:

|ζ ′
3〉 =CNOTyf φ1CNOTygφ1 , |ζ2〉.

By applying the CNOTygφ1gate, the control qubit |yg〉 and the target qubit |φ1〉. Therefore the
state of the entire system is evolved as shown in Eq. (10).

|ζ ′′
3 〉 =

√
1
4
[|00, 0, 0, 00〉+|01, 0, 1, 10〉+ |10, 1, 0, 00〉+|11, 1, 1, 10〉] (10)

At the same time, by applying the CNOTyf φ1 gate between the control qubit |yf 〉 and the
target qubit |φ1〉. Then, the state of the system is described as in Eq. (11).

|ζ3〉 =
√
1
4
[|00, 0, 0, 00+|01, 0, 1, 10〉+ |10, 1, 0, 10〉+|11, 1, 1, 00〉] (11)

Now, it is clear from Eq. (11) that step 4 evolves the state of the qubit |φ1〉 to be in state |1〉
only if the two functions f (xi) �= g(xi). On other hand, the state of the qubit |φ1〉 is the state |0〉
only if f (xi)= g(xi) for xi. In Step 5, the steps 1–4 are repeated to construct another decoupled
replica of the system |ζ3〉, because Mz operator works on two decoupled copies of the register |φ〉
to quantify the degree of entanglement between the two qubits: |φ1〉 and |φ2〉 (see Section 2). In
Step 6, the proposed algorithm applies the two operations of the operator Mz between the two
qubits |φ1〉 and |φ2〉, for each replica, in the system defined by Eq. (11). In the first operation, the
operator Mz applies the CNOTϕ1ϕ2 gate on each replica, where the |φ1〉 is the control qubit and
|φ2〉 is the target qubit. In the general case, n Boolean variables, the state of each replica after
applying the first operation of the operator Mz is described as in Eq. (12):

|ζ4〉 = (I⊗n+2⊗CONT)|ζ3〉

=
√
t1
2n

⎛
⎝ 1√

t1

∑
x={x|f (x)=g(x)}

∑
yf yg={00,11}

|x〉|yf yfg〉
⎞
⎠ |00〉

+
√
t2
2n

⎛
⎝ 1√

t2

∑
x={x|f (x) �=g(x)}

∑
yf yg={01,10}

|x〉|yf yfg〉
⎞
⎠ |11〉

(12)

Let,

|β1〉 =
∑

x={x|f (x)=g(x)}

∑
yf yg={00,11}

|x〉|yf yfg〉, |β2〉 =
∑

x={x|f (x)=g(x)}

∑
yf yg �={01,10}

|x〉|yf yfg〉

a0 =
√
t1
2n

, and b0 =
√
t2
2n

.
(13)

Thus, Eqs. (12)–(13), the state system is summarized in Eq. (14).

|ξ4〉 = a0|β1〉|00〉+ b0|β2〉|11〉. (14)

According to Eq. (14), the first operation of the operator Mz applies the CNOTϕ1ϕ2 to
entangle the two qubits: |φ1〉 and |φ2〉, where the degree of entanglement in between depends on
the value of the hamming distance among the two-function f (x) and g(x) (Ham(f(x), g(x)) > 0).
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Conversely, the operator Mz maintains the two qubits: |φ1〉 and |φ2〉 separable only if the
hamming distance among the two-function f (x) and g(x) (Ham(f(x), g(x)) = 0).

Now, for this case study at hands, n = 2 and |ζ3〉 is defined by Eq. (11). The state of each
replica after applying the first operation of the operator Mz is described according to Eq. (11)
and Eqs. (12)–(14), as in Eq. (15).

|ζ4〉 =
√
1
4
[|00, 0, 0, 00〉+|01, 0, 1, 11〉+ |10, 1, 0, 11〉+|11, 1, 1, 00〉].

=
√
t1
2n

⎛
⎝ 1√

t1

∑
x={x|f (x)=g(x) }

∑
yf yg={00,11}

|x〉|yf yg〉
⎞
⎠ |00〉

+
√
t2
2n

⎛
⎝ 1√

t2

∑
x={x|f (x) �=g(x) }

∑
yf yg={01,10}

|x〉|yf yg〉
⎞
⎠ |11〉

=
√
2
4

⎛
⎝ 1√

2

∑
x={00,11 }

∑
yf yg={00,11}

|x〉|yf yg〉
⎞
⎠

+
√
2
4

⎛
⎝ 1√

2

∑
x={01,10 }

∑
yf yg={01,10}

|x〉|yf yg〉
⎞
⎠ |11〉

=
√
2
4

|β1〉|00〉+
√
2
4

|β2〉|11〉.

(15)

Consequently, the state of the system which consists of the two replicas, after applying the
first operation of the operator Mz, is in Eq. (16).

|ξ 〉 = |ξ4〉⊗ |ξ4〉 = 2
4
|β1〉⊗2|0000〉+ 2

4
|β1〉|β2〉|0011〉 + 2

4
|β2〉|β1〉|1100〉+ 2

4
|β1〉⊗2|1111〉 (16)

In the second operation of the operator Mz, the last four qubits in Eq. (16), are measured and
the probabilities P0000, P1100, P0011, and P1111 are estimated. Then, the degree of entanglement
C among the two qubits of the register |φ〉 is quantified using Eq. (4) (see Section 2). In this
case study, the concurrence value C according to the Eqs. (4) and (16) is C =√

2(P0011+P1100) .

Therefore, C =
√
2

(
4
16 + 4

16

)
= 1. It is obvious from Eq. (16), that P0000 = P1111 after measuring

operation. So, according to step 6 in the proposed algorithm (see Section (3.2)), the Hamming
distance between the Boolean functions f (x) and g(x) is investigated as follows

Ham(f (x),g(x))= N
2

(
1+

√
1− c2

)
= 4

2

(
1+√

1− 1
)
= 2.

which can be verified from Eq. (7).

3.4 Complexity
Here, the complexity of the proposed algorithm is investigated. In quantum computing, the

complexity of algorithms is calculated from the number of the oracle calls. It is evident from
Eqs. (5)–(6) that the Hamming distance between the oracles Uf , and Ug depends on the value of
the concurrence value C. This value can be determined based on the probabilities of states |0011〉,



1072 CMC, 2022, vol.71, no.1

and |1100〉, for the last four qubits, |φ〉⊗ |φ〉, in Eq. (16). The proposed algorithm computes the
probabilities of these states based on recall the oracles: Uf , and Ug via 2M times, where M is the

number of measurements. Therefore, C is quantified by Eq. (4) with max error ε = 1√
2M

. In IBM’s

real quantum computer [16], the number of measurements is M = 8192. Hence, the proposed
algorithm needs to recall the oracles: Uf , and Ug with 2 M = 2(8192) = 214 times on this real
quantum computer. Fig. 2 shows a comparison between the complexity of the proposed algorithm
and that of classical algorithm. The elaboration of this Figure can be shown as follows: (i) It is
evident from Fig. 2 that if the number of variables in the two oracles Uf , and Ug is 1≤ n≤ 12,
then time-cost of the proposed quantum algorithm is higher than the classical algorithm. (ii) If
the number of variables in the two oracles Uf , and Ug is n = 13, then complexity of the proposed
quantum algorithm and the classical algorithm is the same. (iii) It is evident from Fig. 2 that if
the number of variables in the two oracles Uf , and Ug is n > 13, then the speed of the proposed
algorithm increases dramatically compared with classical algorithm. The speed up of the proposed
algorithm seems to be exponential when n>18 if the max target error is 0.01.

Figure 2: Comparison between the quantum complexity and the classical complexity

4 Experimental Verification of the Proposed Algorithm

4.1 Experimental Setup
To verify the proposed algorithm practically, we will conduct some experiments for measuring

the hamming distance between two oracles on IBM’s quantum computer simulator called Qiskit
Aer [16]. Here, for verification purpose, it is assumed that these oracles are well known for the
examiner but unknown for each body else. In the conducted experiments, the oracles, Uf and Ug,

represent a Boolean function of two Boolean variables f : {0, 1}2 → {0, 1} and g: {0, 1}2 → {0, 1},
respectively. Thus, the possible hamming distances between these two oracles are Ham(f(x), g(x))
= {0, 1, 2, 3, 4}. Therefore, five experiments are conducted. In the first simulation experiment, the
two oracles Uf and Ug are implemented via the Boolean functions f(x0, x1)= 1 and g(x0, x1) = 1,
respectively. The quantum circuits of these oracles are shown in Fig. 3. In the second simulation
experiment, the two oracles Uf and Ug are implemented via the Boolean functions f(x0, x1) =
x1, and g(x0, x1)= x0x1, respectively. The quantum circuits of these oracles are shown in Fig. 4.
In the third simulation experiment, the two oracles Uf and Ug are implemented via the Boolean
functions f(x0, x1) = x0x1, and g(x0, x1) = x0x1⊕x1, respectively. The quantum circuits of these
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oracles are shown in Fig. 5. In the fourth simulation experiment, the two oracles Uf and Ug are
implemented via the Boolean functions f(x0, x1)= x0 ⊕ x1 and g(x0, x1)= x0x1, respectively. The
quantum circuits of these oracles are shown in Fig. 6. In the last simulation experiment, the two
oracles Uf and Ug are implemented via the Boolean functions f(x0, x1) = 1, and g(x0, x1) = 0,
respectively. The quantum circuits of these oracles are shown in Fig. 7.

Figure 3: The quantum circuits for two different oracles Uf and Ug, respectively, the hamming
distance in between is Ham (f (x0, x1), g(x0, x1)) = 0: (a) The quantum circuit of the oracle Uf
that represents the Boolean function f (x0, x1) = 1. (b) The quantum circuit of the oracle Ug that
represents the Boolean function g(x0, x1) = 1

Figure 4: The quantum circuits for two different oracles Uf and Ug, respectively. The hamming
distance in between is Ham(f (x0, x1), g(x0, x1)) = 1: (a) The quantum circuit of the oracle Uf
that represents the Boolean function f (x0, x1) = x1. (b) The quantum circuit of the oracle Ug that
represents the Boolean function g(x0, x1) = x0x1
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Figure 5: The quantum circuits for two different oracles Uf and Ug, respectively. The hamming
distance in between is Ham(f (x0, x1), g(x0, x1)) = 2: (a) The quantum circuit of the oracle Uf
that represents the Boolean function f (x0, x1) = x0x1. (b) The quantum circuit of the oracle Ug
that represents the Boolean function g(x0, x1) = x0x1 ⊕x1

Figure 6: The quantum circuits for two different oracles Uf and Ug, respectively. The hamming
distance in between is Ham(f (x0, x1), g(x0, x1)) = 3: (a) The quantum circuit of the oracle Uf
that represents the Boolean function f (x0, x1) = x0 ⊕ x1. (b) The quantum circuit of the oracle
Ug that represents the Boolean function g(x0, x1) = x0x1

4.2 Results Discussion
It is clear from Section 3.2 that the proposed algorithm measures Ham(f (x), g(x)) between

two given oracles Uf and Ug based on the concurrence value C by measuring the last four qubits
of the system described by Eq. (16). The outcomes of this measurement process estimate the
probabilities P0000, P0011, P1100, and P1111 after M shots of measurement. Then, C is calculated
quantum mechanically using Eq. (4). The estimated probabilities P0000, P0011, P1100, and P1111
for the five conducted experiments are depicted in Figs. 8a–8e. The blue histograms represent
the estimation of these probabilities by IBM’s simulator and the green histograms represent the
theoretical estimation. The results of the first simulation experiment that measures Ham(f (x), g(x))
between the Boolean functions f (x0, x1) = 1 and g(x0, x1) = 1 are shown in Fig. 8a. It shows that
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both the simulation results of estimating the probabilities P0000, P0011, P1100, and P1111 match the
theoretical values exactly with fidelity F = 1. Theoretically, the Hamming distance between the
Boolean functions f (x0, x1) = 1, and g(x0, x1) = 1 from their truth tables is Ham(f (x), g(x)) =
0. Practically, it is clear from Fig. 8a that the probabilities P0011, P1100 are zero; this implies that
C = 0 from Eq. (4). According to Fig. 8a, it is obvious that P0000 >P1111.

Figure 7: The quantum circuits for two different oracles Uf and Ug, respectively. The hamming
distance in between is Ham(f (x0, x1), g(x0, x1)) = 4: (a) The quantum circuit of the oracle Uf
that represents the Boolean function f (x0, x1) = 1. (b) The quantum circuit of the oracle Ug that
represents the Boolean function g(x0, x1) = 0. (a). QHD = 0 (b). QHD = 1 (c). QHD = 2 (d).
QHD = 3 (e) QHD = 4

Hence, the simulation result of measuring the hamming distance by the proposed algorithm
is Ham(f (x),g(x)) = 4

2

(
1−√

1− 0
) = 0; the same value that is expected theoretically. The results

of the second experiment that measures Ham(f (x), g(x)) between the Boolean functions f (x0, x1)
= x1, and g(x0, x1) = x0x1 are shown in Fig. 8b. It reveals that both the simulation results of
estimating the probabilities P0000, P0011, P1100, and P1111 match the theoretical values expressively
with fidelity F =0.999975604. Theoretically, the Hamming distance between the Boolean functions
f (x0, x1) = x1, and g(x0, x1) = x0x1 from their truth tables is Ham(f (x), g(x)) = 1. Practically,
Fig. 8b shows that the probabilities P0011, P1100 are 0.1912 and 0.1899, respectively. Hence, the
concurrence value is C =0.87304469 using Eq. (4). According to Fig. 8b, it is obvious that P0000
>P1111. Therefore, the simulation result of measuring the hamming distance by the proposed

algorithm is Ham(f (x),g(x)) = 4
2

(
1−

√
1− (0.87304469)2

)
= 1.024719592≈ 1. That matches the-

oretical result significantly. The results of the third experiment that measures Ham(f (x), g(x))
between the Boolean functions f (x0, x1) = x0x1, and g(x0, x1) = x0x1 ⊕ x1 are shown in Fig. 8c.
It indicates that both the simulation results of estimating the probabilities P0000, P0011, P1100,
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and P1111 match the theoretical values expressively with fidelity F =0.99999766. Theoretically, the
Hamming distance between the Boolean functions f (x0, x1) = x0x1, and g(x0, x1) = x0x1 ⊕ x1
from their truth tables is Ham(f (x), g(x)) = 2. Practically, Fig. 8c shows that the probabilities
P0011, P1100 are 0.2513 and 0.2487, respectively. Hence, the concurrence value is C = 1 by Eq. (4).
Fig. 8c manifests that P0000 ≥P1111. Accordingly, the simulation result of measuring the hamming

distance by the proposed algorithm is Ham(f (x),g(x)) = 4
2

(
1−

√
1− (1)2

)
= 2. Hence, in this

experiment the theoretical results match the simulation results ideally. The results of the fourth
experiment that measures Ham(f (x), g(x)) between the Boolean functions f (x0, x1) = x0⊕x1, and
g(x0, x1) = x0x1 are shown in Fig. 8d. It shows that both the simulation results of estimating the
probabilities P0000, P0011, P1100, and P1111 match the theoretical values expressively with fidelity
F =0.999907003. Theoretically, the Hamming distance between the Boolean functions f (x0, x1)
= x0⊕x1, and g(x0, x1) = x0x1 from their truth tables is Ham(f (x), g(x)) = 3.
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Figure 8: Comparison between the theoretical results and simulation results for the proposed
algorithm to measure different hamming distance Ham(f(x),g(x)) between two unknown oracles
(a) Ham(f (x),g(x))= 0; (b) Ham(f (x),g(x))= 1; (c) Ham(f (x),g(x))= 2; (d) Ham(f (x),g(x))=
3; (e) Ham(f (x),g(x))= 4

Practically, it is clear from Fig. 8d that P0011 = P1100 = 0.1899, respectively. So, the con-
currence value is C = 0.8716 by Eq. (4). Fig. 8d shows that P1111 > P0000. Thus, the simulation
result of measuring the hamming distance by the proposed algorithm is Ham(f (x),g(x)) =
4
2

(
1−

√
1+ (0.8716)2

)
= 2.980274196≈ 3. Thus, both of the experimental results and the the-

oretical results are consistent. The results of the last experiment that measures Ham(f (x), g(x))
between the Boolean functions f (x0, x1) = 1 and g(x0, x1) = 0 are shown in Fig. 8e. It shows that
both the simulation results of estimating the probabilities P0000, P0011, P1100, and P1111 match
the theoretical values exactly with fidelity F =1. Theoretically, the Hamming distance between the
Boolean functions f (x0, x1) = 1, and g(x0, x1) = 0 from their truth tables is Ham(f (x), g(x)) =
4. Practically, it is clear from Fig. 8e that the probabilities P0011, P1100 are zero; this implies that
C = 0 from Eq. (4).

According to Fig. 8e, P1111 > P0000, so the simulation result of measuring the hamming
distance by the proposed algorithm is Ham(f (x),g(x)) = 4

2

(
1+√

1− 0
) = 4; the same value that

is expected theoretically. Overall, the results of the simulations show that the proposed algorithm
is verified with reliable fidelity. The Quantum Hamming Distance (QHD) is the Ham(f (x),g(x))
investigated in Fig. 8 such that 0, 1, 2, 3 and 4 in Figs. 8a–8e, respectively.

5 Conclusions

In this work, a novel quantum algorithm that measures the Hamming distance between
two given oracles is explained. The proposed algorithm retrieves the hamming distances based
on the degree of the entanglement between two auxiliary qubits. Therefore, the analysis of the
performance of the proposed algorithm is investigated via a case study. Then, the complexity
of the proposed algorithm compared to classical algorithm is explained in detail. Finally, the
algorithm is verified by IBM’s quantum computer simulator. The simulations results shows that
the performance of the proposed algorithm is verified with fidelity close to 1.
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