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Abstract: Fuzzy inference system (FIS) is a process of fuzzy logic reasoning
to produce the output based on fuzzified inputs. The system starts with iden-
tifying input from data, applying the fuzziness to input using membership
functions (MF), generating fuzzy rules for the fuzzy sets and obtaining the
output. There are several types of input MFs which can be introduced in FIS,
commonly chosen based on the type of real data, sensitivity of certain rule
implied and computational limits. This paper focuses on the construction of
interval type 2 (IT2) trapezoidal shape MF from fuzzy C Means (FCM) that
is used for fuzzification process of mamdani FIS. In the process, upper MF
(UMF) and lowerMF (LMF) of theMF need to be identified to get the range
of the footprint of uncertainty (FOU). This paper proposes Genetic tuning
process, which is a part of genetic algorithm (GA), to adjust parameters in
order to improve the behavior of existing system, especially to enhance the
accuracy of the system model. This novel process is a hybrid approach which
produces Genetic Fuzzy System (GFS) that helps to enhance fuzzy classifica-
tion problems and performance. The approach provides a new method for the
construction and tuning process of the IT2MF, based on the FCM outcomes.
The result is compared to Gaussian shape IT2 MF and trapezoid IT2 MF
generated by the classic GAmethod. It is shown that the proposed approach is
able to outperform thementioned benchmarked approaches. Thework implies
a wider range of IT2MF types, constructed based on FCM outcomes, and an
optimum generation of the FOU so that it can be implemented in practical
applications such as prediction, analytics and rule-based solutions.

Keywords: Fuzzy inference system; membership function; genetic tuning;
lateral adjustment; trapezoidal MF; fuzzy C means

1 Introduction

The three main types of fuzzy membership function (MF) are Gaussian [1,2], triangular [3,4]
and trapezoidal [5,6]. Each of the MFs has its own advantages and disadvantages, hence pro-
viding better performance than the other MFs in certain scenarios or applications. One way of
constructing the MF is through data clustering using fuzzy C means (FCM). The limitation of
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FCM is that it generates Gaussian MF, instead of linear MFs such as triangular and trapezoidal.
The previous work proposed the generation of trapezoidal MF for the interval type 2 (IT2) fuzzy
inference system (FIS) [7]. This paper proposes the extension of the work which is to tune the
IT2 trapezoidal MF so that it could produce improved accuracy.

The purpose of Genetic Algorithm (GA) as part of producing the FIS is to generate IT2
trapezoidal MF (referred as trapMF in this paper) by using the theory of genetic tuning and
lateral adjustment [8]. It will be the continuation of the previous work [7] where FT1 trapMF
is constructed through the theory of Gaussian distribution. To generate IT2 trapMF, UMF and
LMF of the MF need to be identified to get the range of the FOU. In this section, the LMF
is constructed to get the FOU range, while the parameters of the UMF is maintained. Genetic
tuning process, which is part of GA, is the process of adjusting parameters to improve the
behavior of existing system, especially to enhance the accuracy of the system model [9]. This
process is a hybrid approach which produces Genetic Fuzzy System (GFS) that helps to enhance
fuzzy classification problems and performance. In [9], a collaborative tuning based on ignorance
function and lateral adjustment is performed to improve the fuzzy rule based classification system.
Ignorance functions are also famously used to generate Interval Value Fuzzy Sets (IVFS) which is
the general type of fuzzy IT2. The methodology used in this research is the modified adaptation
of techniques in the IVFS performance enhancement, to specifically suit trapMF.

In GFS, the concept of weak ignorance function is introduced. It is used to evaluate or
measure the uncertainty of membership values [9]. A definition in [10] implies that a value of 0.5
corresponds to the complete lack of knowledge of the expert on the membership of an element
to a class. In [10] the five axioms are justified. Bijections are used to construct IT2 where their
amplitude is proportional to weak ignorance function having the maximum ignorance degree for
initial membership degree = 0. Thus, a bijection h : [0, 1] → [0.5, 1] so that h(0) = 0.5 and h(1)
= 1 is employed.

The composed MFs are usually obtained by a normalization process and they remain the
same during the rule based construction process [9]. This indicates that the MFs are not properly
adapted to the context of each variable which may limit the performance of the global rule set [9].
A post-processing tuning step is often used to overcome this problem. The tuning provides a
variation in the shape of the MFs with the main aim is to find the best global configuration for
them. The previous work in [11] had carry out the tuning step for the amplitude of the support
of UMF which manages the ignorance that each IT2 represents.

Tuning process in GFS is commonly applied to improve the performance of fuzzy model.
It introduces an alterations of MF shapes to improve global interaction which induces better
cooperation among rules [12,13]. Thus, the real aim of tuning is to find the best global config-
urations of the MF [14]. Based on this goal, the research methodology takes a new direction
which is using the tuning process to directly construct trap IT2, instead of using it as a post
processing steps after constructing the rules for the fuzzy sets. In this way, the best range for MF
amplitude is obtained, and it reduces the steps of getting the best model with better result in
term of its accuracy. This has become the aim of this paper. The proposed approach will provide
practical implications through IT2 FIS implementation in the areas including health prediction
and classification [15], computer and network security [16], image processing and security [17],
rule-based solutions and many others.

The tuning steps will involve a simultaneous step of adjusting the amplitude with varying
range, by moving only two parameters (left and right) of trapMF. At the same time, lateral
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adjustment based on 2-tuples fuzzy linguistic representation of the MF is also performed, where
the trapMF parameters are adjusted to the left or right position based on varying range in
order to achieve better adaptation of the fuzzy partitions. In order to prove the enhancement in
term of performance of this methodology, the result of the fuzzy modeling through FIS will be
compared with the generic tuning of trapMF whereby it follows the initial situation of genetic
weak ignorance tuning [18]. It also uses triangular MF to show the initial lateral adjustment where
the horizontal parameters, which exists only for trapMF, are not counted.

This paper is structured as follows; next section contains literature review, the explanation
of FIS which becomes the research methodology is presented in Section 3, while results and
discussion are contained in Section 4. The paper ends with conclusion in Section 5 in which the
research is summarized as well as some future works are outlined.

2 Methodology

2.1 Genetic Weak Tuning
The modification of the LMF amplitude of trapMF is based on ignorance function [9]

represented by parameter W in this paper. The interval in which W can vary is [0, 0.5] where
the situation without ignorance, W = 0 and W = 0.5 for maximum ignorance. The degree of
ignorance will be increased from the initial value W = 0.05 until 0.5. Variation of degree of
ignorance is depicted in Fig. 1.

Figure 1: Parameter values representation in the genetic weak ignorance tuning. (a) No ignorance.
(b) Initial situation. (c) Maximum ignorance [9]

The approximation of the genetic weak tuning in trapMF is initialized with the parameters
for UMF. The equation of the straight line between parameter b and c is ignored due to the fact
that the amplitude and lateral approximation only involve the intervals between parameter a to b,
and parameter c to d. The calculation for c to d (straight vertical line of trapMF) will be similar
since the MF involved in symmetrical. UMF and LMF of the interval are consistent with the
following situation:

• Total certainty (W = 0): UMF and LMF values are the same.
• Maximum uncertainty (W = 0.5): Huge absence of information which causes the amplitude
of UMF to be twice the amplitude of LMF.

Based on the above situation, the initial value set for W is 0.05 to test for any changes of
amplitude. As mentioned, bijections are used for the constructions of IT2 so the amplitude is
proportional to the weak ignorance function where degree of ignorance is considered maximum
when the membership degree is 0. Specifically, we employ the following formula (Eq. (1)):

h(x)= 1
2
x+ 1

2
(1)
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The initial FT1 trapMF is built first from the previous section, which is represented by the
MF representation below:

μA(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x< a,

x− a
b− a

if a≤ x≤ b,

1 if b< x< c,

d−x
d− c

if c≤ x≤ d,

0 if x< d,

(2)

In order to calculate the range of FOU for IT2 trapMF, the proposition in [9] is modified to
suit with the trapezoidal shapes, whereby the parameters obtained from FT1 trapMF is combined
with ignorance function, which is proportional to the MF amplitude. Fig. 2 shows the example
of amplitude applied in FT1 trapMF to construct the IT2.

Figure 2: Amplitude tuning for IT2 trapMF

Based on Fig. 2, the amplitude is adjusted for the LMF of the FT1 trapMF at point (a′, b)
and (c, d′). Since the trapMF is symmetrical, calculation for point (c, d′) will be the same except
for the change of operator. Considering A is the amplitude of point (a, b) which is obtained from
construction of trapMF, a complete algorithm to get the amplitude is:

Obtain each cluster center and sigma:

Point a= aCenter − aSigma ∗ 2

Point d = dCenter + dSigma ∗ 2

Point (a, b):

A= 2
(Point d−Point a)

(x − Point a)

a′ = Point a − W (Point d − Point a), where W > 0.

W is the parameter used for amplitude tuning to measure the certainty; W = 0 for total
certainty, and 0.5 to be the maximum uncertainty. It can also be called weak tuning.

From A, the equation for amplitude of straight line (a′, b) named B is:

B = 2
(Point d−Point a)(1+ 2W)

(x − a + W (Point d − Point a))
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In order to achieve the best possible range of FOU through this weak tuning, a range of
parameter W is prepared to test for its accuracy. Tab. 1 shows the range of parameter W for
the trapMF amplitude accuracy testing. This range will soon be used together for MF lateral
adjustments since the methodology will be combined.

Table 1: Range of weak tuning

No. 1 2 3 4 5 6 7

W (Weak tuning) 0.05 0.10 0.15 0.18 0.20 0.25 0.5 (Maximum ignorance)

2.2 Lateral Adjustments
In [19], the symbolic translation of a linguistic term is a number within the interval [−0.5,

0.5] which expresses the domain of a label when it is moving between two lateral labels. The
lateral displacement can be extended in the construction of MF, where the tuning of the support
amplitude of MF is performed [10]. The displacement is a slight movement to the left/right of
the original MF.

The adjustment is performed by considering two parameters, α and β, which represents the
lateral displacement and the amplitude variation. Next, each label can be represented by a 3-tuple
(s, α, β). α is a value within the interval [−0.5, 0.5]. β is also a number within the interval. It
allows to reduce or increase the support amplitude until 50% of its initial size [19].

Fig. 3 illustrates the lateral and variation of amplitude for label S in symmetrical trap MFs.
Due to similar linear parameter on the left and right side on the symmetrical triangular MF, the
same adjustment can be applied to trapMF. Label S′ can be represented as the 3-tuple (S, α, β).
The support for this label, FLs2, is computed in Eq. (3):

FLS = ls − rs

FLs2 =FLS+β ∗FLS (3)

where lS and rS are respectively the right and the left extreme of the support of S, and FLS is
the size of the support of S [19].

Figure 3: Original lateral displacement and amplitude variation of the linguistic label S

To show the enhancement of the tuning method, the lateral adjustment is modified so that it
has similar range with the applied amplitude, to ensure better stability and accuracy of the MF.
Hence, the proposition of the alignment of amplitude and lateral adjustment of the IT2 trapMF
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is α = (d − a) − β. To ensure the validity of the amplitude and lateral adjustment cooperation,
testing is done with both original adjustment with the new proposed adjustment. Fig. 4 shows the
lateral displacement and amplitude variation in this research.

Figure 4: Proposed lateral displacement and amplitude variation

Based on Tab. 1, the initial value set for W is 0.05 to test for any changes of amplitude.
Hence, the novelty of this approximation is where the adjustment of weak tuning has direct
synergy with theoretical calculation of lateral tuning. While lateral tuning by theory is applied to
shift MF to left or right, it is now used for parameter adjustments together with weak tuning.
The motivation of this cooperation is the risk of the model to reach sub-optimal result. The
cooperative approximation will fully utilize the characteristics of genetic tuning which leads to
better performance of FSs in term of accuracy, specifically for trapMF IT2.

2.3 Fuzzy Inference System
Based on the Gaussian output, the parameter center, c and sigma σ , mathematical model

to construct fuzzy type 1 (FT1) trapMF is performed, as explained in [7]. Next, evaluation of
the proposed method is done using a function called evalmf() in Matlab Fuzzy Logic Tool.
Algorithm 1 shows the construction of FT1 trapMF after obtaining the Gaussian output for FIS:

Algorithm 1: Proposed method to construct FT1 from FCM Gaussian output
1. Assign number of clusters = N
2. Assign cluster centers, C:

ci =
∑n

j=1 μm
ij Xj∑n

j=1 μm
ij

I, j = Cluster center ith to jth, m = fuzzy exponent, Xn = data points, μ =
membership degree

3. Assign cluster sigma, σ

σi = g, m, p =
∑6147

n=1

√
(− (xn− ci)2)/(2x log (Un)

6147
g = good, m = moderate, p = poor

If σ = 0, return error.
Example: Error(“Illegal parameters”)

4. Define trapMF parameters: params a, b, c and d
5. Loop MF constructions until N cluster:

for (int i = 0; i < N; i++)
(Continued)
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6 Check for correct parameter values for trapMF
if (a > b) or if (c > d)
Display error

Example: Error(“Illegal parameters”)
7. Assign x = 0.0 if x is outside of the support of a fuzzy set

Example: if ((x < a) || (x > d))
return 0.0

8. Left amplitude:
if (x < b) or x >= a && x < b
param a = C – σ * 2
param b = C – σ /2
Output, y = (x − a)/(b − a)
else (if x >= b )
Output, y = 1

9. Right amplitude:
if (x > c) or x > c && x <= d

param c = C +σ * 2
param d = C +σ /2;
Output, y = (d − x)/(d − c)

else (if x <= c)
Output, y = 1

10. Evaluate trapMF using evalMF( ) function

FIS process in Algorithm 1 is repeated to generate IT2 trap FCM. Center, c and sigma, σ

generated from the Gaussian output produce the UMF of the IT2 trap MF with four parameters
a, b, c and d as described in [7]. Fig. 5 shows the FT1 trapMF produced by the proposed
method. Afterward, LMF is generated based on the UMF and FOU. The LMF is constructed
based on genetic weak tuning used to tune MFs. The parameters obtained from FT1 trapMF is
combined with ignorance function, which is proportional to the MF amplitude. Fig. 6 shows the
continuation of fuzzy inference process with FCM to complete the IT2 trapMF.

Figure 5: FT1 trapMF
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1. Fuzzification 
(transforming a crisp set to 
a fuzzy set through 
clustering)

2. Identify clustering type 
3. Apply fuzzy operator 

(AND and OR)
4. Apply Implication Method
5. Aggregate all outputs 

(Max method)
6. Type Reduction
7. Defuzzify output (Centroid 

method)

1. Load data (Training 
input and output data)

2. Specify the number of 
cluster (CVI)

3. Specify the exponent 
of fuzzy partition 
matrix (Default value 
= 2)

4. Apply maximum 
number of iteration 
(Default value= 100)

5. Set Genetic Weak 
Ignorance Tuning 
Value (L)

6. Adapt L value to Trap 
MF parameters

7. Applies lateral 
adjustment and 
amplitude tuning

8. Cluster data

FT1 Trap output:

Parameters obtained:
a, b, c, d:

IT2 Trap MF output: 

FIS (Mamdani) FCM Output

Figure 6: Fuzzy inference process with FCM for IT2 trapMF

Based on Fig. 6, fuzzification process determines the correlating degree of membership for
UMF and LMF from the rule antecedent which generates two fuzzy values. Next, fuzzy operators
are applied where the maximum value is obtained from the UMF and the minimum value is
obtained from LMF [20]. In the implication phase, the rule firing will clip and scale the UMF
and LMF of the output to produce the output fuzzy sets. Similar to FIS model for FT1 trapMF,
max operator is used for aggregation phase which produces the final aggregated fuzzy output. The
distinct phase in IT2 FIS is the type reduction. In order to generate the final crisp output, the
aggregated fuzzy set is reduced to FT1 fuzzy set, which is the range with lower (CL) and upper
limit (CR). It is frequently referred as the IT2 centroid, which is based on Eq. (4) [21]:

CL ≈
∑L

i=1 xiμumf (xi)+∑N
i=L+1Xiμlmf (xi)∑L

i=1 μumf (xi)+∑N
i=L+1 μlmf (xi)

(4)

CR ≈
∑R

i=1 xiμumf (xi)+∑N
i=R+1Xiμlmf (xi)∑R

i=1 μumf (xi)+∑N
i=R+1 μlmf (xi)
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where

N = output variables

Xi = ith output value

μumf = UMF

μlmf = LMF

L and R= switch points estimated by type reduction method.

To estimate the values for CL and CR, iterative type-reduction methods are used [20]. For this
research, Enhanced Iterative Algorithm with Stop Condition (EIASC) is used due to its significant
improvement in performance compared to other methods [20,22–24].

The approximation of the genetic weak tuning in trapMF is initialized with the parameters
for UMF. The equation of the straight line between parameter b and c is ignored due to the
fact that the amplitude and lateral approximation only involve the intervals between parameter
a to b, and parameter c to d. The calculation for c to d (straight vertical line of trapMF) will
be similar since the MF involved in symmetrical. Algorithm 2 summarizes the construction IT2
trapMF after obtaining the FT1 trapMF output for FIS:

Algorithm 2: Proposed method to construct IT2 trapMF
1. Obtain FT1 trap MF as UMF: a, b, c, d
2. Applies weak ignorance function from original mapping:

Gi: [0, 1]2 → [0, 1] so that:
(Gi1) Gi(x, y) = Gi(y, x) for all x, y ∈ [0, 1];
(Gi2) Gi(x, y) = 0 if and only if x= 1 or y= 1;
(Gi3) If x= 0.5 and y= 0.5, then Gi(x, y) = 1;
(Gi4) Gi is decreasing in [0.5, 1]2;
(Gi5) Gi is increasing in [0, 0.5]2.

3. Let Let Gi : [0, 1]2 → [0, 1]. Hence, g(x) = Gi(x, 1 − x)
4. Assign amplitude to be proportional to the weak ignorance function:
Maximum ignorance degree = 0 MF (Initial MF)

5. Employ bijection h(x)= 1
2
x+ 1

2
6. Assign connection line between UMF and LMF point, y = 2

c− b
(x – b)

7. Repeat step 7 for right side of trapMF shape
8. Assign amplitude tuning, W
9. Assign A= amplitude of point (a, b)

Reference:
Point a= aCenter – aSigma ∗ 2
Point d = dCenter + dSigma ∗ 2
Point (a, b):

(Continued)
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A= 2
(Point d−Point a)

(x – Point a)

a′ = Point a − W (Point d − Point a), where W > 0
10. From A, the equation for amplitude of straight line (a′, b) named B is:

B= 2
(Point d−Point a)(1+ 2W)

(x – a + W (Point d – Point a))

11. Apply lateral adjustment:
α = literal displacement within the interval [−0.5, 0.5]
β = amplitude variation within the interval [−0.5, 0.5]
Assume S as one point in trapMF to be adjusted and FLS is the size of the support of S
FLS= ls – rs (lS and rS are respectively the right and the left extreme of the support of S)

FLs2 = FLS+β∗ FLS
α = (d – a) – β

12. Evaluate IT2 trapMF using evalMF() function and following chromosome evaluation for error
metric:

Fitness function = Accuracy rate

MSE = 1
2.N

N∑
l=1

(F (xl)− yl)2

For the purpose of testing the theory, the same dataset to generate FT1 trapMF from
Gaussian output is used to ensure the continuation of research objective, which is to generate
IT2 trapMF from FCM. The total of six datasets, (QoS, Iris, Abalone, HCV, BirchSet, Europe),
which are popular among benchmark datasets are prepared to test for result accuracy [25–29].
Tab. 1 shows the range of W parameter used for weak tuning, with trapMF parameters involved
for lateral adjustments. Two types of lateral adjustment are tested in this research, LA1 where
parameter a and b of trapMF are adjusted and LA2 where all four trapMF parameters, a, b, c
and d are affected in the lateral adjustments.

First amplitude parameter W 0.05 is performed in all datasets, and according to result, IT2
trapMF is failed to be generated as the number of uncertainties becomes close 0, with values of
UMF and LMF are the same except for very slight difference. Fig. 7 shows the generated trapMF
with W = 0.05 for both lateral adjustment 1 (LA1) and 2 (LA2). No further testing is done for
this parameter value.

Since this method comes from GA components, further evaluation of the output is performed
using MSE to test for accuracy of FIS using the IT2 trapMF. The MSE is measured to identify
the best W value for IT2 trapMF and which lateral adjustment is better suited to construct a
more accurate MF. Tab. 2 summarizes the error measurement for both LA 1 and LA2.

From the error measurements, it is proven that genetic weak tuning can be used to construct
IT2 trapMF, with the cooperation of lateral adjustment. Tab. 2 indicates that less error is obtained
through L1, where the adjustment adapted in the weak tuning is more accurate for parameter a
and d of the trapMF. Tab. 3 shows that by increasing the weak tuning until maximum ignorance
W = 5 (not shown in Tab. 3) will decrease the accuracy of the model. Hence, the optimum value
of W which successfully construct good interval for IT2 trapMF can be observed through the
MF input values. W = 0.15 is considered to be optimum since it produces the least error, but
further study on different size of dataset might result in different optimum W .
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LA 1 LA 2

Figure 7: IT2 trapMF with W = 0.05.

Table 2: Error measurement for LA1 and LA2

Total error MSE % Error

LA1 1778.53 18.935 35.46
LA2 1824.16 19.427 36.36

3 Results and Testing

In this section, the proposed method that construct IT2 Trap for FCM using both tuning
methods is implemented in FIS. The output of FIS is then evaluated against the other FIS with
input MFs from classic IT2FCM and trapezoidal input MFs optimized using GA (IT2 FCMTrap-
GA). The proposed algorithm with the discussed two tuning methods are named IT2WTLA1-
TRAP and IT2WTLA2-TRAP respectively.

Accuracy of the FIS are measured through several evaluation metrics, which are Classification
accuracy, Precision, Recall, F-Measure. Confusion matrix is used to obtain the evaluation metrics.
Other evaluation measurements to measure the performance are Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE).

Different tuning in the proposed method also being evaluated against each other to identify
which tuning method has better performance. As for example, the calculation to get the percentage
of difference is described in Eq. (5):

%IT2 WTLA1-TRAP/IT2 WTLA2-TRAP=WTLA1-TRAP−WTLA2-TRAP/WTLA1-TRAP

×100

(5)
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Table 3: IT2 trapMF after weak tuning and lateral adjustment

0.18 

0.2 

0.25 

2AL1ALW

0.10 

0.15 

(Continued)
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Table 3: Continued

0.5 

Table 4: FIS analysis result

Accuracy Precision Recall F-Measure

IRIS
IT2 WTLA1-TRAP 70.331 69.342 79.633 74.132
IT2 WTLA2-TRAP 69.324 72.345 63.823 67.817
IT2 FCMTrap-GA 70.121 71.923 62.934 67.129
IT2FCM 64.233 69.012 60.123 64.262
% IT2 WTLA1-TRAP/IT2 WTLA2-TRAP 1.43 −4.33 19.85 8.52
% IT2 WTLA1-TRAP/IT2 FCMTrap-GA 0.30 −3.72 20.97 9.45
% IT2 WTLA1-TRAP/IT2FCM 8.67 0.48 24.50 13.31
% IT2 WTLA2-TRAP/IT2 FCMTrap-GA −1.15 0.58 1.39 1.02
% IT2 WTLA2-TRAP/IT2FCM 7.34 4.61 5.80 5.24
ABALONE
IT2 WTLA1-TRAP 87.332 78.233 75.231 76.703
IT2 WTLA2-TRAP 82.103 79.023 71.213 74.915
IT2 FCMTrap-GA 77.234 64.234 62.923 63.572
IT2FCM 66.123 60.623 59.444 60.028
% IT2 WTLA1-TRAP/IT2 WTLA2-TRAP 5.99 −1.01 5.34 2.33
% IT2 WTLA1-TRAP/IT2 FCMTrap-GA 1.29 1.56 1.59 1.57
% IT2 WTLA1-TRAP/IT2FCM 24.29 22.51 20.98 21.74
% IT2 WTLA2-TRAP/IT2 FCMTrap-GA 5.93 18.71 11.64 15.14
% IT2 WTLA2-TRAP/IT2FCM 19.46 23.28 16.53 19.87
HCV
IT2 WTLA1-TRAP 67.623 71.274 78.233 74.592
IT2 WTLA2-TRAP 60.823 63.673 60.213 61.895
IT2 FCMTrap-GA 60.342 59.234 58.232 58.729
IT2FCM 60.344 60.456 59.001 59.720
% IT2 WTLA1-TRAP/IT2 WTLA2-TRAP 10.06 10.66 23.03 17.02
% IT2 WTLA1-TRAP/IT2 FCMTrap-GA 1.66 1.69 1.72 1.70
% IT2 WTLA1-TRAP/IT2FCM 10.76 15.18 24.58 19.94
% IT2 WTLA2-TRAP/IT2 FCMTrap-GA 0.79 6.97 3.29 5.12
% IT2 WTLA2-TRAP/IT2FCM 0.79 5.05 2.01 3.51
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Referring to Tab. 4, the improvement of performance for the proposed algorithm is evident.
In the tables, negative (−) values indicate lower values (lower performance) for the evaluation
metrics. For example, in Iris dataset, IT2FCMtrap-GA has 1.15% higher accuracy than IT2
WTLA2-TRAP. The small difference in percentage shows less impact of performance evaluation
since IT2 WTLA1-TRAP shows improvement in accuracy by 0.3% and 8.67% compared to
IT2FCMtrap-GA and IT2FCM respectively. Looking at average performance for dataset Iris, IT2
WTLA1-TRAP has good improvement in term of accuracy compared to IT2 WTLA2-TRAP
and the other two algorithms. Abalone and HCV datasets show promising performance for both
IT2 WTLA1-TRAP and IT2 WTLA2-TRAP. IT2 WTLA1-TRAP has slightly lower values by
4.33% and 1.01% compared to IT2 WTLA2-TRAP for Iris and Abalone dataset, respectively. The
precision performs better in dataset HCV with 10.66% higher precision. Tab. 5 shows the results
of MAE and RMSE for all datasets. Shaded cells in the table indicate the lowest value. Cells with
lighter shades indicate second lowest value. Two sets of datasets are evaluated: datasets without
noise and datasets with 5% noise. Based on the results, IT2 WTLA1 TRAP obtains the lowest
value of both RMSE and MAE by about 83.3% from all the values compared in the evaluation.
IT2 WTLA1 TRAP achieves stronger performance by having all lower values compared to IT2
WTLA2 TRAP. This indicates the best tuning method for the proposed algorithm is IT2 WTLA1
TRAP. In overall observation, IT2 WTLA2 TRAP has promising performance whereby it achieves
75% lower MAE and RMSE values compared to IT2 FCM Trap-GA and IT2 FCM Gaussian.
It is also proven that IT2 WTLA1 TRAP and IT2 WTLA2 TRAP are executing well even with
noise. Both methods attain good performance with 5% noise with minimal decline of performance.
As an example, MAE value for WTLA1 TRAP has increased value (less performance) between
1.2% and 14%. For RMSE, declined performance are between 0.2% and 17%.

Table 5: MAE and RMSE results

MAE RMSE

IRIS Without noise 5% Noise Without noise 5% Noise

IT2 WTLA1 TRAP 0.4002 0.4122 0.4212 0.5092
IT2 WTLA2 TRAP 0.4023 0.4132 0.5024 0.5087
IT2 FCM Trap-GA 0.3923 0.4192 0.4942 0.5102
IT2 FCM Gaussian 0.4566 0.4551 0.5261 0.5257
ABALONE
IT2 WTLA1 TRAP 0.0234 0.0124 0.1832 0.1867
IT2 WTLA2 TRAP 0.7234 0.7192 0.8232 0.8512
IT2 FCM Trap-GA 1.9168 1.9221 2.7440 2.7102
IT2 FCM Gaussian 2.2697 2.3023 2.8880 2.9023
HCV
IT2 WTLA1 TRAP 22.8342 20.0421 23.6723 23.2823
IT2 WTLA2 TRAP 23.2368 23.1928 28.9316 28.9011
IT2 FCM Trap GA 22.7154 29.7639 55.8020 55.9350
IT2 FCM Gaussian 40.2624 40.2104 73.5748 73.5348

Statistical test is carried out after obtaining all results to further analyze the significance of
the experiment results. One-way analysis of variance or ANOVA (Tab. 6) is utilized to identify
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whether there is any statistically significant dissimilarity between the means of independent labels
or groups. From Tab. 6, it is proven that the null hypothesis is rejected based on higher F Values
as compared to F Critical values for all datasets. In addition, p value less than 0.05 is achieved
which indicates that the test is statistically significant different.

Table 6: One-way ANOVA

Source of variation SS df MS F P-value F crit

IRIS
Between groups 207.1816 3 69.06053 191.7236 5.14E−87 2.61985358
Within groups 214.6844 596 0.360209
Total 421.866 599
HCV
Between groups 24014458 3 8004819 446.1219 2.02E−229 2.60868638
Within groups 42202218 2352 17943.12
Total 66216676 2355
ABALONE
Between groups 79632.73 3 26544.24 2583.307 0.002 2.60544073
Within groups 171638.5 16704 10.2753
Total 251271.3 16707

4 Conclusions

In this paper, we presented a method to generate IT2 trapMF by using approximation of
genetic weak tuning and lateral adjustment. The UMF is initially prepared, and the LMF is
approximated by the combination of the two elements of genetic algorithm. The result shows that
it successfully generates symmetrical trapMF with minimum W value of 0.10. From the results,
it shows that weak tuning and lateral adjustment with two lower limit a and upper limit d of
trapMF is more accurate than involving all four parameters of trapMF. The contribution of this
work includes providing alternative IT2 MFs, constructed based on FCM outcomes, that can be
used especially in the event that Gaussian MF is not performing well. Furthermore, the proposed
approach provides an optimum way to construct the trapMF. By having more options of MFs,
IT2 FIS can be applied to a wider range of practical applications such as prediction, analytics
and rule-based solutions. However, further study on optimum W value can be done to generate
different shapes of MF, either symmetrical or asymmetrical. Based on the forecasting results,
it shows that it gives better performance in term of accuracy as compared to other methods.
Another limitation of this work is that the proposed method is only tested on mamdani FIS.
Furthermore, amplitude tuning, and lateral adjustments performed to construct IT2 Trap MF are
applied simultaneously; separate execution of the two algorithms was not investigated.

There are several areas of improvement that can be incorporated in the present work and can
be further extended. The possible future directions are discussed as follows:

(1) Different genetic tuning methods other than amplitude and lateral adjustments can be
explored to assist on IT2 MF constructions for different shapes of MFs.
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(2) Investigations on single amplitude tuning or lateral adjustments to construct IT2 trapMF
with larger range without limited to weak ignorance function.

(3) Introducing a method that can heuristically produce the correct trapezoidal shapes given
any types of data. The improvement in term of accuracy or precision, for example, can be
further explored.

(4) Optimizing IT2 FIS results through the application of other than GA in MF generation
processes.

(5) Investigating of the IT2 MFs generated by FCM being applied in the general fuzzy type
2 FIS. The performance effects in various general fuzzy type 2 applications can be further
explored.
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