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Abstract: A key aspect of Knowledge fusion is Entity Matching. The objective
of this study was to investigate how to identify heterogeneous expressions of
the same real-world entity. In recent years, some representative works have
used deep learning methods for entity matching, and these methods have
achieved good results. However, the common limitation of these methods
is that they assume that different attribute columns of the same entity are
independent, and inputting the model in the form of paired entity records will
cause repeated calculations. In fact, there are often potential relations between
different attribute columns of different entities. These relations can help us
improve the effect of entity matching, and can perform feature extraction
on a single entity record to avoid repeated calculations. To use attribute
relations to assist entity matching, this paper proposes the Relation-aware
Entity Matching method, which embeds attribute relations into the original
entity description to form sentences, so that entity matching is transformed
into a sentence-level similarity determination task, based on Sentence-BERT
completes sentence similarity calculation. We have conducted experiments
on structured, dirty, and textual data, and compared them with baselines in
recent years. Experimental results show that the use of relational embedding is
helpful for entity matching on structured and dirty data. Our method has good
results on most data sets for entity matching and reduces repeated calculations.

Keywords: Knowledge fusion; entity matching; Sentence-BERT; relation
aware

1 Introduction

The goal of entity matching (EM) is to identify heterogeneous expressions of the same real-world
entity. For example, “Microsoft word 2007 version upgrade” and “Microsoft word 2007” both describe
the product of Microsoft word 2007, and thus need to be identified as the same entity. Our goal is to
find two entity records describing the same entity in the real world in two datasets. Fig. 1 shows an
example of the EM task. In the Fig. 1, there are two product datasets containing three attributes:
title, manufacturer, and price. The task of EM is to find two product records that may match the two
datasets.
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Figure 1: Entity matching example task

Entity matching is an important issue that has been widely studied in knowledge fusion [1]. Its
application scenarios include recommendation systems [2], data cleaning [3], etc. Previous work of
entity matching favored the use of rule-based methods [4]. Due to the rapid development of deep
learning, deep learning-based methods are used for feature extraction and entity identification. Due
to the accumulation of various frameworks and engineering experience, deep learning based methods
makes the original complex and tedious work easier to complete, but they also face many challenges.
First, entity matching is to match two entity records describing real-world entities, and entity records
may have few identical attributes, and attributes may be independent of each other, lacking potential
information between attributes. Since the schemas of different datasets are different, it is difficult to
calculate the text similarity of records from different datasets. Second, the current entity matching
method lacks a powerful model to ensure accuracy. The previous research on entity matching was to
explore matching algorithms and to construct entity matching models with high efficiency and high
precision.

Previous researchers favored crowdsourcing and optimization algorithms and mostly used human-
machine hybrid methods, but many of them ignored relation transfer between matches [5]. Because
entity matching will produce a lot of negative examples, there are methods to utilize the locality-
sensitive hashing schema to speed up the matching process and reduce the candidate pairs [6]. Many
researchers have improved on crowdsourced methods [7–9]. However, the EM field has always lacked
research on the construction of the overall EM system. How to match entities on multi-source hetero-
geneous data and build the overall system has always been a big challenge. Later, it gradually began to
enter the overall system construction research of EM, such as Magellan [10] and DeepMatcher [11].
Magellan created a data preprocessing process and an end-to-end EM model construction process.
DeepMactcher builds a deep learning entity matching module based on Magellan. The latest EM
method is Ditto [12]. The construction idea of Ditto model is the same as the previous work. Blocking
operation is performed first, and then an entity matching operation is performed. Magellan has strict
requirements on the input data format, and machine learning methods are weak on dirty data and
long text data. DeepMatcher and Ditto, the two representative methods in the EM field, have not
solved a common problem, that is, the way they input entity records is to input a pair of entities for
encoding calculations at the same time. In the entity matching task, entity sets A and B contain m
and n entity records respectively, then the way of inputting entity pairs will produce m × n combined
input models, which will be unnecessary calculation when the amount of data is large. During entity
matching, one entity record will be cyclically compared with multiple entity records. If one entity
record can be encoded only once, the input size will be reduced to m + n, which can effectively save
time and space. The entity in the entity matching task has several attribute columns, and there are
potential semantic relationships between the attributes of the entities. If they are simply concate-
nated, many potential semantic relationships between the attributes will be lost, and these classic
works [10–12] did not use this potential information.
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The method proposed in this paper is called Relation-aware Entity Matching using Sentence-
BERT (REMS), which is based on the Sentence-BERT model and uses a distilled pre-trained
BERT model [13]. We take advantage of the potential between the attributes in the entity record
Semantic relations, and the perception of potential relations, adding relational embeddings between
the attributes of entities, and constructing entity records into sentences. REMS uses a twin neural
network, a model composed of a pair of parameter-sharing BERTs, which can encode each entity
record separately, and each entity record will be saved after being encoded, reducing the size of the
computational entity record encoding to m + n, where m and n represents for the size of entity records
to be matched. Since BERT’s pre-training model is trained on the corpus of plain text, it has a very
good effect on processing natural language text. Taking entity records into sentences as input is similar
to the pre-training process of the BERT model. We conducted experiments on 13 entity matching
datasets and evaluated them. The average results of five experiments show that REMS has the best
three datasets in the structured dataset, and one dataset on the dirty data reaches the best, but the
performance on the long text dataset is not good enough. The difference from the previous method
is that REMS uses relational embedding throughout the entire EM process and encodes entities
separately, reducing time and space redundancy, and thereby improving the effect of EM. The main
contributions of this paper are as follows.

• We provide a method for preprocessing the dataset. First, perceive the potential relationship
between the attributes of the dataset, add relationship embedding to the entity record, and
convert the entity record into the form of a sentence. As far as we know, this is a method of
first fusing relational embeddings in entity matching, modeling entity records into sentence
similarity tasks, and using pre-trained BERT models for separate encoding.

• We propose a framework for entity matching based on BERT. We also performed rule-based
blocking on the dataset and data augment. We have independently blocked and processed each
dataset in order to filter out a high-quality dataset from a large amount of negative data.
In addition, the existing methods input entity records in pairs into the model, assuming that
the EM dataset consists of tables A, B and the number of entity records in A, B is m and n
respectively. Inputting entity records in pairs yields an encoding size of m × n. We construct
entity records into a sentence by relation aware and combine EM and Sentence-BERT models
with a dual neural network. The purpose is to separately encode each entity record and save the
result, which can reduce the encoding scale of the entity record to m + n.

• We conducted experiments and evaluated on 13 datasets, including structured, dirty, and textual
data. We provide the performance of the BERT model in EM and some engineering experience.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 describes
the details of REMS. Section 4 illustrates the experiment results. Section 5 concludes the paper and
discusses future work.

2 Related Work
2.1 Entity Matching

Let D1 and D2 be two entity sets, the task of entity matching is to find a pair of entities that
collectively describe the same thing in the real world <ei, ej>. This is a task that compares entity
records and entity attributes. In this article, we assume that the datasets D1 and D2 have the same data
pattern. Given entity record t(A1, A2, . . . , Ak), where Ai is the value of the i-th attribute of the entity t.
The EM task includes two sections: Blocking and Matching. Since there are a large number of negative
examples in the entity matching task, the purpose of the blocking process is to filter the entity record
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candidate set S generated by D1 ×D2 ,and reduce the number of negative examples as much as possible.
After blocking, there will still be some negative examples in the candidate set S, and the correct entity
record pair needs to be selected in the matching link. Assuming that the candidate set after Blocking
is S1, the link of matching is to predict whether all the entity record pairs in the candidate set S1 are
matched or not matched.

Entity matching has always received extensive attention [14–16]. In traditional methods, more
attention is paid to the construction of matching algorithms. A lot of work has been done on how
to improve the accuracy of matching and reduce costs. It is possible to do research to adapt to more
scenarios [17]. After that, many researchers built the entire system for the EM process and built an
end-to-end model. Early research on entity matching favors the use of crowdsourcing to improve the
accuracy of EM [6,8,9,18], but crowdsourcing methods are not suitable for reproduction and costly.
Later, some researchers began to establish an EM system, but only Magellan established a complete
EM process system. Recent research has begun to shift to the use of deep learning methods for EM.
Below I elaborate on some work related to EM from three aspects.

2.1.1 Traditional Methods

Early research is doing some EM matching algorithms. Many traditional methods use crowd-
sourcing methods to assist entity matching. For example, some studies have constructed a transfer
relationship crowdsourcing method to do entity matching. If e1 and e2 match, e2 and e3 are similar,
their pairing satisfies the transfer relationship, and a heuristic annotation algorithm is also designed
to label Crowdsourced sequence [5]. There are unsupervised methods for entity matching of multi-
source data [6], and there is also the use of crowdsourcing to match the entities of the image [8],
and some research makes the entire process of crowdsourcing does not require participation of staff
[9]. There are methods to construct a probabilistic graphical model [18], which reduces the number
of expert questions in crowdsourcing while maintaining the high accuracy of entity matching. There
are also studies on entity matching of heterogeneous data from multiple sources [19]. There are also
MapReduce-based EM methods [20] and DeepMatching methods for image matching [21]. There is
a lot of potential information in EM tasks and the study of time series is becoming more and more
important. There are studies of data entity matching with hidden temporal information [22] and time
series [23]. Data cleaning is also particularly important in EM. Data cleaning ensures that EM matches
in the cleanest possible environment. Some studies are weighted match correction rules (WMRRs)
based on similarity matching to capture more errors [24] and regular expression-based data repair
[25]. More recent approaches also compute the minimum coverage of ontology graph keys (OGKs) to
do EM [26], and several ideas use classical algorithmic methods to help EM [27–29].

2.1.2 EM-Systems

The most classic method is Magellan [10], which is a complete EM system that covers the entire
EM process and provides detailed process guidance. Later, DeepMatcher [11] established a deep
learning EM scheme based on Magellan. Establishing an EM system is a very tedious process. The
relatively early EM system D-Dupe [30] combines data mining and can be used for specific tasks.
There are browser-based EM systems Dedoop [31] and NADEEF [32]. These studies have made a
lot of contributions, but these EM systems have some shortcomings, these methods do not provide
a complete EM process, and lack scalability, cannot carry out some personalized expansion of the
system.
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2.1.3 Deep Learning-Based Methods

In recent years, there has been more and more research using deep learning for EM. There
are methods to design an end-to-end joint learning model, which adaptively selects an appropriate
similarity measure for multi-source datasets [6]. The latest EM method is Ditto [12] using a pre-trained
BERT model, which inputs the paired entity record sequence into the model to generate similarity.
DeepER [33] is a deep learning EM system. This method constructs two deep learning models for
entity matching, and also uses a distributed Blocking method. Similarly, DeepMatcher is the latest
baseline, which provides a deep learning solution for EM, and establishes a deep learning entity
matching method on Magellan tools, and is robust against dirty data, it provides EM fields a new
idea.

2.2 BERT

With the rapid development of the BERT model [34] in the field of NLP [35], the pre-trained
BERT model is widely used, and the industry and academia are very popular with BERT. For
example, it has applications in text classification [36,37] and sentiment analysis [38,39]. BERT has
also brought milestone changes to many fields. Sentence-BERT adds modules to BERT’s pre-training
model and performs fine-tuning, and has made new progress in the task of semantic text similarity [40].
BERT is a language representation model, which can achieve language representation target training,
and achieve the purpose of semantic understanding through the two-way Transformer model [41].
However, because the BERT model has a large number of parameters, many distillation models and
variant models have been derived, and it has maintained a high degree of accuracy while reducing the
model parameters. For example, DistillBERT and ALBERT, DistillBERT has only half the number
of layers of BERT, and also uses a combination of three-loss functions in terms of loss function,
while retaining 95% of the performance of BERT measured by the GLUE language understanding
benchmark. ALBERT [42] uses parameter sharing and improves the training speed. Under the same
training time, its effect is better than BERT, but the overall inference result is still 2–3 points worse
than BERT.

3 The REMS Approach

We used the twin neural network in Sentence-BERT [40], and the overall architecture diagram of
the REMS model is shown in Fig. 1.

In the task of entity matching, we have constructed a method that constructs entity records
into sentences through relational awareness and encodes them into vectors through the BERT
model to perform entity matching calculations. The entity matching process of REMS is shown in
Algorithm 1. The REMS model, it is mainly composed of three steps: relationship perception,
Blocking, and Matching. In Fig. 2, Step 1 is relationship perception and preprocessing, which will
perceive the relationship between the attribute columns of the entity records according to different
types of datasets, add potential relationships between the attributes of the entities and form a sentence
form. Then the data after the relationship perception is preprocessed to conform to the input of the
model. Step 2 performs Blocking and data augmentation. Since a large number of negative cases will be
generated in the EM task, Blocking is to delete some obviously mismatched entity record pairs. The
dataset after Blocking can be augmented with data to expand the training set, structured and dirty
data can be deleted at random, and long text datasets can be summarized and generated, and then
deleted and other data augmentations can be performed. Step 3 performs Matching and fine-tuning.
Fine-tuning is to input the training set into the model for training, verify the model on the validation
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set, save the best model, and find the best similarity threshold parameters. After the model training
is completed, perform Matching. It is to find the matching entity record pair in the two datasets. So,
let’s introduce these three steps below.

Figure 2: REMS overall architecture

3.1 Relation Aware

Step 1 is add relational embedding and Data preprocessing. Relational awareness is based on the
attributes of entity records, adding relational words between attributes and attributes, enriching the
semantic information of entity records and forming sentences. The specific method is as follows: given
entity record t(A1, A2, . . . , Ak), where Ai is the value of the i-th attribute of the table A. rel (Ai, Ai+1) is a
phrase, Its meaning indicates Ai, Ai+1 potential relationship between. For example, the values of Ai, Ai+1

are title and authors, and rel (Ai, Ai+1) is “made by”. Potential relationship embedding will rel (Ai, Ai+1)
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embedded entity record t(A1, A2, . . . , Ak) Between the values of the corresponding attributes Ai, Ai+1, a
sentence of the form “A1rel (A1, A2) A2 . . . Airel (Ai, Ai+1) Ai+1 . . . Ak” is formed. The advantage of this
is that the input entity record has richer semantics and the structure of the input conforms to the pre-
training corpus of the BERT model. After the dataset is preprocessed, a relationship is added between
the attributes of each column, so that a record of the entity and the attribute of the entity is converted
into a sentence. For example, Microsoft word 2007 version upgrade [made by] Microsoft [cost] 109.95.
The relation words “made by” and “cost” are the potential relationships we add between the attribute
columns title, manufacturer, and price.

3.2 Blocking

Blocking is to remove some obviously mismatched entity record pairs. However, targeted Blocking
is required for each dataset. For example, the DBLP-ACM dataset, it describes some bibliographic
data of DBLP and ACM. The entity record of the dataset has a column of attributes named year. The
purpose of Blocking is to delete entity record pairs with different year attribute values. The result is a
significant reduction in the size of the candidate set. The Blocking tool we use is Magellan, and several
different block methods are selected for preprocessing. For example, we use the rule-based Blocker L,
to match the table A, B Blocking (tA ∈ A, tB ∈ B) and then generate a set C, such as (tA, tB), the rule
R is

R := (tA.Ai �= tB.Bi) ∧ (tA.Ai ≥ T) (1)

T is artificially defined fixed values, the entity records pairs that meet the rules are the elements
of the set C. The final candidate set after blocking U = A × B\C. The data after Blocking is then
augmented by methods such as random word deletion and BERT-substitute [43], etc. BERT-substitute
focuses on predicting the target position i based on the context. The context is a sequence of words
surrounding an original word wi in an entity record sentence S, i.e., sentences composed of surrounding
words S\{wi}. The calculated replacement probability is p (·| S\{wi}).

3.3 Matching

Finally, we use different DL entity matching methods. Most of them use neural networks such as
RNN and LSTM, and rely on high-quality word embedding. However, the representation ability of
traditional neural networks is no longer sufficient to face heterogeneous data source. The BERT model
has a strong learning ability, can learn the semantics of the vocabulary and the overall meaning of the
sentence, and has a better ability to understand sentences. We use the Sentence-BERT model as the pre-
training model. The Sentence-BERT model diagram is shown in Fig. 3. After Step 2, we get the entity
record pair (tA, tB), then forward (tA, tB) to two BERT models with shared parameters, use Eq. (2) to
calculate the loss LA,LB, and then update the BERT model parameters θA, θB using ∇LA, ∇LB. We fine-
tuning the pre-trained model so that the model can make more accurate predictions in a specific field.
The twin neural network is used to enhance the effect of two classifications, and the loss function and
parameters are optimized to make the sentence input the fine-tuning model can produce high-quality
embedding vectors. After the BERT model outputs the embedding vector, connect a layer of MEAN-
strategy pooling to generate a fixed-size sentence embedding. And use the loss function of mean square
error.
∥
∥label − cosinesim(a,b)

∥
∥

2
(2)

For each dataset, use the data augment training set to perform fine-tuning of the BERT model.
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Figure 3: Sentence-BERT model

Because the process of finding the same entity record in the two datasets will produce a huge
number of negative examples, if all entity record pairs are input into the BERT model for the similarity
calculation method, the calculation time of this method is unacceptable. The REMS method will
individually input each entity record into the BERT model for encoding and save the result. Finally,
the vector encoded by the BERT model is calculated for similarity, and an optimal similarity threshold
is selected.

4 Experiments
4.1 Experiment Settings

We experimented with the model on EM’s benchmark datasets, which contained three kinds of
problems, structured, dirty, and textual EM problem scenarios. There are 13 datasets in total. The
source of the dataset is the source data downloaded from DeepMatcher’s homepage1. Structured data
includes Beer, iTunes-Amazon, Fodors-Zagats, DBLP-ACM, etc. We use four kinds of dirty datasets.
The dirty thing is that there is a 50% probability that the attribute value will be moved to the same tuple
"title" attribute. For example, in DBLP-ACM dataset, there is an attribute named year, and its value
may be moved to the title attribute column. The original cell will be empty, and the attribute of each
row will be moved to the title attribute with a 50% probability of combining with the title attribute,
leaving the original cell empty. This is often encountered in real life scenes. For the textual datasets,
we use Abt-Buy and the company dataset. Abt-Buy is the product data of Abt.com and Buy.com. The
attributes have three columns, and we also deal with it relational. But the company dataset has only
one column of attributes, so there is no relation aware processing.

1https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

Abt.com
Buy.com
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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The fields covered by all datasets include beer, music, restaurant, citation, etc. We first use the
Magellan tool to combine blocks based on rules, and then divide the candidate dataset into training
set, validation set, and test set at a ratio of 3:1:1. The statistics of datasets are given in Tab. 1.

Table 1: Dataset statistics

Data type Name Domain Entity record-num
(attr-num)

Structured Beer Beer 450 (4)
iTunes-Amazon1 Music 539 (8)
Fodors-Zagats Restaurant 946 (6)
DBLP-ACM1 Citation 12363 (4)
DBLP-Scholar1 Citation 28707 (4)
Amazon-Google Software 11460 (3)
Walmart-Amazon1 Electronics 10242 (5)

Dirty iTunes-Amazon2 Music 539 (8)
DBLP-ACM2 Citation 12363 (4)
DBLP-Scholar2 Citation 28707 (4)
Walmart-Amazon2 Electronics 10242 (5)

Textual Abt-Buy Product 9575 (3)
Company Company 112632 (1)

We compare our method with Magellan [10], an overall EM system based on machine learning,
DeepMatcher [11], an overall framework based on deep learning, and the latest EM model Ditto [12]
based on pre-trained BERT because Ditto uses a lot of expert knowledge and manual annotation, we
choose Ditto without optimizations model as the comparison object.

4.2 Results

The results of the experiment all use the F1 Score as the measurement standard. We use the average
F1 Score of the results of five experiments as the result. The experimental results of structured data are
shown in Tab. 2.

Tab. 2 shows a comparison between REMS and several baselines and the latest method Ditto
without optimizations on structured data. Structured data is relatively clean data, in the form of an
entity record including several entity attribute columns, REMS performs well on structured data, and
the best F1-score is achieved on three structured datasets. According to our observations, through
relational awareness, the sentence semantics of entity records were enriched by relation-awareness
on the beer and iTunes-Amazon datasets, and the Beer and iTunes-Amazon1 datasets are tidier and
cleaner than before. After the less ambiguous sentences are subjected to relational perception, the
generated entity record sentences perform better. For example, the best results were achieved on the
Beer and iTunes-Amazon datasets. In particular, the Beer dataset has improved the F1-Score of 12.06.
The reason for the poor performance on the Amazon-Google and Walmart-Amazon1 datasets, we
believe, is that REMS is not able to grasp the relative information in response to data noise. For
example, in the Walmart-Amazon1 dataset, the entity records are all product records. The attributes are
title, manufacturer, and price. Two of the entity records are “money premium 2007 win32 eng na mini
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box us only cd, microsoft, and 118.46”. And “money prem 2007 cd minibox, microsoft, 63.99”. These
two entities record actually describe the same entity, but because of the ambiguity in the information,
many word abbreviations appear, and the meanings expressed are ambiguous. The sentence will not
be rich in semantic information. Need more expert knowledge to supplement, you can refer to Ditto’s
method for domain knowledge injection. Because the output of the BERT model used by the model is
then connected to an average pooling layer, the same attention is paid to the token vectors of all words
in the sentence, so it will be insufficient to deal with more noisy information.

Table 2: Experimental results of structured data (F1 score)

Datasets Magellan DeepMatcher Ditto REMS ΔF1

Beer 78.8 72.7 84.59 96.65 +12.06
iTunes-
Amazon1

91.2 88.5 92.28 98.18 +5.9

Fodors-Zagats 100 100 98.14 100 0.0
DBLP-ACM1 98.4 98.4 98.96 98.18 −0.78
DBLP-Scholar1 92.3 94.7 95.6 91.74 −3.86
Amazon-
Google

49.1 69.3 74.1 65.30 −8.80

Walmart-
Amazon1

71.9 67.6 85.81 71.34 −14.47

On all datasets, we also used a variety of data augmentation methods to conduct experiments and
increase the training set. There are five main methods, BERT-insert, BERT-substitute, swap, random-
del, and summAug [43]. The two methods of BERT-insert and BERT-substitute are to input text into
the model and provide a text environment for the model to find the most suitable extended words
and add or replace words into the input text for data augmentation. BERT-insert is to insert extended
words in the text, and BERT-substitute is to replace suitable words with extended words in the text.
The Swap augmentation method is to replace the order of several words in the input text, random-
del is to randomly delete the words in the input text, and the summAug augmentation method is to
summarize the input text through a summary method. There are a variety of parameters to choose
from for the above data augmentation methods. Tab. 3 is the F1-Score result of REMS without data
augmentation and after using data augmentation. In the structured dataset Walmart-Amazon1, we
use the Random-del data augmentation method. The Walmart-Amazon1 dataset has the best F1-score
improvement performance after data augmentation. We observed that one of the attributes in this
dataset “modelno” was important, so we made this attribute recur when generating the sentences, and
then used randomly deleted data augmentation for the sentences, reducing the number of other the
data augmentation of the sentence with random deletion reduces the impact of other irrelevant words
on the sentence information. The results show that such an approach is effective. The Fodors-Zagats
dataset is relatively simple, so no data augmentation is given. The Amazon-Google dataset did not
find a suitable data augmentation method. We used a variety of methods, but the performance was
not good.

In Tab. 4 is the experimental result of dirty data. Dirty data means that each column attribute has
a 50% probability of being transferred to the title attribute, and the original value becomes empty. The
REMS method achieves the best in one of the four datasets. The reason is that it is more robust in the
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dataset with less ambiguity. The performance of iTunes-Amazon2, DBLP-ACM2, REMS are all good.
It can be seen that Magellan’s performance on dirty data is not enough, because dirty data has low
string similarity and cannot provide high-quality information. Magellan is based on String similarity
is used for entity matching, so the performance is not good on dirty data. DeepMatcher, Ditto, and
REMS perform significantly better on dirty data than Magellan. And Ditto and REMS methods have
higher robustness on dirty data, We believe that the way the sentence is input into BERT is more natural
to treat BERT as an Encoder that specifically generates sentence embeddings. It is difficult to match the
Walmart-Amazon2 dataset. There will be many products model information and many abbreviations
in the dataset. There are many ambiguities in the information, and REMS is not performing well in
this piece.

Table 3: Data augmentation results of structured data (F1 score)

Datasets REMS (non-Aug) REMS (Aug) Method ΔF1

Beer 96.65 96.65 – –
iTunes-Amazon1 97.60 98.18 BERT-substitute +0.58
Fodors-Zagats 100 100 – –
DBLP-ACM1 97.65 98.18 Swap +0.53
DBLP-Scholar1 91.44 91.74 Swap +0.30
Amazon-Google 65.30 65.30 – –
Walmart-Amazon1 66.32 71.34 Random-del +5.02

Table 4: Experimental results of dirty data (F1 score)

Datasets Magellan DeepMatcher Ditto REMS ΔF1

iTunes-
Amazon2

46.8 79.4 92.92 94.74 +1.82

DBLP-ACM2 91.9 98.1 98.92 98.19 −0.73
DBLP-Scholar2 82.5 93.8 95.44 91.76 −3.68
Walmart-
Amazon2

37.4 53.8 82.56 65.74 −16.82

Tab. 5 is the augmentation results of dirty data. There is an average 2.48 F1-score improvement
on the four dirty datasets. BERT-insert has the best effect on the iTunes-Amazon2 dataset because
the input text has a good language environment and the improvement effect is more obvious. On the
whole, because of the increased difficulty of entity matching for dirty datasets, the effect of using data
augmentation on dirty data is better than structured data as a whole, and the effect of using data
augmentation on entity matching datasets will be improved to a certain extent.

Tab. 6 is an experiment on the textual datasets. The number of attribute columns of the textual
dataset will be relatively small. Especially in the Company dataset, the content is the content crawled
from the company’s Wikipedia page. After processing, the long text information is equivalent to
describing a company. The company dataset is a long text matching. If text summarization is not
used, the performance on the long text dataset will be poor, long text summary requires a lot of manual
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definition operations and expert knowledge. We pursue a more automatic EM process, so we didn’t use
it. REMS does not perform well on textual datasets. We believe that it is because BERT has connected
to the average pooling layer after outputting the embedding vector. Because the text of the data is too
long, the pooling layer does not emphasize the focus of the text.

Table 5: Data augmentation results of dirty data (F1 score)

Datasets REMS (non-Aug) REMS (Aug) Method ΔF1

iTunes-Amazon2 89.10 94.74 BERT-insert +5.64
DBLP-ACM2 97.96 98.19 BERT-insert +0.23
DBLP-Scholar2 91.66 91.76 BERT-insert +0.10
Walmart-Amazon2 61.78 65.74 Random-del +3.96

Table 6: Experimental results of textual data (F1 score)

Datasets Magellan DeepMatcher Ditto REMS ΔF1

Abt-Buy 33 55 88.85 67.4 −21.45
Company 79.8 92.7 41.00 80.73 −11.97

We use the F1 Score as our evaluation score, and the highest F1 model result in each dataset is
marked in red. The structured data is relatively clean. After adding relational embedding, REMS
achieves the best performance on the four structured entity matching datasets. There are improve-
ments, compared with previous deep learning and machine learning methods. We found that adding
the length of the relationship embedding will also have an impact. The character length of the
relationship embedding should not be too long, and 1–2 words will achieve the best performance.

4.3 Training Details

Our model is tested on 13 datasets. The framework of the model is implemented using Pytorch
and runs on Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz and Nvidia Tesla T4 GPU. The learning
rate used is the default 2e-5, transformer AdamW [44]. The learning rate is not the main influencing
factor. Using the default setting is the most stable. The main reason is that the warmup steps setting is
10% of the training set. The evaluation steps are twice the size of the warmup steps. This combination
will be more appropriate. The batch size is set according to the configuration of the graphics card, and
the batch size is set to 64. The value of Epoch is set differently for each dataset. We search for the best
parameters from the initial setting of 15 and search for the best epoch for the textual datasets in 2–4.
Too many epochs will cause overfitting. The word count of relational embedding is the best setting
when it is 1∼2, excessively long relationship words may degrade performance.

5 Conclusions and Future Work

BERT’s pre-training model has been successfully applied in many fields. In our work, we design
a sentence-level entity matching model that includes relational embeddings. We recommend adding
relational embeddings to entity matching, which helps to enhance the semantic relationship between
attributes, using pre-trained models to train and embed the sentences recorded by the entity. The model
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separately encodes and saves the entity records, reducing the size of the input. Experiments have proved
that it has a certain improvement compared with the traditional method. This study identified REMS
with good prospects. In the future, we will continue to study the role of relationships in entity matching
and entity matching in graph structures.
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