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Abstract: The evolution and expansion of IoT devices reduced human efforts,
increased resource utilization, and saved time; however, IoT devices create
significant challenges such as lack of security and privacy, making them more
vulnerable to IoT-based botnet attacks. There is a need to develop efficient
and faster models which can work in real-time with efficiency and stabil-
ity. The present investigation developed two novels, Deep Neural Network
(DNN)models, DNNBoT1andDNNBoT2, to detect and classifywell-known
IoT botnet attacks such as Mirai and BASHLITE from nine compromised
industrial-grade IoT devices. The utilization of PCA was made to feature
extraction and improve effectual and accurate Botnet classification in IoT
environments. The models were designed based on rigorous hyperparameters
tuning with GridsearchCV. Early stopping was utilized to avoid the effects of
overfitting and underfitting for both DNN models. The in-depth assessment
and evaluation of the developed models demonstrated that accuracy and
efficiency are some of the best-performed models. The novelty of the present
investigation, with developed models, bridge the gaps by using a real dataset
with high accuracy and a significantly lower false alarm rate. The results were
evaluated based on earlier studies and deemed efficient at detecting botnet
attacks using the real dataset.

Keywords: Botnet; network monitoring; machine learning; deep neural
network; IoT threat

1 Introduction

The expansion of the Internet of Things (IoT) network and its applications have risen
enormously due to upgrading communication efficiency, low cost, and ever-increasing demand.
The IoT devices have been developed and utilized for numerous sectors, including smart cities,
smart grid, smart manufacturing and maintenance, intelligent transport, security and surveillance,
precision agriculture, utilities such as power, electricity and water, supply chain, and inventory
optimization, more. Over the past few years, the number of sensor-based smart devices that can
communicate over the internet without human involvement is growing exponentially. It will be
reaching around 30 billion by 2050 [1]. However, the massively increasing numbers and global
presence of IoT have become an opportunity for hackers to exploit the security and privacy of
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the IoT network by using anomalous entities such as botnets, as IoT infrastructure still lacks
robust security [2]. The primary security challenge in infrastructure is botnet-based attacks where
illegitimate users inject malicious scripts into the IoT devices to infect them.

1.1 Botnet
The compromised IoT devices do not show any indications of being hacked and act like

zombies for the botmaster to launch the attacks. The size of the botnets might be smaller with
hundreds of bots, to a larger botnet contains thousands of bots. Some bots are available on the
dark web as cheap as 0.5$ per bot to a massive collection of botnets with a high price. Botnets
are of two types, (1) botnets taking commands and in continuous communication with botmaster
in a client-server architecture (2) peer to peer bots, which communicated autonomously with each
other and launch the attacks after receiving commands from the botmaster. Botmaster used to
communicate with bots using the help command-and-control (CnC) server; the bots used to hide
until commands from botmaster; this hidden behavior of bots make identification of infected bots
and botnet attack a complex task.

1.2 Type of Botnet Attacks
The attacks class are: (1) the scan commands used to find out the vulnerable IoT devices;

(2) ACK, SYN, UDP, and TCP flooding; and (3) combo or combination attacks used to open a
connection and to transmit the spam to it [3].

1.2.1 Scan Attack
Botmaster scan IoT device in the network to collect information, including IP scanning, port

scanning, etc.

1.2.2 DDoS Attack
The DDoS attack is one of the major cyberattacks where a hacker sends massive traffic or

flooding to the target server from different locations, which results in disruption of the service and
no service to legitimate users [4,5]. Botmaster launches the DDoS attack with the botnet, which
exhausted the victim server or platform in memory, computing, and resource disruption.

1.2.3 TCP Flooding
TCP SYN flood is a DDoS attack where the botmaster sends faster TCP syn traffic to exhaust

the target’s resources and make it unavailable for legitimate requests.

1.2.4 ACK Flooding
The botmaster sends massive fake acknowledgments in ack flooding to the target server that

fake IoT devices received the transmitted data successfully.

1.2.5 UDP Flooding
In a UDP flood attack, the botmaster sends UDP packets in a massive amount to exhaust

the target server or device to lose processing and respond. In addition, the protecting firewall is
also exhausted due to the UDP flood, which rejects legitimate requests.

2 Previous Studies

Botnet refers to a robot network, which means a network of various bots; aimed to perform
unlawful activities against any type of IT infrastructure, including websites or networks. Botnets



CMC, 2022, vol.71, no.1 1731

are controlled by botmaster or herder or cybercriminals using command and control protocol [6].
Therefore, a botnet is one of the significant issues for the security and privacy of IoT networks.

Several studies addressed botnet detection and classification (Tab. 1). Reference [7] proposed
an ANN-based botnet detection model with a data resampling in detecting DDoS attacks.
Author [8] used machine learning (ML) models with dimensionality reduction for detecting DDoS
attacks in IoT systems and observed that k-nearest neighbors (KNN) shown best performance
and feature reduction reduced system overhead with has less impact on accuracy. Author [9]
used dimensionality reduction and decision tree model to detect botnet attack and stated that
dimensionality reduction improved the time efficiency and scalability. Author [10] utilized ML
model to detect botnet based on honeypot approach to study the hacker behavior by tempting an
attacker to detect new malware attacks in the botnet. Author [11] used novel PCA-firefly based
XGBoost classification model for intrusion detection.

Like BClus, CAMNEP, and BotHunter, different methods were compared on the dataset con-
taining normal, background, and Botnet traffic [12]. Also, there is an analysis of different machine
learning algorithm for Botnet detection, which has two results Botnet or normal [13]. In [14]
a decision tree based framework is used for effective detection of P2P Botnet. The researchers
also used decision tree algorithm for the feature extraction. Some of them used a method for
detecting IOT Botnet, which uses MQTT protocol [15]. A deep learning neural net has been made
to detect the Android malware detection which also uses the recurrent neural network [16]. Some
researchers use Deep Learning methods for the detection of Botnet. Binary classification has been
done using the Feed Forward backpropagation ANN method [17]. BotShark named framework is
used for the detection of Botnet. It is based on the deep learning techniques for the inspection
of network transactions which also uses the Convolutional Neural Network (CNNs) [18]. In [19]
researchers uses convolutional neural network(CNN) for the feature extraction which will be useful
in predictive analysis.

Reinforcement Learning is also used for the classification of a packet into Botnet or Normal.
The researchers also tested the model on real world dataset and found a good accuracy [20].
Different feature selection methods are also applied on a Botnet dataset and then finding the best
possible combination of features for the binary classification [21].

In the medical field also deep learning is being used widely. Many researchers also used deep
learning methods in the combination of autoencoders to detect the premature birth of a child [22].
LSTM is also used for the detection of IoT datasets. IoT devices are also vulnerable to different
types of threats and especially Botnet. Researchers show that the bidirectional approach is a better
model over time [23]. There is also an approach for detecting Botnet using nodes of a graph.
It uses a self-organizing map clustering method on the features [24]. Some researchers also use
transfer learning on a dataset obtained by combining the different Botnet datasets [25].

A method has been used by some researchers which uses some multiclass classification
techniques. They have used a LSTM based framework for managing multiclass imbalance [26].
In [27] used a method to detect Botnet with network flow. They did a multi class classification
on the dataset. Authors [28] used two theorems to show that the method can effectively reduce
the compute resources consumption, identify DDoS attacks at their primary stage with higher
detection rates, and lower false alarm rates.
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Table 1: State of the art research focused on botnet detection

Models Merit Demerit Ref.

XGBoost
classification

Used the XGBoost approach to
decreased the dataset for
classification.
This technique gave the better
result in presented machine
learning techniques.

There is probability to loss
of Information due to
suppression.

[11]

BClus and
CAMNEP

Applied the three different
methods to botnet detection on
real and massive botnet dataset.
Applied the error metric designed
for botnet detections techniques

Complex to deal dynamically
the networks flows and
clustering the feature at run
time.

[12]

Multi-layer
botnet detection
technique

Extracted the most relevant
feature by using decision tree
algorithm.
In third layer of models, tried to
reduce the features, which may
enhance the efficiency of
classification.

There is probability to loss
of Information due to
suppression.

[13–15]

Deep neural
network

Extracted the new feature and
original feature by using
convolutional neural networks
(CNNs) on each layer of
autoencoder. On the layer of
softmax, classified the predicted
malicious traffics.

Distinguish between new
original and malware
detection is very typical to
detect.

[16–18]

Reinforcement
learning-
detection

The reduction of network traffic
and applied reinforcement learning
technique to improve the efficiency
and accuracy of models.

There is probability to loss
of Information due to
suppression.

[20]

P2P botnet
detection

Observed the important features
which will be more useful in
building a botnet detection model.

Specific feature base detection
can create problem in future.

[21]

DNN with semi-
classification

In deep neural network, used the
three layers such as stacked sparse
autoencoder (SSAE) network with
two hidden softmax layers to
detect the botnet. Contraction
intervals and non-contraction
intervals were manually
segmented.

Human interaction is
required. Not detected good
accuracy rate that other
machine learning approaches.
Just considered only 26
features only.

[22]

(Continued)
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Table 1: Continued.

Models Merit Demerit Ref.

BLSTM-RNN
detection

Used the bidirectional long short
term memory recurrent neural
network (BLSTM-RNN), in
conjunction with Word
Embedding for botnet detection

Ten attack vectors used by
the mirai botnet malware is
not enough to deal all
malware families of botnet.

[23]

Graph-based
botnet detection

Authors captured the abnormal
behaviors of bots in terms of
their graph-based behaviors.
On the captured behaviors to
applied clustering-based detection
algorithm.

This static approach is not
suitable for the real datasets.
Not existing the capability to
deal network flows.

[24]

Transfer-learning The hypothesis is “Predictive
Performance can be improved by
using transfer learning techniques
across datasets containing network
traffic from different Botnet

Not achieved the adequate
level of accuracy for
detection botnet datasets
compare to machine learning

[25]

Domain
generation
algorithms
(DGA)

In the approached used the
LSTM.MI algorithm to combine
both binary and multiclass
classification models. Experiments
are carried out on a real-world
collected dataset.

Not considering all existing
malware families to test
botnet datasets

[26]

ANN The applied a fuzzy logic based
feature engineering method.
In this models used the different
learning models can perform
differently on different datasets

There is not used the real
datasets of botnet to test the
models

[27]

3 Significance of the Problem

Numerous studies performed botnet detection. However, a lack of studies addressed the
issues related to feature extraction, dimensionality reduction to suppress duplicate information,
overfitting, and rigorous parameters tuning. Most studies used real botnet attack datasets in a real
environment. Additionally, studies evaluated ML models for synthetic botnet data without much
contribution for feature engineering and in-depth assessment of overfitting. Most research used
high imbalanced real-time datasets to study botnet detection. Studies majorly focus on the higher
accuracies without addressing limitations of highly imbalanced datasets and obtained illusory
accuracy. The data splitting was also a significant issue with proper validation of the model
without using unforeseen data from training.

4 Our Novel Contribution

The present investigation aimed to resolve the gaps from previous studies with a combined
PCA method with DNN. PCA reduced the high dimensionality of the data, and DNN models
developed with rigorous hyperparameters tuning using GridSearchCV. Early stopping was also
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implemented to prevent overfitting. The present investigation does not use entire data during
training; some data kept separate from the training process was used to evaluate the model’s
performance for proper validation. This complete exercise prevents overfitting or underfitting, a
notable instance of the ML and DL model’s output.

Our proposed approach base hybrid met has the multiclass classification including different
types of attacks and non-attacks with high precision. The first stage has a high accuracy rate,
which indicates the most extensive amount of botnet attacks possible is classified as a threat.
The proposed PCA and DNN-based approach demonstrated promising results. Although earlier
studies used ML and AI-based techniques for the botnet, as per our knowledge, a combination
of PCA and DNN was not applied so far for multiclass classification of actual botnet attacks to
defend an IoT environment, reaching a level of high accuracy. The main contribution of current
research are as follows:

(i) We proposed a novel approach that utilizes the benefits of PCA for feature collection
and the deep neural classifiers to improve effectual and accurate Botnet detection in IoT
environments,

(ii) Two novel developed hybrid methods, DNNBoT1 and DNNBoT2, utilized PCA and
demonstrated high accuracy in both training and validation phases with less variance for
multiclass classification to detect botnet attacks

(iii) The main contribution of this paper is to detect and classify the application-specific threat,
e.g., scan attacks, DDoS, TCP flooding, UDP flooding, and sync flooding, which are some
of the most common attacks.

(iv) The proposed approach yields stable, reliable, advanced, accurate, safe, and feasible perfor-
mance into IoT applications-based approach.

4.1 Principal Component Analysis
PCA is an unsupervised learning technique to find informative, new, and uncorrelated features.

It was evident from the correlation heatmap (see Fig. 2) that a large number of features for
different devices were correlated well, which can be reduced to new candidate features in less
number utilizing PCA without losing any vital information. The PCA process involves finding
the mean, covariance matrix with eigenvectors and eigenvalues, selecting PC’s with the highest
Eigenvalues, and the product of the original data matrix. The steps for the PCA process were
given in Eqs. (1)–(8). With a sample of ‘n’ observations on a vector of d’ variables

{x1,x2, · · · ,xn} ∈Rd (1)

Define the first PC using the linear transformation

z1 = aT1 xj =
d∑
i=1

ai1xij; j= 1, 2, · · · ,n. (2)

where a1 is selected based on v[z1] is maximum.

where the vector

a1 = (a11,a21, · · · ,ad1) ; xj =
(
x1j,x2j, · · · ,xdj

)
(3)
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The variance was calculated from Eq. (4).

var[z1]=E((z1− z1)2)= 1
n

n∑
i=1

(
aT1 xi− aT1 x

)2 = 1
n

n∑
i=1

aT1 (xi−x) (xi−x)T a1 = aT1 Sa1 (4)

The covariance matrix is given in Eq. (5).

S= 1
n

n∑
i=1

(xi−x) (xi−x)T (5)

where x is the mean given as Eq. (6).

x= 1
n

n∑
i=1

xi (6)

To find a1 which maximize the variance subject to a1T a1; Let λ is Lagrange multiplier

L= aT1 Sa1−λ(aT1 a1− 1)
∂

∂a1
L= Sa1−λa1 = 0⇒ (S−λI)a1 = 0 (7)

The a1 and a2 are eigenvectors of S, which corresponds to the highest and second-highest
eigenvalues, respectively.

var[zk]= aTk Sak = λk (8)

The kth highest eigenvalue of S is the variance of the kth PC, and the kth PC holds the kth

highest fraction of the variation.

4.2 Deep Neural Network
Neural Network (NN) belongs to a feedforward artificial neural network (ANN). It mainly

consists of three layers: an input layer, a hidden layer, and an output layer; however, the number
of layers can be more, where it becomes DNN. Each node uses a nonlinear activation function
except for the input nodes. The advantage of automatic feature extraction in DL-based models
such as DNN makes it popular for classification [4,5]. The feature extraction is otherwise difficult
to define manually. DL is a variation of ML-based algorithms which consisting of a more
significant number of sequential layers. DL’s primary advantage is that it automatically selects
the features, unlike ML methods where feature extraction needs to be done manually. The DNN
is a type of DL model that extracts the feasible features from the input data. DNN, which
leads to the identification and classification of elements with less requirement of preprocessing.
DNN model generally used three main layers: an input layer, activation function layer, and finally,
a classification layer (FCN) used for classification purposes. In the present investigation, DNN
models were developed to detect and classify botnet attacks for IoT frameworks.

4.2.1 Activation Layer
A neural network needs an activation function to make the prediction. The rectifier activation

function (ReLU) is one of the default activation functions for deep learning applications; it adds
nonlinearity to the network. ReLU output 0 for negative value and output the same value for non-
negative values. Another activation function is the Sigmoid or logistic function, which is suitable
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for binary classification and output between 0 and 1. However, the sigmoid function is not suitable
for multiclass classification environments, and it needs the multinomial probability distribution for
a mutually exclusive class. Instead, Softmax is a function used to activate the function in the
output layer of a neural network to deal with a multiclass classification problem. This activation
function predicts a multinomial probability distribution with more than two classes.

If we input {1,2,3}, the max function will output the largest number, 3, in the present
example. The argmax will output the index of the largest number, which is 2, the softmax
function, which is the probabilistic or “softer” version of the argmax function in which the unit
with the largest input has output +1. In contrast, all other units have output 0 {0,0,1} in the
current example.

4.2.2 Dense Layer
The dense layer is a NN layer, which is deeply connected. Each neuron in the dense layer

receives input from all neurons of its preceding layer. It uses a linear operation function to map
every input with every output. It can be implemented using Kears as Eq. (9).

model.add(Dense(10, input_dim= train_data_shape [1], activation= ‘relu′)) (9)

where relu is the activation function, the shape of training data is the input dimension, with ten
units. The units are used to define the shape of output, and its output becomes the input for the
successive layer.

4.2.3 Training
Models such as NN use learning algorithms to minimize the differences between target and

output values. One of the main learning algorithms is backpropagation that computes the gradient
of a function to fine-tune the network parameters for error minimization.

5 Dataset

The N-BaIoT Dataset contains traffic data from 9 Industrial IoT devices, in which seven
devices collected instances for 11 classes and the remaining two devices collected data for six
classes (Ennio_doorbell and Samsung_SNH_1011_N_Webcam) [29]. The data comprise benign
traffic and a variety of malicious attacks such as scan, TCP, UDP, and SYN (Fig. 1). There is a
total of 89 csv files in the current version of the dataset with a total size of 7.58 GB and 1486418
instances of normal and attack occurrences. The two botnet attacks MIRAI and BASHLITE were
categorized into ten attack and non-attack classes (see Fig. 1). The attacks class are: (1) the scan
commands used to find out the vulnerable IoT devices; (2) ACK, SYN, UDP, and TCP flooding;
and (3) combo or combination attacks used to open a connection and to transmit the spam to
it [3].

6 Methodology

Two DNN based models DNNBoT1 and DNNBoT2, were developed in the present investi-
gation to detect botnet attacks based on data from nine industry-grade IoT devices. The primary
step to understand the data so that it can be fed for DNN models.

6.1 Exploratory Data Analysis (EDA)
The sklearn, mpl_toolkits, matplotlib, NumPy, pandas, and seaborn libraries were used based

on Keras, TensorFlow, and Python language to perform the EDA. The primary objective of EDA
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is to data cleaning, understand the variables, and analyzing relationships between variables. The
columns with NaN were dropped, and the columns were kept, which contains more than one
unique value. The statistical correlation of the variables for each device was visualized through a
correlation matrix, which is the fastest way to develop an understanding of all variables.
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Figure 1: Number of classes/instances in each device

6.2 Principal Component Analysis (PCA)
There were 1486418 instances for ten types of attacks and one non-attack data collected from

nine industrial IoT devices. It was observed that some feature vectors have no value close to
zero. Therefore, the utility of the PCA was a reasonable idea to synthesize with the DNN models
developed in the present investigation to suppress the dimensionality of the feature vectors (see
Fig. 3). It was evident from the correlation heatmap (see Fig. 2) that a large number of features
for different devices were correlated well, which can be reduced to new candidate features in less
number utilizing PCA without losing any vital information. The first step before applying PCA is
data standardization. The botnet data have different files and instances; it was required to apply
feature scaling to make data of the same scale. The data in the present investigation followed
the normal distribution. Therefore standardization was applied. If the data values were skewed,
then a normalization function such as min-max scalar could be helpful; to convert data scale-free
and ranging between 0 to 1. The PCA process involves finding the mean, covariance matrix with
eigenvectors and eigenvalues, selecting PC’s with the highest Eigenvalues, and the product of the
original data matrix. The number of PCs was selected based on the CEVR (Cumulative Explained
Variance Ratio). The steps for the PCA process were given in Eqs. (1)–(8). The standard scalar
libraries from sklearn were utilized to obtain the PCA of all nine devices (Fig. 3).

6.3 Deep Neural Network Based Models
Two novel DNN based models DNNBoT1 and DNNBot2 were developed with six layers

each in the present study to detect botnet attacks based on data from 9 industrial IoT. Python
3.8, and Keras 2.3.0 API, Tensorflow 2.0 backend, NumPy, pandas, os, sklearn, matplotlib, and
DateTime libraries were used in this research. Data preprocessing and PCA were already applied
to the raw dataset; so that the output of both steps can be utilized with developed DNN models.
We have used six neural network layers that operate on all ten classes of attacks and one class of
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non-attack. The rectifier activation function (ReLU) was utilized in starting four neural network
layers. The ReLU activation function can be defined as Eq. (10). ReLU acts as a linear function
for all positive values and provides zero for all negative values.

y=max(0, x) (10)

The fifth layer used the kernel initializer followed by the dense layer with softmax function
for classification in the sixth layer. The softmax function can be given as Eq. (11).

σ

(
→
Z

)
i
= ezi∑K

j=1 ezj
(11)

where K=no of classes, ezi is input vector function, and ezj is output vector function.

Figure 2: The correlation matrix between non-attack and attack instances for provision
_PT_737E_security_camera device

Early stopping was used to reduce the learning rate through Keras callbacks function to
prevent overfitting. The number of epochs was automatically chosen using the early stopping of
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Keras callback functions based on validation loss, minimum delta value, and patience. In DNN
model training, the number of parameters such as iterations, learning rate, batch size, and the
activation function was obtained using GridSearchCV. Deep learning models such as DNN might
be complex, and data splitting is also a significant issue; while tuning the parameters.

Figure 3: 3-D PCA for all 9 IoT devices, cyan data shown normal traffic instances and pink color
data shown attack instances

Using GridsearchCV, testing different parameter branches was performed to select the best
combination of data splitting ratios for the training and testing. Other important hyperparameters
such as batch size, number of neurons, and activation functions such as relu and sigmoid were also
assessed utilizing the GridsearchCV. Based on the GridsearchCV utility, the best parameters for
both DNNBoT1 and DNNBoT2 models were obtained (Fig. 4). There was a total 2653 number
of parameters, and all parameters were trainable using DNNBoT1. For DNNBoT2, there were
8981 parameters, and all parameters were trainable.
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Both models were compiled after defining the model. The Adam optimizer was used with a
decay of 1e–3; the learning rate was automatically selected dynamically using a callback monitor.
The present problem was multiclass classification; therefore, the loss was measured based on
categorical cross-entropy; it used to compute the rate of error between the actual and the m values
for classification, such as Eq. (12).

Loss=− 1
Os

Os∑
i=0

ai · log t̂i + (1− ai) · log
(
1− t̂i

)
(12)

where Os; ai and t̂i are the output size, target, and output values, respectively.

Figure 4: (a) Developed DNN models DNNBoT1 and (b) DNNBoT2 to detect botnet attacks for
ten attack classes and one non-attack class

7 Results and Discussions

In this section, the results were discussed based on the training accuracy, validation accuracy,
training loss, and validation loss. The performance of both developed models was assessed with
the unforeseen data kept separate from during the training process for proper assessment and
evaluation of the developed models. The computation time and accuracies compared to the results
of other studies.
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7.1 Accuracy Assessment
We evaluated the performance of both DNNBoT1 and DNNBoT2 models based on loss and

accuracy (Tab. 2). These metrics are defined as follows: Accuracy of a method on a test dataset
is the percentage used to correctly identifies the test occurrences, and it is computed as Eq. (13).

Table 2: Performance of developed models based on training and validation accuracies for all 9
IoT devices

Performance Dev- Dev- Dev- Dev- Dev- Dev- Dev- Dev- Dev- Avg.
ice 1 ice 2 ice 3 ice 4 ice 5 ice 6 ice 7 ice 8 ice 9 Accu

T_Accu_ 0.8940 0.9115 0.8017 0.9188 0.9012 0.9064 0.7815 0.9240 0.8940 0.9071
DNNBoT1

T_Accu_ 0.9270 0.9004 0.8112 0.9368 0.9045 0.9185 0.8277 0.9111 0.9023 0.9144
DNNBoT2

V_Accu_ 0.8925 0.9095 0.7913 0.9157 0.9010 0.9055 0.7810 0.9216 0.8921 0.9054
DNNBoT1

V_Accu_ 0.9197 0.9001 0.8109 0.9360 0.9016 0.9176 0.8198 0.9102 0.9015 0.9124
DNNBoT2
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Device 1
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DNNBoT2 DNNBoT1

Figure 5: Number of epochs for both models for each device

Accuracy= (TP+TN)

(TP + FP + TN + FN)
(13)

An attempt was made to see if both the model was overfitted. Overfitting can be detected
if training loss is comparatively less than validation loss or a significant variance between the
validation and training loss. It was observed that the variance between validation loss and training
loss was significantly lower; therefore, it indicated that the overfitting did not exist. It was observed
that the training loss was higher since it was more challenging for the network to provide the
correct representation. However, all of the units were available during validation so that the
network can utilize its full computational power, and therefore, it may perform better than in
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training. The high accuracy was obtained on the training sets and validation sets with significantly
low variance for both models applied on nine devices. Therefore, there was no overfitting.

Table 3: Comparison of proposed DNNBoT1 and DNNBoT2 with other studies

Model Classification/ Accuracy Limitation Source
Detection

Deep autoencoder Detection Detection
accuracy 100%

Data splitting is done
manually
no classification
performed

[1]

Semi-supervised Detection Detection
accuracy
80%

Low accuracy and
high speed

[3]

SMOTE-Recurrent
neural network
(DRNN)

Detection
accuracy 99.98%

Data pre processing is
required, and no
classification

[4]

Deep learning
ANN technique

Detection Detection
accurcy
99.6%,

This method is not
suitable for real-time
analysis, no
classification

[17]

Deep autoencoders Detection Detection
accuracy 84%

Cannot detect
unknown
botnets

[29]

ZeroR, OneR
classifier

Classification Classification
accuracy 85%

10 to 60 attributes
only

[30]

Domain generation
algorithm(DGA)
based on deep
learning

Classification Classification
accuracy 90%

Not suitable for
real-time

[31]

DNNBoT
(Proposed)

Detection,
classification

Accuracy
90.71%, 91.44%

- (Proposed)

As mentioned earlier, both models were hyperparameters tuned using GridsearchCV, and
callbacks were utilized to automatically select the optimal number of epochs to prevent overfitting
for all nine devices. The automatically selected number of epochs for both DNNBoT1 and
DNNBoT2 were given in Fig. 5. DNNBoT1 was efficient in several epochs, which were 233 and
196 for DNNBoT1 and DNNBoT2, respectively, Figs. 6, 7. The utilization of callbacks to select
an optimal number of epochs was computation and time efficient instead of fixing the number of
epochs for different models or datasets, consuming more computing resources and time.
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Figure 6: (Continued)
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Figure 6: (Continued)
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Figure 6: Performance evaluation of DNNBoT1 model for all 9 IoT devices (D1–D9) based on
accuracy and loss of training and validation

The developed models, i.e., DNNBoT1 and DNNBoT2, demonstrated good training and
validation accuracy; however, devices 3 and 9 showed average training and validation accuracy
of 80%. The significantly lower performances of both models for device 3 (Ennio doorbell) and
device 7 (Samsung_SNH_1011_N_Webcam) can be correlated with fewer data, i.e., data of only
six classes out of a total of eleven classes. The average training accuracy of DNNBoT1 and
DNNBoT2 was 90.71% and 91.44%, respectively; the average validation accuracy of DNNBoT1
and DNNBoT2 was 90.54% and 91.24%, respectively. Thus, DNNBoT2 performed slightly bet-
ter than DNNBoT1 based on the training and validation accuracies. Interestingly, the variance
between training and validation accuracy was significantly lower in both models; and there was no
sign of overfitting or underfitting. Therefore, the accuracies of both models for multiclass botnet
classification are higher than in previous studies [3,29–31] based on DNNBoT1 and DNNBoT2
datasets.

7.2 Computational Complexity of the Present Study
The developed models, i.e., DNNBoT1 and DNNBoT2converge quicker with an automated

and optimized number of epochs using callback functions. The number of parameters for both
models was 2663 and 8991, respectively; all the parameters were trainable. It was evident that
DNN models were having a smaller number of parameters. The present investigation utilized
Tensor Processing Units (TPUs) v2–8. These TPU’s are Google’s application-specific circuits,
which accelerate the AI models training workflows. There were eight cores and 64 GiB memory in
the TPU v2–8 used in the present investigation. DNNBoT1 took 64 s and 37 ms with 26 epochs
on average, whereas MLP used only 58 seconds and 16 ms to train the model with 22 epochs.

7.3 Comparison from Other Studies
The present study used the N-BaIoT dataset, one of the available real industrial IoT datasets

compromised with two well-known botnet attacks, i.e., MIRAI and BASHLTE. The accuracy of
developed novel models DNNBoT1 and DNNBoT2 was compared with other established studies
using presented in Tab. 3.
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Figure 7: (Continued)
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Figure 7: (Continued)
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Figure 7: Performance evaluation of DNNBoT2 model for all 9 IoT devices (D1–D9) based on
accuracy and loss of training and validation models’ performance based on computation

8 Conclusion

We aimed to develop two novel deep neural network-based botnet detection and classifica-
tion models for IoT devices. The main contribution of this research is to detect and classify
the application-specific threat, e.g., scan attack, DDoS, TCP flooding, UDP flooding, and sync
flooding; which are one the most common attack. Models developed in the present investigation
used complete attack datasets, unlike previous approaches, which assumed that attacks constitute
only a small subset of the whole dataset. Presented models utilized the PCA process to reduce the
dimensionality; deep neural network-based models run with optimized parameters obtained from
rigorous GridsearchCV based hyperparameters tuning. The callback function was utilized for early
stopping to optimize the number of epochs and avoid overfitting. Both models keep learning with
time to detect and classify botnet attacks. The results based on unforeseen data kept separate from
the training process were used to evaluate the performance of the two developed models. Both
models showed good training and validation accuracy with minimal loss and time efficiency. The
future scope of the present investigation is to integrate more datasets, apply novel model such as
firefly with deep neural networks to understand the internal learning process so that efficiency can
be further enhanced in the future [32,33].
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