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Abstract: The emergence of Beyond 5G (B5G) and 6G networks translated
personal and industrial operations highly effective, reliable, and gainful by
speeding up the growth of next generation Internet of Things (IoT). Industrial
equipment in 6G encompasses a huge number of wireless sensors, responsible
for collecting massive quantities of data. At the same time, 6G network
can take real-world intelligent decisions and implement automated equip-
ment operations. But the inclusion of different technologies into the system
increased its energy consumption for which appropriate measures need to
be taken. This has become mandatory for optimal resource allocation in
6G-enabled industrial applications. In this scenario, the current research
paper introduces a new metaheuristic resource allocation strategy for cluster-
based 6G industrial applications, named MRAS-CBIA technique. MRAS-
CBIA technique aims at accomplishing energy efficiency and optimal resource
allocation in 6G-enabled industrial applications. The proposed MRAS-CBIR
technique involves three major processes. Firstly, Weighted Clustering Tech-
nique (WCT) is employed to elect the optimal Cluster Heads (CHs) or
coordinating agents with the help of three parameters namely, residual energy,
distance, and node degree. Secondly, Decision Tree-based Location Prediction
(DTLP) mechanism is applied to determine the exact location of Management
Agent (MA). Finally, Fuzzy C-means with Tunicate Swarm Algorithm (FCM-
TSA) is used for optimal resource allocation in 6G industrial applications. The
performance of the proposed MRAS-CBIA technique was validated and the
results were examined under different dimensions. The resultant experimental
values highlighted the superior performance of MRAS-CBIR technique over
existing state-of-the-art methods.
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1 Introduction

With a strong motivation coming from highly-demanding upcoming IoT-enabled applications and
constraints faced in fifth generation (5G) networks, sixth generation (6G) networks have evolved based
on 5G in all aspects to revolutionize human life and society. At first, network efficiency of 6G is
set to upgrade to new high levels, for instance, high data rate (upto Tbps), low latency (sub-ms), 3D
ubiquitous coverage (in sea, undersea, and space), high precision localization (up to cm-level), extreme
level security, privacy, etc. Next, 6G application areas are set to be highly complex and multi-faceted
in nature, resulting in conflicting needs [1].

Consequently, 6G possesses the capability to connect millions of applications and devices seam-
lessly with a guarantee for performance. Therefore, 6G plays a significant role in enabling huge
connectivity for IoT devices of completely different service needs. In order to enable huge IoT,
6G is set to follow a novel network framework with advanced technologies that can meet the
future requirements. Fig. 1 shows the applications of 6G networks. From technological framework
perceptions, some industrial 6G primarily consists of application layer, perception layer, network layer,
and platform layer. Amongst them, perception layer gathers huge volumes of data through a number of
sensor nodes. Data mining is a concept which practices the collection of huge volumes of data [2,3]. The
network layer is primarily accounted for forwarding and transmission of data, whereas the application
and platform layers exist in data centre. In spite of holding huge volumes of data, conventional data
centre is highly ineffective in data processing. It has several wireless communication techniques. It
cannot meet the transmission needs with the help of one kind of network communication technique
during distinct situations. The sensor nodes in the network should execute cooperative transmission if
it needs to achieve low delay, less network transmission cost and high efficiency [4]. But, due to network
bandwidth constraints, when the requirement for low latency and collaborative work increases, the CC
scheme could not meet the needs of users within the given response time. Now, the development of
edge computing module certainly carries a solution to this efficacy problem. But there is certainly a
low level of gradual reduction observed in the energy consumption of sensor nodes. Further, the edge
computing module still faces the QoS needs of the scheme. In this scenario, it becomes inevitable to
find a solution for the execution of moderate resource allocation to reduce node energy utilization and
attain an effective collaboration among nodes [5].

In order to achieve the aforementioned requirement and increase the overall capacity of system,
two distinct methods can be followed based on Shannon’s data concept i.e., improve the spectral
performance or increase system bandwidth [6]. Though there exists few challenges, it is familiar that
spectrum management is significant for effective spectrum consumption. Particularly, it is well-known
that the main problem in mobile networks are fixed models for resource management and spectrum
assignment. This becomes highly complex in 6G, owing to increasing number of subscribers and
their demand for high number of data-hungry applications and intermittent connectivity [7]. In this
scenario, several researches have displayed that though fixed spectrum allocation is not a difficult task,
spectrum performance becomes low because the license owners of the specific spectrum do not use it
continuously. Many methods have been projected to improve spectrum management, for instance,
auction mechanisms/Opportunistic Spectrum Access (OSA). In spite of the benefits of this approach,
there exists few challenges based on convergence, security, and high computing power. Mainly, when
this protocol provides few collaborations at system level, the collaboration among the users is not
deliberated since it hinders the efficiency of entire solution. Compared to the previous generation, 6G
is anticipated to be highly supportive with novel techniques such as mobile edge computing, wireless
power transfer, Device-to-Device (D2D) communications and IoE highly based on the cooperation
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among devices. In such case, there is no need of new methods based on resource management and
central authority controlling spectrums like blockchain [8,9].

Figure 1: Applications of 6G networks

Liu et al. [10] proposed NOMA-based hybrid spectrum access system for 6G-enabled cognitive
IoT (CIoT) in which CIoT might access the busy and idle spectrum through NOMA irrespective of
PU states. Mukherjee et al. [11] tackled the energy utilization problem of a huge IoT system using
dynamic network clustering/architecture with MAS for industrial 6G applications. Shukla et al. [12]
proposed Block RAS, a blockchain-based RAS to manage the demand & supply of resources among
RPC and users through a trusted and secured platform. Block RAS offers an optimum bandwidth
transmission which is highly reliable and low latent among RPC and users with embedded 6G network
structure. Sodhro et al. [13] emphasized on how energy-effective communication occurs and a user’s
QoE level could be taken by UT device at the time of multimedia transmission. At last, a relation
module is presented to integrate QoS parameters after evaluating the QoE perceptions. Deebak et al.
[14] presented Dynamic Driven Congestion Control and Segment Re-routing (DD-CCSR) process
with two basic objectives such as mitigation of signal congestion and flow rate and enhancement of
path adjustment and monitoring procedure. Segment rerouting method, Deleroi Superimposed, and
forward backward interface were configured and implemented in IMSCore framework to analyze the
quality metrics like transmission delay and throughput rate.

Liu et al. [15], a new MD-IMA system was proposed to exploit disparate resource limitations
between heterogeneous equipment for 5G & 6G networks. Using real-world QoS requirements, the
resource availability and real-world data analyses of the interrelated equipment were established in
the projected MD-IMA system. Based on this, MA system is smartly adopted for all the equipment
in multidimensional resource areas so as to maximize the entire system requirements which had
functional limitations. Hu et al. [16] proposed a blockchain and AI-empowered DRS framework. In
this framework, the blockchain was utilized for achieving the functionalities in DRS with security and
automation and enhanced distribution. Further, AI was executed to improve the efficiency of decision
making and pattern recognition in DRS.
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The current research paper introduces a new Metaheuristic Resource Allocation Strategy for
Cluster-Based 6G Industrial Applications abbreviated as MRAS-CBIA technique. The proposed
MRAS-CBIA technique aims at accomplishing energy efficiency and resource allocation in 6G
industrial applications. The proposed MRAS-CBIR technique involves three major processes. Firstly,
Weighted Clustering Technique (WCT) is employed to elect the optimal Cluster Heads (CHs) or
coordinating agents using three parameters namely, residual energy, distance, and node degree.
Secondly, Decision Tree-based Location Prediction (DTLP) mechanism is applied to determine the
exact location of Management Agent (MA). Finally, Fuzzy C-Means with Tunicate Swarm Algorithm
(FCM-TSA) is used for optimal resource allocation in 6G industrial applications. The performance
of the proposed MRAS-CBIA technique was validated and the results were examined under different
dimensions.

2 System Model

The authors proposed MRAS-CBIA-based 6G scheme in which a huge amount of sensor nodes
is arbitrarily placed. In order to manage and decrease the continual process of redundant/related
data, the authors introduced the idea of clustering. This method separates the sensor nodes into
distinct clusters, i.e., separates the whole network into a number of autonomous and independent
small networks. The task, assumed by the sensor nodes in every cluster, is distinct. A task’s Cluster
Member node (CM) is the so-called Task Agent (TA). CH selection and clustering processes consume
more amount energy. So, the goal is to decrease the energy utilization as much as possible while enhance
the performance of the system. A dynamic MA is determined in the proposed MRAS-CBIA scheme
to manage the entire node resources. It is important to attain a precise position data of MA for smart
resource allocation. Hence, the study forecasted the position data of MA. Based on the memory and
energy utilization of whole 6G system, moderate resource allocation is performed for every cluster.
When a CH is assigned to the resource, it announces the CM in the cluster and request is to send the
collected observation to themselves. In order to decrease the effect of redundant data, WCT is used for
CH selection as it results in reduced energy utilization. Then, the CM meets the needs and dynamic
alliance is created to complete the tasks of whole system. It defines the execution of complete resource
allocation in succeeding sections.

3 The Proposed Model

The overall working principle, involved in the presented MRAS-CBIA technique, is shown in
Fig. 2. Primarily, the network nodes are randomly placed in preferable industrial applications. Then,
WCT is used to select the CHs (coordinate nodes) while rest of the nodes are termed as CMs (task
nodes). Followed by, DTLP technique is used to estimate the location of nodes in the network. Lastly,
FCM-TSA technique is utilized in proficient allocation of resources in 6G industrial application
environment. The detailed working process of every module is discussed in the upcoming subsections.

3.1 Weighted Clustering Technique

WCT is employed in determining the CHs and it creates clusters based on three variables such as
node degree, residual energy, and distance.
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Figure 2: Proposed architecture for 6G networks

3.1.1 Energy

When a message is transmitted through k bits at distance d from a recipient, then the energy of
node ni, it is defined based on Eq. (1).

Eri = E − (ETx (k, d) + ERx∼elec (k)) , (1)

Where E: denotes the current energy of the node; ETx (k, d) = k · Eelec + k · Eamp · d2 implies the
fundamental power utilized in the transmission of message, whereas Eamp represents the fundamental
amplifier energy; ERx∼elec (k) = kEelec: it indicates the power used at the time of obtaining a message.

3.1.2 Distance

It is possible to have constraint node distance to enhance cluster consistency [17]. For each node
i, the amount of distance is defined by Di with every neighbor j. This distance is employed by

Di =
∑
jεN(i)

{dist (i, j)} . (2)
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3.1.3 Node Degree

It displays the amount of ni’s neighbors given by (5) based on Eq. (3):

Ci = |N (i)| (3)

Whereas N(i) = {ni/dist(i, j) < txrange with i �= j}, dist(i, j) : out distance that distinguishes the two
nodes ni and nj, txrange: the broadcast radius. For all nodes, weight Pi should be evaluated according to
the employed function.

Pi = w1 ∗ Eri + w2 ∗ Di + w3 ∗ Ci (4)

whereas w1, w2 and w3 represent the coefficients of system conditions. Thus,

w1 + w2 + w3 = 1 (5)

3.2 Location Prediction Mechanism

A DT-based technique is adapted in the prediction of subsequent semantic place based on
the extracted spatiotemporal features. Stay points, denoted through precise position of latitude and
longitude, are nearly useless in describing the position. Hence, it is critical to annotate the stay points
with location type which become semantic places when taking end as the prediction object. For
endowing the stay points with individual data, a semantic place recognition process is proposed by POI
dictionary and “check in” points. Consecutive semantic trajectories of all the individuals are created
after the execution of semantic place recognition procedure. Based on the past motion paths, one
can detect the behavioral patterns and individual activity routines with the help of DT technique,
a common ML approach [18]. Generally, it takes two stages to build a DT such as pruning and
developing decision tree. In this study, ID3 DT method was adapted as a key tool in the implementation
of DT. This technique generates a multiway tree containing leaf node, root node, child node, and
branches. The categorical feature present in every node should be found since it produce huge data for
categorical targets. Data gain and entropy equations are given below.

entropy (D) = −
n∑

i=1

pi log2 pi, (6)

gain = entropy (D) −
k∑

j=1

|Dj|
D

× entropy
(
Dj

)
, (7)

Whereas pi denotes the likely presence of class i in dataset D, j denotes every branch node in the
tree, and |Dj|/|D| defines the weight of jth partition. The attribute with maximum data gain is chosen
as the optimal extended branch for respective nodes. DT is made for individuals in location type
prediction, based on FS. Once a DT is created, few branches tend to reflect the noise in training data.
Later, pruning procedure is executed to resolve the data overfitting problems. ID3 utilizes pessimistic
pruning with the help of error rates, evaluated from the training set, so as to replace the subtree with
a leaf node. This leaf is labeled with more common classes between the subtrees, being substituted.

3.3 Resource Allocation Strategy

Tunicates are able to determine the position of food source in sea. But it cannot view the
source of food in the provided searching area. TSA adapts two characteristics of tunicates in food
source identification process namely jet propulsion and Swarm Intelligence (SI). In the mathematical
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modeling of jet propulsion nature, tunicates need to fulfill three criteria such as avoiding the conflict
amongst Search Agents (SAs), motion in the course of place for the optimal SA, and staying closer
to the optimal SA. Then, the swarming nature updates the position of SAs based on the optimum
solution. In order to avoid the conflicts amongst SAs, vector �A is used to compute the location of new
SAs.

�A =
�G
�M (8)

�G = c2 + c3 − �F (9)

�F = 2 · c1 (10)

where �G and �F indicate grariab lesce and water flow advection in deep sea. The parameters c1, c2, and
c3 are arbitrary numbers that exist in the interval of [0,1] and �M signifies the social force amongst SAs.
The vector �M can be determined using Eq. (11):
�M = �Pmin + c1 · Pmax − Pmin� (11)

where Pmin and Pmax denote the initial and sub-ordinate speeds for making social interaction [19]. In
order to avoid conflicts amongst the neighboring ones, the SAs move in the course of optimal neighbor.

�PD =
∣∣∣�FS − rand · �Pp (x)

∣∣∣ (12)

where �PD represents the distance between food source and tunicates that search for food, x designates
the present round and �FS denotes the place of food source, i.e., optimum. Then, the vector �Pp(x)

specifies the location of tunicate and rand is an arbitrary number that lies in the interval of [0, 1]. The
SA could manage the location in the course of optimal SA.

�Pp (x) =→
{�FS + �A · �PDifrand ≥ 0.5

�FS − �A · �PDifrand < 0.5
(13)

where �Pp(x′) denotes the updated location of tunicates, based on the place of food source �FS. In the
mathematical simulation of swarming nature of tunicates, the initial pair of optimum solutions are
stored while the locations are updated based on the location of optimal SAs. The swarming nature of
tunicates can be defined as follows.

Pp (x + 1) = Pp (x) + Pp (x + 1)

2 + c1

(14)

The processes involved in TSA are listed herewith. Fig. 3 illustrates the flowchart of TSA
technique.

Step-1: Initialization of tunicate population, �P
Step-2: Select the initial parameters and maximum iteration count

Step-3: Determine the fitness value of all SAs

Step-4: Once the fitness values are computed, the optimal SA is identified in the provided searching
area

Step-5: Upgrade the location of all SAs

Step-6: Modify the upgraded SA that exceeds the limit in the provided searching area
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Step-7: Determine the fitness value of the upgraded SA. When improved solutions are obtained
compared to earlier ones, then upgrade Pp.

Step-8: When the termination condition is fulfilled, then TSA is terminated. Or else, go to step 5

Step-9: Display the optimum solutions attained

Figure 3: Flowchart of TSA

Generally, FCM is employed in grouping the instances, in which the FCM application depends
upon the guarantee of participation incentive/opening bunch in order to focus the review features. It
provides a method to assemble the ‘data focusses’ that populate few multidimensional spaces for a
certain amount of distinct clusters. A fundamental perspective of fuzzy c represents that the clustering
process provides approval to the repeated enrollment of data focuses on clusters, which are defined as
degrees. The key objective of FCM and the determination of iterative bunching are to limit the weight
inside clustering fully with a squared blunder target capability given below.

Oe =
d∑

i=1

c∑
j=1

me
ij

∥∥fi − cj

∥∥2
(15)

Whereas Oe denotes the Objective function and Fuzziness Index, d, m, c as Membership of ith data
to jth cluster center, feature vector, and jth cluster center. FCM permits every component vector to keep
a position with each bunch using truth esteem (in the range of zero and one)

Based on traditional FCM clustering and TSA model, FCM-TSA technique is introduced to
supply the resource in 6G industrial IoT platforms. The fundamental aim is to employ TSA module
in FCM method. Consider the cluster sample set as X = {x1, x2, x3 . . . , xn} ⊂ Rd, in which xp denotes
d dimension vector. It has an essential need to classify the sample set as c class. Then, set the cluster
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center as V = {v1, v2, v3 . . . , vc}, and define the degree so that the sample points come under j-th class as
μij. As well, the fuzzy matrix of sample space X is U = (μij). FCM technique is denoted as a successive
objective function for extreme problem [20]:

Q = min
n∑

p=1

c∑
q=1

μij

∥∥xp − vq

∥∥2
(16)

Thus,
∑c

q=1 μpq = 1, μpq ∈ [0, 1] , q = 1, 2, · · · , n, q = 1, 2, . . . , c. In Eq. (17), μpq denotes the degree
of belongingness to q-th data point of p-th cluster, vq signifies the q-th cluster, ‖xq − vq‖ represents
the Euclidean distance from sample point xp to a cluster center vq, and m indicates a fuzzy index. In
addition, U and V are denoted as follows.

vq =
∑n

p=1 μm
pqxp∑n

p=1 μm
pq

(17)

μpq = 1∑c

k=1

(
||xp−vq||
||xp−vk||

) 2
m−1

(18)

This technique is called local optimization method since an optimum solution is provided with the
help of hill climbing. The primary goal is to enhance the affinity between objects that are separated
as same cluster and to reduce the comparison among different clusters. TSA method is a heuristic
method with advantages of global optimization and fast convergence. Hence, it is combined with FCM
technique to resolve the disadvantages and advantages of FCM method and is named after FCM-
TSA module. In FCM-TSA method, the main aim of FCM tactic is to calculate the cluster center, and
xp = (

vp1, vp2, · · · , vpq, · · · , vpc

)
displays a cluster center set in TSA, whereas vpq represents q-th cluster

center in p-th clustering method.

In the event of 6G industrial IoT applications, the resource attribute contains bandwidth,
computation, and storage. Different operations are included by various resources. However, only a
few kinds of computation resources and computational tasks are highly efficient, while few bandwidth
tasks and bandwidth resources are deliberated as important ones. Thus, to meet the requirements of
distinct users, the resources are gathered into sets. Due to the heterogeneity and dynamicity of 6G
industrial IoT resources, it is highly challenging to define the unique resources. So, it is employed
with FCM-TSA module to cluster the resources based on multidimensional attributes. A group of
6G industrial IoT resources R = {r1, r2, r3, · · · , rm} displays m 6G industrial IoT resource nodes. In
this, each 6G industrial IoT resource node contains n features. In Eq. (16), rpq denotes the q-th feature
attributes of resource rp. Prior to fuzzy clustering, it is significant to standardize the data for different
processes. The stage to cluster 6G industrial IoT resource is given herewith. Henceforth, to resolve the
impacts created by translation cases instantaneous, SD transformation should be employed since it
can standardize the resource matrix data.

r
′
pq = rpq − rpq

Sq

(19)

r = 1
m

n∑
q=1

rpq (20)
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Sq =
√√√√ 1

m

n∑
p=1

(
rpq − r

)2
(21)

Whereas maximal value of the resource in q-th dimensional feature is r, rpq denotes the maximal
value of q-th feature attribute of resource rp and SD of each resource in q-th dimensional feature is
denoted by Sq. The calculated data, fulfilling a normal distribution, denotes mean as 0 and SD as 1.
Thus, the translation range, employed for changing matrix data, lies in the range of zero and one.

r′′
pq = r′

pq − min
{
r′

pq

}
max

{
rpq

} − min
{
r′

pq

} (22)

whereas, min
{
r′

pq

}
denotes a lower value in

{
r′

1q, r′
2q, . . . , r′

mq

}
, and max

{
r′

pq

}
indicates a higher value in{

r′
1q, r′

2q, . . . , r′
mq

}
.

Based on TSA, the fuzzy clustering method is presented to cluster the calculated resource matrix
data. The procedure included in TSA is discussed herewith. The initiation of population occurs when
each individual contains a randomly-created cluster center that divides the resources under three
categories, while the cooperative number of cluster centers are stated to be three. Next, the membership
matrix μpq is estimated and the cluster center cq is determined on the basis of Eq. (23). Therefore, FF
value is employed to calculate the fitness measure, global extreme score & single extreme score. When
superior values of the iteration are fulfilled, it can be ended so as to reach the desirable cluster center.

cq =
∑n

p=1 μm
pqxp∑n

p=1 μm
pqxp

(23)

Then, global and local pollution are continuously updated. When it undergoes a large amount
of iterations, then it can be ended to acquire a group of cluster centers. Next, the obtained simulation
result is deliberated as a primary value for FCM module and is executed to achieve the global optimum
solution. At last, when the clustering function gets completed, 6G industrial IoT resources are divided
into three elements such as bandwidth, computing, and storage resources. When 6G industrial IoT
resources are separated, then the resource scale of a provisioning procedure gets constrained. So, the
user requirements must be categorized under different kinds. Appropriate resource classification is
required in which the needs of users should be mapped with resources.

4 Performance Validation

The current section validates the performance of the proposed MRAS-CBIR technique under
different measures. Tab. 1 shows the results from channel capacity analysis of MRAS-CBIR technique
against other techniques under varying Signal-to-Noise ratios (SNR). The experimental results
highlight that the proposed MRAS-CBIR technique obtained an increased channel capacity with a
rise in SNR level and is superior to all other techniques. For instance, with an SNR of 5 dB, MRAS-
CBIR technique obtained a high channel capacity of 3.205 whereas BPNN-CNN, APSO, HML, and
conventional models attained the least channel capacity values such as 1.548, 2.984, 1.069, and 0.480
respectively. Similarly, with an SNR of 10 dB, the proposed MRAS-CBIR technique accomplished an
increased channel capacity of 3.942, whereas BPNN-CNN, APSO, HML, and conventional models
accomplished the least channel capacity values such as 3.389, 3.794, 1.843, and 1.032 respectively.
Likewise, with an SNR of 15 dB, MRAS-CBIR technique achieved an improved channel capacity of
6.520, whereas BPNN-CNN, APSO, HML, and conventional models demonstrated reduced channel
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capacity values such as 6.336, 5.047, 3.168, and 2.137 respectively. Eventually, with an SNR of 20 dB,
MRAS-CBIR technique obtained an enhanced channel capacity of 10.423, whereas other models such
as BPNN-CNN, APSO, HML, and conventional models attained the minimal channel capacity values
such as 10.239, 6.483, 5.120, and 3.573 respectively.

Table 1: Results of the and proposed MRAS-CBIA and existing methods on channel capacity during
communication

SNR (dB) MRAS-CBIA BPNN-CNN APSO HML Conventional

0 2.726 0.701 2.653 0.517 0.222
1 2.763 0.848 2.653 0.627 0.333
2 2.874 0.959 2.653 0.701 0.333
3 2.911 1.106 2.763 0.811 0.369
4 3.021 1.290 2.911 0.848 0.443
5 3.205 1.548 2.984 1.069 0.480
6 3.279 1.843 3.095 1.106 0.627
7 3.352 2.100 3.279 1.401 0.738
8 3.573 2.542 3.426 1.511 0.775
9 3.758 2.874 3.573 1.732 0.959
10 3.942 3.389 3.794 1.843 1.032
11 4.200 3.868 4.052 2.100 1.253
12 4.420 4.347 4.347 2.432 1.474
13 5.120 5.047 4.531 2.653 1.622
14 5.746 5.636 4.715 2.911 1.916
15 6.520 6.336 5.047 3.168 2.137
16 7.219 7.072 5.231 3.647 2.321
17 8.030 7.735 5.673 3.942 2.616
18 8.729 8.582 5.894 4.273 2.984
19 9.503 9.319 6.188 4.678 3.242
20 10.423 10.239 6.483 5.120 3.573

A comparative analysis of the proposed MRAS-CBIA technique against existing techniques was
conducted in terms of Depletion Rate of Residual Energy (DRRE) and the results are shown in
Tab. 2. For enhanced network performance, DRRE value should be high and tend to decrease with a
rise in time response. The experimental values highlight that the proposed MRAS-CBIA technique
accomplished an effectual outcome with a minimal DDRE value under distinct time responses.
For instance, at a time response of 0.05 ms, MRAS-CBIA technique gained a DDRE of 16.331,
whereas BPNN-CNN, LEACH-VD, and conventional techniques exhibited high DDRE values such
as 23.207, 53.004, and 65.896 respectively. Meanwhile, at a time response of 0.20 ms, MRAS-CBIA
technique accomplished a DDRE of 11.174, whereas BPNN-CNN, LEACH-VD, and conventional
techniques demonstrated increased DDRE values such as 15.471, 37.532, and 89.104 respectively.
Concurrently, at a time response of 0.30ms, MRAS-CBIA technique produced a DDRE of 9.168,
whereas BPNN-CNN, LEACH-VD, and conventional techniques depicted the maximum increase in
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the DDRE value such as 14.039, 33.521, and 59.593 respectively. Lastly, at a time response of 0.50ms,
the proposed MRAS-CBIA technique attained a DDRE of 6.303, whereas BPNN-CNN, LEACH-
VD, and conventional techniques accomplished increased DDRE values such as 10.314, 27.505, and
51.571 respectively.

Table 2: Results of the proposed MRAS-CBIA and existing methods in terms of network performance

Time response (ms) MRAS-CBIA BPNN-CNN LEACH-VD Conventional

0.05 16.331 23.207 53.004 89.104
0.10 14.039 20.055 45.555 77.930
0.15 13.179 17.763 40.397 70.194
0.20 11.174 15.471 37.532 65.896
0.25 10.314 14.612 35.527 62.172
0.30 9.168 14.039 33.521 59.593
0.35 8.882 12.893 31.516 56.442
0.40 8.022 12.606 30.370 55.009
0.45 7.163 10.887 28.937 52.431
0.50 6.303 10.314 27.505 51.571

Fig. 4 shows the results achieved in the performance of MRAS-CBIA technique in terms of
resource allocation under numerous rounds of simulation. From the figure, it is evident that the NN
model is the least performer with low resource allocation outcome. Followed by, APSO-DNN model
showcased a slightly increased performance over NN model. In line with this, BPNN-CNN model
tried to portray a moderately considerable resource allocation performance. However, the proposed
MRAS-CBIA technique accomplished superior performance over other techniques with maximum
resource allocation performance.

Figure 4: Analysis of optimal resource allocation

Finally, a detailed power consumption analysis of the proposed MRAS-CBIA technique against
other techniques was performed and the results are shown in Tab. 3 and Fig. 5. The experimental
values showcase that the proposed MRAS-CBIA technique gained an effectual outcome by consuming
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minimal power under distinct node counts. For instance, under 25 nodes, MRAS-CBIA technique
reduced the power consumption to 0.017 mW, whereas Gaussian Copula, Conventional method, and
BPNN-CNN techniques increased the power consumption up to 0.144, 0.308, and 0.054 mW respec-
tively. Under 50 nodes, MRAS-CBIA technique reduced the power consumption to 0.816mW, whereas
Gaussian Copula, Conventional method, and BPNN-CNN techniques accomplished high power
consumption i.e., 0.816, 1.215, and 0.253 mW respectively. Moreover, under 75 nodes, MRAS-CBIA
technique reduced the power consumption to 0.199 mW, whereas Gaussian Copula, Conventional
method, and BPNN-CNN techniques increased their power consumption up to 2.031, 2.358, and 0.616
mW respectively. Finally, under 100 nodes, MRAS-CBIA technique reduced the power consumption
to 4.335 mW, whereas Gaussian Copula, Conventional method, and BPNN-CNN techniques resulted
in increased power consumption of 3.827, 1.414, and 0.689 mW respectively.

Table 3: Results of the proposed MRAS-CBIA and existing methods in terms of power consumption
(mW)

No. of nodes Gaussian copula Conventional
method

BPNN-CNN MRAS-CBIA

10 0.144 0.308 0.054 0.017
15 0.217 0.344 0.090 0.035
20 0.253 0.453 0.072 0.035
25 0.308 0.562 0.108 0.054
30 0.362 0.670 0.144 0.072
35 0.453 0.761 0.144 0.054
40 0.525 0.870 0.162 0.090
45 0.652 1.051 0.181 0.072
50 0.816 1.215 0.253 0.108
55 0.997 1.432 0.253 0.090
60 1.215 1.632 0.344 0.108
65 1.396 1.886 0.416 0.126
70 1.723 2.122 0.507 0.162
75 2.031 2.358 0.616 0.199
80 2.412 2.666 0.743 0.217
85 2.757 2.902 0.870 0.253
90 3.283 3.174 1.015 0.344
95 3.755 3.483 1.197 0.435
100 4.335 3.827 1.414 0.689

From the aforementioned tables and figures, it is clear that the proposed MRAS-CBIA technique
is an effectual performer compared to all other methods.
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Figure 5: Comparative Analysis of MRAS-CBIA Model in terms of Power Consumption

5 Conclusion

The current study designed a new MRAS-CBIA technique to achieve energy efficiency and
optimal resource allocation in 6G Industrial applications. The proposed MRAS-CBIA technique
derives a new WCT to elect an optimal set of coordination nodes in 6G networks while rest of them are
labeled as task nodes. Followed by, DTLP technique is executed to determine the location of nodes in
the network. Finally, FCM-TSA technique effectually allocates the resources and accomplishes energy
efficiency. Besides, FCM-TSA technique partitioned the resource while the scalability of resource
searching process gets minimized. In order to validate the enhanced performance of the presented
MRAS-CBIA technique, an extensive range of simulations was conducted. The experimental values
confirmed that the proposed MRAS-CBIA technique achieved high energy efficiency and optimal
resource allocation in 6G industrial applications. In future, the design of MRAS-CBIA technique can
be extended to include task scheduling and MAC scheduling approaches.
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