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Abstract: This paper investigates the resource optimization problem for a
multi-cell massive multiple-input multiple-output (MIMO) network in which
each base station (BS) is equipped with a large number of antennas and each
base station (BS) adapts the number of antennas to the daily load profile
(DLP). This paper takes into consideration user location distribution (ULD)
variation and evaluates its impact on the energy efficiency of load adaptive
massive MIMO system. ULD variation is modeled by dividing the cell into
two coverage areas with different user densities: boundary focused (BF) and
center focused (CF) ULD. All cells are assumed identical in terms of BS
configurations, cell loading, and ULD variation and each BS is modeled as an
M/G/m/m state dependent queue that can serve a maximum number of users
at the peak load. Together with energy efficiency (EE)we analyzed deployment
and spectrum efficiency in our adaptive massive MIMO system by evaluating
the impact of cell size, available bandwidth, output power level of the BS, and
maximum output power of the power amplifier (PA) at different cell loading.
We also analyzed average energy consumption on an hourly basis per BS for
the model proposed for data traffic in Europe and also the model proposed for
business, residential, street, and highway areas.

Keywords: Massive MIMO; traffic load; energy efficiency; user location
distribution; optimization

1 Introduction

In the current mobile communication systems, due to the technical limits such as occupied
space and implementation complexity in a multi-antenna system, the number of antennas con-
figured on the transmitter/receiver (TX/RX) end is limited. Massive MIMO has been recently
proposed as a potential technique that significantly enables the increase the network throughput
and energy efficiency [1,2].
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The amount of mobile data traffic has increased dramatically over the years, which is mainly
driven by the massive demand of data-hungry devices such as smart phones, tablets and broad-
band wireless applications such as multimedia, three-dimensional (3D) video games, e-Health,
Car2X communications [3]. In particular, the radio access part of the wireless cellular network is a
major energy killer, which accounts for up to more than 70% of the total energy bill [4]. Also, the
Carbon dioxide (CO2) contribution of the telecommunications sector to the global CO2 emission
has increased rapidly over the last decade, where mobile operators are among the top energy
consumers. Thus, besides spectral efficiency, energy efficiency is crucial, so wireless researchers
and engineers need to shift their focus to energy-efficiency oriented design in order to reduce
the operation cost for mobile operators and minimize the environmental impact of the wireless
domain.

In general, efficient allocation of radio resources (e.g., power, frequency, time, and antennas)
plays a crucial role in improving wireless network performance. Taking into consideration different
points of view, there are several energy efficiency (EE) metrics to evaluate wireless networks.
In particular, authors at [5] are bringing new insights into how the M number of antennas at
the base station (BS), the number K of active user equipment (UEs), and the transmit power
must be chosen to uniformly cover a given area with maximal EE. In [2] authors focused in
the design of a green, highly energy-efficient cellular heterogeneous network (HetNet) by taking
advantage of MIMO structure and deployment of small cells. Authors have furthermore designed
a joint antenna selection and Resource Block (RB) allocation algorithm, followed by a power
optimization algorithm, to maximize the system EE under the additional constraints of minimum
guaranteed user rates and maximum fronthaul capacity limits.

Resource allocation for EE maximization has been an active area of research in recent
years. Design of an optimal resource allocation algorithm can be challenging especially if the
underlying resource allocation problems are non-convex [6]. Previous related contributions have
already provided some insights into energy-efficient systems design with load-adaptive massive
MIMO.

Furthermore, several works [7] the authors optimized power amplifiers (PA) dimensioning
for massive MIMO systems with load adaptive number of antennas. Their study considers both
the traditional PA (TPA) and a more efficient PA, namely envelope tracking PA (ET-PA). An
iteration optimization algorithm was proposed in [8] for a multi-cell massive MIMO system where
each cell maximizes average EE adaptively with the variation of network load. The proposed
algorithm yields significant gains in EE at the cost of reduction of average user data rate at
low user load. Our results show that, EE and average user rate (UR), increase or decrease
with the change of certain system parameters. EE maximization problem in [9] is formulated
in a game theoretic framework where the number of antennas, which will be used by a BS, is
determined by best response iteration. This load adaptive system achieves an overall 19% higher
EE compared to a baseline system where the BSs always run with a fixed number of antennas. The
impact of user location distribution (ULD) variation on the energy efficiency of a load-adaptive
massive MIMO system is analyzed in [10]. The authors in [11] analyzed energy-efficient massive
MIMO system focused on joint antenna selection, optimal transmit power, joint user selection,
and circuit power consumption (CPC) to balance the radiated EE and adjust the length of the
pilot sequences to improve channel estimation. In [12] authors developed a new parallel algorithm
for resource allocation and subcarrier assignment, and implement the Hungarian algorithm on
parallel architectures. However, none of these studies provided any mechanism for dealing with



CMC, 2022, vol.71, no.1 873

daily load changes and the impact of individual system parameters on EE, in a multi-cell scenario
with different ULD models.

In this paper, the aim is to investigate the energy-efficient resource allocation algorithm for
a single-cell and multi-cell multi-user massive MIMO system. Our paper examines the effect
of two ULD models, namely, boundary focused (BF) and center focused (CF) and is different
from [10] by analyzing the impact of cell size, available bandwidth, the output power level of
the BS, and maximum output power of the PA on EE at different cell loading. The influence
of certain mentioned system parameters was analyzed in similar works, but not on the system
which has formed different ULD models. Also the influence of bandwidth size on performance
was not analyzed in available papers on the same or similar system model. We propose a resource
allocation strategy to adapt the number of antennas based on tracking variations of ULD and
cell loading maximizing the EE. Resource allocation scheme jointly optimizes the number of BS
antennas, user load distribution, and cell loading. This strategy is different from [8] by way of its
taking advantage of two environment variations to exploit massive MIMO favorable propagation
to lower the number of active antennas while maintaining a tolerable user rate loss and thus
operating more efficiently.

In order to maximize EE throughout 24-hour operation of the network, it is necessary to
optimize M following the daily load profile (DLP) and ULD model. In order to map the user
distribution to the DLP, we model each BS as a state dependent M/G/m/m queue [13,14] and
utilize the DLP as suggested in [15].

The above mentioned state dependency is due to the fact that the user rate depends on the
number of users that the BS can serve simultaneously. The peak load of the DLP is when BS
serves a maximum number of users. Network is dimensioned to handle peak data traffic and it
becomes most energy efficient when serving maximum load.

In particular, we divide a cell into two areas and for each area, we consider the user distri-
bution and the optimum number of antennas that maximize EE under the given network load
and interference condition for any number of users a cell serves. Generally, a user located at the
cell boundary will receive the weakest signals from its BS but the strong interference from other
BSs. For this reason, our goal is to determine and compare system performance in these two cell
areas.

The specific contributions of the paper are as follows:

• We derive two systems for analyzing energy efficiency: adaptive and fixed antenna system,
each one contains two ULD models boundary focused (BF) and center focused (CF).
• We investigate the total energy efficiency of our considered and fixed antenna system taking
into account the number of BS antennas, user load distribution, and cell loading.
• We propose a dynamic resource allocation strategy to adapt the number of antennas based
on tracking variations of user location distribution and cell loading.

The following section presents description of created models: system, ULD, traffic, and power
consumption model. The third section provides a problem formulation and description of the
created optimization algorithm. In the fourth part additional scenarios of the basic model are
formed to ascertain which system parameter values of the analyzed model result in the best
performance during the appliance of the massive MIMO. The results and the discussion of the
analyses are also shown in the fourth part. At the end of the paper there is a conclusion.
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2 Analyzed Models

In this paper, we consider a downlink of a multi-cell massive MIMO system that contains
hexagonal cells, each having its own BS and we apply classic wrap-around to avoid edge effects.
Each BS transmits a constant output power Pc and uses Mi antennas to serve Ki single-antenna
users, such that Mi > Ki. Users with multiple antennas are not considered because of computa-
tion complexity, which UE has to pay to gain the benefit of multiple antennas. The users are
distributed inside each cell according to created ULD models. Output power Pc at each BS is
distributed equally among PAs, where each PA is connected to one antenna element, so, the mean
output transmission power per antenna is p = Pc/Mi. We consider block flat-fading Rayleigh
channel with Bc(Hz) coherence bandwidth and Tc (s) coherence time which remain static within
a time-frequency coherence block of U = BcTc symbols. Spacing between adjacent antennas at
the BS is such that the channel components between the BS antennas and the single-antenna
UEs are uncorrelated and the path distances are the same. This is reasonable since the distances
between UEs and the BS are much larger than the distance between array elements. Large-scale
fading is dominated by path-loss and a typical 3rd Generation Partnership Project (3GPP) distance
dependent path-loss model is used.

We assume that all BSs and UEs are synchronized and operate on time-division duplex (TDD)
protocol and that the BS obtains perfect Channel state information (CSI) from the uplink pilots,
which is a reasonable assumption for low-mobility scenarios. All BSs employ zero-forcing (ZF)
precoding to cancel out intra-cell interference by using the beamforming technique, which is a
signal processing technique that cancels out intra-cell interference by beamforming and adapts the
power allocation to guarantee the same rate to each user. Numerical results in [16] show that ZF
performs similarly to the close-to-optimal regularized zero-forcing precoding (RZF) scheme. ZF
method requires the operation of direct matrix inversion and due it complexity authors in [17]
proposed Weighted Gauss-Seidel (WGS) method to perform the ZF precoder and provides better
error performance in spatially correlated channels. The authors of [18] have proposed flexible
beamforming (FBF) antenna architecture that allows flexibility in terms of data rates, coverage
and scalability in an energy efficient manner.

The energy-efficiency (in bits/Joule) of a massive MIMO system is defined in [19,20] as
the spectral-efficiency (sum-rate in Mbit/s) divided by the total consumed power (in Joule/s).
According to expression for rate and consumed power the corresponding EE will be:

EE(Ki,Mi)=
∑Kmax

k=1 R(k,Mi, )

Ptotali (Ki,Mi)
(1)

In the expression for distance-dependent rate at UEz, necessary overhead for channel acquisi-

tion in equal to Q1 =
(
1− αKmax

TcBc

)
, where α is the pilot reuse factor, Kmax is the maximum number

of users assumed to be the same for all cells (i.e., the number of pilot sequences = αKmax) and
TcBc is the number of channel uses that the channel stays fixed. Mean transmit power per user
is Q2 = pMi

Ki
and Q3 = (Mi−Ki) is the effective array gain. Average noise power that disturbs the

received signal from the serving BS is expressed as Q4 = Bδ2

di(UEz)
whereas Q5 =

J∑
j=1

{
dj(UEz)
di(UEz)

pMj

}
is

average inter-cell interference power. The term di(UEz) in Q5 represents the path loss from the
serving BS at origin cell i to UEz and the term dj(UEz) represents the path loss from interfering
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cell j to UEzinside the origin cell i. The distance-dependent rate at UEz within cell i can be found
by:

RUEz(Ki)=BQ1log2

(
1+ Q2Q3

Q4+Q5

)
(2)

Power consumed in a BS depends on the number of active antennas and the number of
users served simultaneously. It consists of a fixed part (e.g., control signal, backhaul, direct
current-direct current (DC–DC) conversion) and a dynamic part, i.e., radiated transmit power
and circuit power which depends on the number of active antennas and number of users served
simultaneously.

Based on the models and the practical numbers in [21,22], the total power in a BS i with Mi
active antennas and Ki users is given by:

Ptotali (Ki,Mi)=MiPPA(p)+PBB(Ki,Mi)+Poth (3)

where PPA(p) gives the power consumption of a traditional PA (TPA) when the average output
power is p. The total input power needed by TPA can be approximated as [23,24]:

PPA(p)≈ 1
η

√
p ∗Pmax,PA (4)

where ηis the maximum TPA efficiency and Pmax,PA is maximum output power.

PBB(Ki,Mi) is the base band signal processing power when the BS serves Ki users simultane-
ously with Mi antennas. Poth includes the load-independent power for site cooling, control signal,
DC–DC conversion loss, etc.

PBB(Ki,Mi)=
Kmax∑
k=1

Ri(k)(PCOD+PDEC)+Psyn+ BK3
i

3TcLBS
+

PBS+ BKi
LBS

(
2+ 1

TC

)
+ 3BK2

i
LBS

(5)

where
Kmax∑
k=1

Ri(k) is the total rate handled by the BS as calculated in Eq. (2), PCOD and PDEC are

the power required for coding and decoding, respectively, whereas Psyn is the power consumed
by the local oscillator. LBS is BSi computational efficiency. PBS is the power required to run the
circuit components, e.g., converters, mixers and filters attached to each antenna at the BS.

ULD model formed in this paper defines two coverage areas which are divided with radius
rD, so that rD > rmin and rD < rmax. Fig. 1 shows how cell is divided into two coverage areas, for
the case of rmax= 1000 m.

Every area is assigned a set of weighting factors γ = {γc,γb}, where each weighting factor is a
function of time so that it can take different values during the day. The sum of weighting factors
at any time instant is always unity i.e.,

∑
γ = 1. Areas of center and boundary areas are:

S=

⎧⎪⎨
⎪⎩

π(r2D− r2min)
3
√
3r2max
2

−πr2D
(6)
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Figure 1: UE distribution in center and boundary coverage areas

Network loads vary throughout the day, so in order to capture the daily traffic variation
and maximize EE throughout the day, we model each BS as an M/G/m/m state dependent queue
[11,13] where M denotes the distribution of the inter-arrival time of users, G the distribution of
the service time, m denotes the number of servers, and m denotes the capacity of BS. This queue
is also called m-server loss system because number of servers is equal to a maximum number of
users, m=Kmax, so there is no waiting lines for additional users, all users after Kmax are blocked.
The time of user arrival to BS is independent of that of other users arriving and they arrive
according to the exponential distribution with rate λ. BS can serve a maximum number of users
simultaneously, M = Kmax, at the peak load, when all Mmax BS antennas are in use. Expected
service time is equal to the time for BS i to serve a single user. The service rate is the data rate per
user which is dependent on the number of serving users at BS and follows a general distribution
G. The change in the number of users at BS will result in the change of the service rate for every
user. Thus, if there are n users that are served simultaneously, all of them will have service rate
μ(n), but if there is an arrival to BS the service rate will change to μ(n+ 1). Likewise, if a user
is no more served by BS the service rate will change to μ(n− 1).

The steady state probabilities for the random number of users n in the BS i are modeled as:

πi(n)=
[

[λE[T1]]n

n!μ(n)μ(n−1)...μ(2)μ(1)

]
πi(0)

πi(0)−1=
∑m=Kmax

j=o

{[
λE[T1]

μ(n)μ(n−1)...μ(2)μ(1)

]j
1
j!

} (7)

where πi(0) is the probability that there is no user in cell i, λ is the user arrival rate, E[T1]= d
Ri(1)

is

the expected service time when there is a single user in BS, d is the total data traffic contribution

by a single user, Ri(1) is data rate when there is a single user in BS i. μ(n)= Ri(n)
Ri(1)

is the service

rate and it is ratio of the data rate of n users in BS, to that of a single user in BS. The data
rates for different user states are calculated according to Eq. (2), which is previously defined.

We allow at most 2% blocking at 100% load, i.e., the probability of serving the maximum
allowed number of users, m= Kmax simultaneously is 0.02. During our analyses we consider the
daily load profile proposed for data traffic in Europe [15]. To find user steady state probabilities
at different cell load conditions, we just need to use λt = λmax ∗

( xt
100

)
where xt is the cell loading

at time instant t and λmax can be found using blocking probability πi(Kmax)= 0.02. Our objective
is to maximize EE by adapting the number of active antennas for any user states.
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3 Problem Formulation and Optimization Algorithm

In this paper, we want to maximize the EE of the system described in Section 2. Our EE
problem is divided into smaller ones, and the solution to this problem was found through several
steps. In order to achieve better EE in the system, it is necessary to adapt the number of active
antennas for any user states. This is done iteratively. First, each BS finds the most energy efficient
number of active antennas taking into account the interference from the surrounding BSs and a
given number of users. This optimal number of antennas Mopt for each user state can be found
by maximizing EE for a certain ULD model:

Mopt = argmax :
Mi

∑Kmax
k=1 R(k,Mi,)

Ptotali (Ki,Mi)

subject to Mi ≥C1 and Mi ≥C2

(8)

The constraint C1= Pc
Pmax,PA

∗10PAPR comes from the minimum number of antennas by keeping

Peak-to-average power ratio (PAPR) of the transmitted signal at 8 dB and the requirement C2=
k+1 of ZF precoding. A weighted-average value of Mopt at a certain cell loading condition during
time instant t can be calculated as:

Mt
avg =

[Kmax∑
k=1

πi(k) ∗Mopt(k)

]
(9)

We use the daily load profile proposed for data traffic in Europe however, the mean value
can be calculated for another period or part of the day for which we need to have an appropriate
load profile for data traffic.

In order to find an optimum number of antennas, we first determine the global optimum
point which represents the maximum number of users and antennas within, which we search for
the optimal value of the system. Then we formulate the problem to find the optimum cell size,
bandwidth, output power level of the BS, and maximum output power of PA. The influence of
cell size change on pilot contamination and thus on system performance is analyzed in [25]. Their
results show that pilot sequence length significantly increases as the cell radius is reduced, so
downlink spectral and energy efficiencies significantly improve. Authors in [26] proved that small
cells give high EE, but the EE improvement saturates quickly with the BS density. The potential
energy savings that can be achieved through bandwidth expansion at relative low traffic load are
investigated in [27].

In order to analyze the performance of our established model with dynamic change of
antenna number, a reference model was created which uses a previously determined global maxi-
mum number of antennas Mmax. This reference model in our simulations is called a fixed antenna
system, because it keeps the Mmax antenna active all the time, regardless of cell changes in terms
of the number of active users, cell load, and ULD model, except for the case when there is no
user in the system. A significant EE gain was achieved in [28] when specified number of antennas
are activated per cell, where the gain in some scenarios was 25%. The gain is the highest when
the amount of power allocated to each user is the lowest.

Since changes in the cell are constantly occurring, it is necessary to adapt radio resources to
these changes and establish a dynamic allocation of resources that result in high energy efficiency.
Authors in [29] proposed two algorithms for EE-oriented resource allocation schemes, which
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optimize the number of antennas, user selection, and power allocation jointly. The algorithm
proposed in [28] firstly shows a low-interference UE grouping algorithm, and then, it presents a
resource allocation algorithm based on the results of the user grouping algorithm, which ensure
the UEs with better channel quality can be properly allocated on corresponding RBs.

Our algorithm aims to find the optimal number of antennas of BS, taking into account the
current state in the cell. But the first step of the algorithm is to find the global optimal number of
antennas and users (Mglopt ,Kglopt). The determined global optimum of antennas is used to initialize
the number of antennas of a fixed system and the initial weighted average optimal number of
antennas Mavg. Then, it iteratively updates Miterate with Mavg. For all user states k, we find the
vector of antennas that maximizes EE at different user states Mopt(k) using Eq. (8), and we also
calculate steady state probabilities πi(k) using Eq. (7). Next, we calculate the weighted average
optimal number of antennas, Mavg according to Eq. (9), and adjust Miterate with Mavg until it
converges. The search for M that maximizes EE over each user state is step that is computationally
the most expensive part in the algorithm, so complexity can be approximated to the order of
O(n2).

Similar algorithm was proposed in [10] where authors looking for optimal number of antennas
that matches the instantaneous system conditions: cell loading, ULD model, and number of active
users. The same conditions are analyzed in our algorithm but ULD model is different. The results
match in the part where the ULD model is the same.

The described steps of the proposed strategy are shown in Algorithm 1, and were performed
only for one considered cell due to the assumed configuration symmetry in all cells.

Algorithm 1: Optimization strategy for analyzed system model

ConstraintforM : Mmin ≥
[

Pc
Pmax,PA

∗ 100.8
]
& Mmin ≥ k+ 1

Intialization :
Mmax←M
Kmax←M/2

For m ∈ [Mmin,Mmax] and k∈[1,Kmax] do
EE(m,k)←

∑Kmax
k=1 R(k,Mi,)

Ptotali (Ki,Mi)

EEglopt(Mglopt ,Kglopt)←max :
∑Kmax

k=1 R(k,Mi,)

Ptotali (Ki,Mi)

End for
MFIXmax←Mglopt

Mavg←Mglopt
Miterate←Mavg
While Converged = false
For all user states k∈[1, Kmax] do

Mopt(k)← argmax
Miterate

∑Kmax
k=1 R(k, Miterate,)

Ptotali (Ki,Miterate)

Ropt(k)← arg max
Miterate

R(k,Miterate,)

(Continued)
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πi(k)←
[

[λE[T1]]k

n!μ(k)μ(k−1)...μ(2)μ(1)

]
πi(0)

end for

Mavg←
[
Kmax∑
k=1

πi(k) ∗Mopt(k)

]
if Mavg ==Miterate

Converged = true
else Miterate←Mavg

end while

4 Results and Discussion

The cellular network in our simulation consists of 19 regular hexagonal cells. BS from each
cell transmits a constant output power Pc = 20 W , and the minimum distance from BS is 35 m.
The maximum cell radius in the main scenario is 500 m. We distributed 10000 test points in each
cell, using the Monte-Carlo insertion method, to calculate average channel variance. Test points
are distributed in the area bounded between the circle of minimum cell radius of 35 m and the
cell edge according to formed ULD models. Classic wrap-around technique has been applied to
avoid edge effects. We assume all cells are symmetrical in BS configuration, ULD, and cell loading
variations.

4.1 Impact of the Cell Size on EE
Cell size is a very important factor in the design of massive MIMO networks that can

significantly affect system performance and the amount of capital investment which includes
infrastructure costs such as base station equipment, backhaul transmission equipment, site instal-
lation, and radio network controller equipment. In this scenario, we analyze the impact of cell size
on system performance, especially on EE in the two observed coverage areas: center and boundary.
We formed three sub-scenarios for three different cell sizes: sub-scenario with a cell radius of 500,
1000, and 2000 m. Users close to the cell boundaries suffer from strong interference, therefore it
is important for these users to determine the optimal cell size.

Our results show that EE and Average UR are significantly higher in the CF area than in BF
for each considered cell size. But, for all considered scenarios, compared to a system with a fixed
number of antennas, both BF and CF users achieve better results when adaptively selecting the
number of antennas. Results for EE for all cell size scenarios are shown in Fig. 2.

Our analysis confirms that EE increases with the cell size shrinking, but reducing the cell
size will also decrease the array gain. Therefore, the achievable SE decreases when the cell size
is too small. The transmit power decreases with the cell size shrinking because the users will be
closer to the BS. Therefore, transmit power is much lower than the circuit power, so EE in the
network with a small cell size is dominated by the circuit power. Our results are consistent with
findings from [8] where EE also increases with the decrease in cell size and optimum transmit
power decrease with the decrease in cell size. Also results in [12] shows that spectral efficiency per
user is reduced by the increasing the number of users in the system. This is because resources are
distributed among more users. However, in [28] the proposed algorithm achieved an improvement
in spectrum efficiency by 28%, when the number of UEs reached 80.

We found that for a cell radius of {500, 1000, 2000} m, the corresponding Mmax is {213, 222,
250} and Kmax is {100, 97, 91}. Optimal number of antennas for all considered cell sizes when
cell load is {10, 50, 100}% and active number of users is {30, 60, 90} are shown in the Tab. 1.
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Figure 2: EE as a function of the network load at different cell size and ULD models

Table 1: Optimal number of antennas at different cell size and ULD models

Cell size (m) Cell load (%) BF CF

Number of active users in cell

30 60 90 30 60 90

500 10 92 147 198 65 111 156
50 126 187 213 74 121 166
100 144 210 213 83 132 178

1000 10 87 150 211 66 120 171
50 95 158 217 68 121 173
100 104 166 222 71 124 175

2000 10 110 185 250 90 157 220
50 111 186 250 90 157 220
100 113 187 250 90 158 221

We have also calculated weighted average optimal number of antennas Mavg for different cell
load and results for cell radius of {500, 1000, 2000} m and cell load {10, 50, 100}% for BF are
{38, 132, 213}, {34, 114, 211} and {36, 127, 231}, while for CF results are {31, 65, 120}, {29, 55,
104} and {25, 54, 101}. With the increase of the cell size from 500 to 1000 m, better results of the
optimal and weighted average optimal number of antennas were recorded, while a further increase
in the cell radius did not result in a decrease in the number of optimal active antennas. With the
increase in the active number of users, a larger number of antennas are activated for users from
the BF and CF areas, but this activation in the BF area increases significantly with increasing
cell load and decreasing cell size so at a cell size of 500 m and a cell load of 100% already at 60
active users BF users require activation of 210 antennas, which is almost the maximum number
of antennas (maximum for this case is 213), while CF users for the same number of active users
and the same network load require the activation of 132 antennas. The difference between the
number of active antennas at different loads decreases with increasing cell size for both BF and
CF ULD.
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EE gain of our proposed model with adaptive antenna selection has excellent results for both
the CF and BF areas and decreases with increasing cell load, but increases with the increase of
the cell size. The corresponding EE gain for cell radius of 500 m, and cell load of 10, 50, 100%
for BF is 478.35, 165.44, 92.20% and for CF is 551.92, 325.70, 201.48% and is shown on Fig. 3.

Figure 3: EE gain as a function of the network load for cell size Rmax = 500 m

Also in [10] results have shown that for all ULD models, the obtainable EE gain decreases at
different trends as cell loading increases, which is understandable as both systems are in the most
energy-efficient state at peak cell load.

It can be concluded that Kmax, EE and Average UR increase with the decrease in cell size,
while Mmax and the difference in EE gain between the proposed adaptive system and the fixed
antenna system decrease with the decrease in cell size. From the EE vs. cell radius curve, we get
the corresponding optimal cell size is 500 m.

4.2 Impact of the Bandwidth on EE
Since bandwidth is a limited resource, 5G will require the allocation of additional spec-

trum for mobile broadband and flexible spectrum management capabilities. A set of new fre-
quency bands will be used (licensed, unlicensed, and shared) to supplement the existing wireless
frequencies, enabling larger bandwidth operation and substantially improved capacity.

The use of large blocks of spectrum in higher frequency bands and heterogeneous carrier
aggregation (particularly above 6 GHz and up to 100 GHz) in addition to unlicensed spectrum
have made wider system bandwidths (up to 3.2 GHz) feasible, leading to higher peak data rates
and network capacity [30].

This section analyzes the impact of the bandwidth values on the performance of the consid-
ered system model. In this analysis, the bandwidth values vary from 20 to 100 MHz in increments
of 20 MHz. With the increase in bandwidth, there is an increase in EE and Average UR for CF
and BF ULD. In all considered bandwidth scenarios, CF ULD achieved better results than BF
ULD, however the difference between the results is not drastic, but with increasing bandwidth and
network load, it increases in favor of CF ULD. In all considered scenarios, the proposed adaptive
system also achieved better results compared to the fixed one. With the increase in bandwidth, the
results of the adaptive system are significantly better. Fig. 4 shows the results achieved for EE as
a function of the number of active users in the cell for CF ULD, with different bandwidth values
and network load of 20% and 100%.
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Figure 4: EE as a function of the number of active users in the cell at different values of
bandwidth and network load of 20% and 100% for CF ULD

Despite these improvements, with increasing bandwidth Kmax and Mmax are significantly
reduced, so for the case of the bandwidth of 100 MHz Mmax = 96 and Kmax= 43. Therefore, the
selection of the appropriate optimal bandwidth depends on the trade-off between the number of
users to be served at the same time and the level of desired performance for those users.

4.3 Impact of the Output Power Level of the BS and Maximum Output Power of the PA on EE
This section analyzes the impact of the different output power levels of the BS (Pc–constant

for each BS) and maximum output power of the PA (Pmax,PA) on EE in the two observed
coverage areas: center and boundary. Four sub-scenarios were created to analyze the impact of
both parameters (Pc, andPmax,PA) on EE.

4.3.1 Impact of the Output Power Level of the BS on EE
Values of 10, 20, 30, and 40 W were considered to analyze the impact of the output power

level of the BS on EE.

It is very important to analyze how the increase in network load affects the activation of the
required number of antennas that ensures a certain output power level of the BS since the increase
in the number of active antennas negatively affects the EE. The findings of authors in [11] are
the same because they stated that maximal EE depends on the number of antennas that can be
selected and in their scenario EE started to decrease when the number of multipath increased
at number RF=100. With the increase in network load, significantly higher antenna activation
was observed for the BF ULD compared to CF ULD, but in both cases of ULD, the highest
activation was at the output power value of 40 W. The best results, in the case of CF ULD,
achieved when the output power level of the BS is 20 W and in this sub-scenario, at maximum
network load, it is necessary to activate an average of 60 antennas, whereas in the best sub-
scenario for BF ULD which is at Pc = 10 W , at maximum network load it is necessary to activate
3 times more antennas on average, i.e., 185 antennas. These sub-scenarios with the lowest average
number of active antennas, represent the cases with the best EE, i.e., CF ULD achieves the best
EE at Pc = 20 W , which is significantly higher than EE in other sub-scenarios. The representation
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of EE as a function of network load for all considered sub-scenarios with different Pc values is
shown in Fig. 5.

Figure 5: EE as a function of the network load at different values of output power level of the
BS and ULD models

Based on the obtained results, it can be concluded that the best EE for the case of CF ULD
is twice as high as the best achievement of EE in BF ULD. The analyzed sub-scenarios for the
BF ULD achieve approximate EE values and there is no drastic increase in EE for a particular
sub-scenario when the network load increases.

4.3.2 Impact of the Maximum Output Power of the PA on EE
To analyze the impact of the maximum output power of the PA (Pmax,PA) on EE, four

different values for a given parameter were considered: 1, 6, 8, and 16 dB.

Fig. 6 shows the average number of activated antennas for all four sub-scenarios when the
network load increases considering the two ULD models created. ULD CF requires the activation
of a smaller number of antennas in all considered sub-scenarios with different Pmax,PA, compared
to ULD BF.

Figure 6: Average number of antennas as a function of the network load at different values of
maximum output power level of the PA and ULD models
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For the Pmax,PA= 6 dB, ULD CF has activation of the smallest number of antennas, regard-
less of network load. In this sub-scenario, the average number of activated antennas does not
change drastically with increasing load, unlike sub-scenarios with Pmax,PA = 8 dB and Pmax,PA =
16 dB, when activation increases linearly with network load.

Users in the central area for the 1 dB sub-scenario have a fixed activation of 100 antennas
regardless of the network load value because for Pmax,PA = 1 dB a delivery of 0.2 W transmit
power is achieved. In this case activation of at least 100 antennas is required to maintain a
constant output power level of 20 W. Results from [5] also show that when Pmax,PA is low, e.g.,
1 dB, the system becomes very efficient at high load but it is not much efficient for the smaller
number of users as the number of active antennas cannot be small due to total transmit power
constraint.

For the case of ULD BF, the lowest antenna activation is achieved for Pmax,PA= 1 dB that is
still a higher activation in comparison to all sub-scenarios with different Pmax,PA for CF ULD. In
all other sub-scenarios with different Pmax,PA and ULD BF, antenna activation mainly increases
linearly with increasing network load but with a sharp increase. For example in the case of
Pmax,PA = 16 dB and network load of 10% an average of 50 antennas are activated, while for a
network load of 100% an average number of activated antenna is equal to the maximum number
of antennas of 250.

Fig. 7 shows the impact of the dimensioning Pmax,PA on EE at different network loads for
both ULD models.

Figure 7: EE as a function of the network load at different values of maximum output power
level of the PA and ULD models

Compared to BF ULD, CF ULD achieved better results for Average UR and EE in all sub-
scenarios with different Pmax. At lower network load EE has similar values in all sub-scenarios
for both ULD. The sub-scenario with Pmax,PA= 6 dB in CF ULD achieves significant EE growth
at network load of 30% and with the further increase of network load, which at maximum load
almost reaches dimensioning of PA of 1 dB. In the cases of BF ULD, the best result for EE was
achieved at 1 dB. Average UR has slightly decreasing values when increasing network load in all
sub-scenarios and for both ULDs. The best results for Average UR were achieved with CF ULD
for values of 6 and 1 dB, while for BF ULD for the case of the 1 dB.

Based on the results, it can be concluded that as the maximum output power of the PA and
the output power level of the BS increases, EE decreases for both ULDs.
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4.4 Average Energy Consumption on an Hourly Basis
In addition to the analyzed impact of system parameters on EE for our formed adaptive sys-

tem model, another important measure of energy consumption and savings that can be achieved
during the day by applying the adaptive number of active antennas is average energy consumption
per BS expressed in units of kWh:

AEC=
24∑
t=1

Ptot(t) ∗ 3600
24

(10)

In this analysis for daily load variation, we use the model proposed for data traffic in
Europe [15] like in many others works and the model proposed for business, residential, street,
and highway areas [31].

Based on the previous results, the analyzes in this section were performed for an environment
with a cell radius of 500 m, a bandwidth of 20 MHz, the output power level of BS is 20 W and
the maximum output power of the PA is 6 dB. Also, this analysis was carried out considering the
results of our established two areas of coverage (center and boundary) and two new scenarios
with the different assignment of weighting factors, S1 and S2. Tab. 2 shows how weighting factors
were assigned for the created scenarios S1 and S2.

Table 2: Scenarios with different hourly ULD models

Hours 01–07 08–10 11–18 19–21 22–24

γ -Scenario S1 {0.3, 0.7} {0.6, 0.4} {0.8, 0.2} {0.6, 0.4} {0.3, 0.7}
γ -Scenario S2 {0.7, 0.3} {0.4, 0.6} {0.2, 0.8} {0.4, 0.6} {0.7, 0.3}

During daylight hours (8–21 h) S1 has a higher concentration of users in the central area,
while during the night hours (22–7 h) higher weighting factors were assigned to users at the edges
of the cell. Scenario S2 has the opposite situation with the assignment of weighting factors.
Results for CF and BF ULD in all previous scenarios showed that BF ULD performed worse,
which is also the case in scenarios S1 during night hours and S2 during daylight hours for all data
traffic models, and it is necessary to activate more antennas. However, the system with adaptive
antenna activation in all scenarios can turn off a significant number of antennas. Scenario S1
during daylight hours achieves a maximum shutdown of 77 antennas for the model proposed for
data traffic in Europe, while Scenario S2 during night hours has a maximum shutdown of 88
antennas in the case of Business data traffic. Results in [10] show conclusively that at least one
third of the active antennas can be turned off for half a day for both scenarios with the help of
cell load and ULD adaptive antenna system.

Fig. 8 shows the average energy consumption per BS of fixed and adaptive systems in both
scenarios and for all analyzed data traffic models.

Compared to the fixed system, the adaptive system achieves significantly lower consumption.
In the S1 scenario, a saving of 64% is possible in the Residential model of data traffic, while the
maximum saving of average energy consumption in scenario S2 is achieved for the Business data
traffic model and is equal to 42%.
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Figure 8: AEC for fixed and adaptive system and different data traffic models

5 Conclusion

In this study, we analyzed the energy efficiency of a load adaptive massive MIMO system with
two different ULD models. Our results show that the optimal number of antennas depends pri-
marily on ULD model and secondarily on cell loading. We also determined the impact of cell size,
available bandwidth, output power lever of the BS, and dimensioning of a power amplifier (PA)
at different cell loading on EE. Our developed resource allocation scheme jointly optimizes the
number of BS antennas, user load distribution, and cell loading. BF ULD achieved worse results
in the analysis of the impact of system parameters on the EE in the fixed and adaptive model
of the system and for different network loads. Strong interference from other BSs and weakest
signals from its BS are the reasons for poor results in BF ULD, which is why special attention
should be paid to users at the edges of the cell when designing the network and establishing
algorithms to solve interference. With increasing bandwidth and cell size, the maximum number
of simultaneously served users is reduced, which is why the choice of the optimal value for these
system parameters depends on the trade-off between the number of simultaneously served users
and the level of desired performance for those users. The adaptive system for CF ULD achieves
the best EE gains and for cell radius of 500 m, and cell load of {10, 50, 100} their values are
{551.92, 325.70, 201.48}%.

During dimensioning the maximum output power of the PA and the output power level of
the BS it was concluded that increases in these parameters lead to a decrease in EE. An increase
in network load affects the activation of more antennas to ensure a certain output power level
of the BS and that number is significantly higher in BF ULD, even in the best sub-scenario
(Pc = 10 W ) BF ULD requires 3 times higher activation compared to the best sub-scenario in CF
ULD (Pc = 20 W ).
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Based on the comparison between the performance of fixed and adaptive system model, it
was concluded that better results of EE are achieved in the adaptive system for all analyzed
scenarios because this proposed system can turn off a significant number of antennas and achieve
significantly lower energy consumption. Within the 24 h operation, a savings potential of 64% is
achieved in a residential model of data traffic, while saving in other models is in the range of
20–64%.
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