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Abstract: With technological advancements in 6G and Internet of Things
(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellular
networks has become a hot research topic. At present, the proficient evo-
lution of 6G networks allows the UAVs to offer cost-effective and timely
solutions for real-time applications such as medicine, tracking, surveillance,
etc. Energy efficiency, data collection, and route planning are crucial processes
to improve the network communication. These processes are highly difficult
owing to high mobility, presence of non-stationary links, dynamic topology,
and energy-restricted UAVs. With this motivation, the current research paper
presents a novel Energy Aware Data Collection with Routing Planning for
6G-enabled UAV communication (EADCRP-6G) technique. The goal of the
proposed EADCRP-6G technique is to conduct energy-efficient cluster-based
data collection and optimal route planning for 6G-enabled UAV networks.
EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clus-
tering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) and
organize these clusters. Besides, Artificial Fish Swarm-based Route Planning
(AFSRP) technique is applied to choose an optimum set of routes for UAV
communication in 6G networks. In order to validated whether the proposed
EADCRP-6G technique enhances the performance, a series of simulations
was performed and the outcomeswere investigatedunder different dimensions.
The experimental results showcase that the proposed model outperformed all
other existing models under different evaluation parameters.
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1 Introduction

In recent times, with the evolution of Internet of Things (IoT) and 6G technologies [1], the
incorporation of cellular systems and UAVs has to shift towards novel network advance trends.
At present, UAVs experience a rapid growth in different business applications. It is anticipated
that these UAVs bring major advantages to its users in several areas like emergency communica-
tions, smart city construction, agriculture, mineral exploration, disaster assessment forestry, plant
protection, power and oil pipeline inspections and other such broad application prospects [2].
Altogether, 6G UAV network can optimally fulfil a number of IoT applications and pave way
to provide advanced services. In UAVs, the cellular converged network can perform as an aerial
Access Node (AP)/Base Station (BS) to collect data from a huge amount of IoT nodes allocated
to a specific extent and realize the connections with 6G networks. UAVs has the potential to
interact with ground cellular BS. However, it creates a self-organizing cluster network via remote
intelligence control framework [3]. Many UAVs are armed with distinct IoT devices to collect
IoT data from distinct places simultaneously and send the collected data directly to the adjacent
ground BSs or interact with ground BS via leader UAV with the help of AP ability. Though UAV
flight and IoT device heavily rely upon power supply, all these devices have limited energy that
severely influences the popularization and promotion of UAV-based IoT applications [4]. Thus, the
collaborative process of multiple UAVs is a major problem to be used in radio spectrum resources.
Further, it is essential to perform an advanced study on energy saving technology and spectrum
usage under the basis of inexpensive hardware.

Transmission is a key aspect in a number of UAV schemes [5]. However, such UAV schemes
have certain aspects of FANET such as high mobility of UAV nodes, sparse placement, and
constraints in the available battery resource which altogether can hinder the stability and efficient
transmission among the UAVs [6]. The high mobility nature of the UAV causes periodic changes
in the topology. This requires a recurrent communication of new location among UAV nodes
which results in energy utilization on the basis of overheads [7]. Comparatively, the sparse location
of UAVs requires high energy for communication, owing to a considerably-longer distance among
the UAVs. Smart clustering technique can enact the main role to enhance the energy efficiency of
a network. Clustering is a process that splits the UAV nodes under many groups, when these nodes
are located in a geographical place with certain similarities in achieving a particular purpose. In a
cluster, every node is chosen as Cluster Head (CH). A CH node is permitted through coordination
tasks and is relied upon the data of its cluster member to its end [8,9].

The current research work presents a novel Energy Aware Data Collection with Route Plan-
ning for 6G-enabled UAV communication (EADCRP-6G) technique. The goal of the proposed
EADCRP-6G technique is to perform energy-efficient cluster-based data collection and optimal
route planning for 6G-enabled UAV networks. The proposed EADCRP-6G technique includes an
Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect a set of optimal
Cluster Heads (CH) and organize the selected clusters. Besides, Artificial Fish Swarm-based Route
Planning (AFSRP) technique is deployed in the selection of optimum set of routes for UAV
communication in 6G networks. In order to examine the enhanced performance of EADCRP-
6G technique, a series of simulations was conducted and the outcomes were investigated under
different dimensions.

2 Related Works

Liu et al. [10] proposed a novel non-stationary multi-mobility UAV-to-ship channel method.
This method consists of SB and LoS modules as a result of sea water fluctuations. The MB
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component is presented based on the waveguide effects on sea surface. In the presented method,
UAV is denoted by transmitter (Tx), ship is denoted by receiver (Rx), and the clusters between
Rx and Tx can be viewed as moving in random directions and velocities. Later, a few common
statistical properties of the projected UAV-to-ship channel module was investigated and the results
were derived. Spyridis et al. [11] aimed at tracking a mobile IoT device of unknown position with
the help of a set of UAVs, armed with RSSI sensors. The DL method executed the clustering
process in UAV network at standard interval on the basis of GCN framework. In this execution,
the data regarding UAV and RSSI locations was used. A heuristic technique was employed to
define the number of clusters in a dynamic manner at all the instances. While the partitions were
defined by optimizing RSSI loss function.

Bushnaq et al. [12] presented a relative analyses of U-UAV and T-UAV-aided cellular traf-
fic offloading from a geographical location that endures heavy traffic situations. With the help
of stochastic geometry tools, the researchers derived a joint distance distribution among UAV,
hotspot users, and TBS. Na et al. [13] proposed a synergetic system for sub-slot allocation and
UAV trajectory planning. Since the developed problems suffered from complications and non-
convexity, an effective and iterative method was proposed to overcome the issues. Later, for fixed
sub-slot duration and clustering state, the researchers optimized the UAV trajectory. In Faraji–
Biregani et al. [14], a method was proposed to efficiently maintain the clusters that approached RF
source while at the same time, the remaining UAVs were eliminated and returned to the base. Qi
et al. [15] proposed an improved hierarchical 6G IoT network using UAVs in sky and armed IRS.
The scheme utilized BackCom to transmit the data in free ride method. Through beamforming
process, IRS improves the energy of reflectable signals, thus enhancing the performance and
distance of BackCom. Tang et al. [16] studied about battery-constrained FEEL. In this study,
the UAVs had the potential to alter the frequencies of functioning CPU, extend the lifetime of
batteries and evade early dropping from FL training. The researchers optimized the scheme by
jointly assigning both wireless bandwidth and computation resources upon time-differing platforms
based on DDPG-based approach. In this approach, a linear integration of latency and energy
utilization was executed to estimate the system cost.

Li et al. [17] investigated a joint downlink transmission power control and trajectory strategy
challenge in multi type UABSs transmission networks. In order to satisfy the signal to noise power
ratio of the user including interference, every UABS should alter its transmission power and loca-
tion. Based on the communications among different transmission connections, a non-cooperative
MFTG was presented earlier to model the joint optimization problem. Later, a Nash equilibrium
solution was resolved using two phases: firstly, a user in the provided area is clustered to attain
the early placement of UABSs; next, MFQ learning method is projected to resolve the distinct
MFTG problems. Kurdi et al. [18] proposed a bacteria-inspired heuristic algorithm for effective
distribution of tasks between the placed UAVs. The utilization of multi-UAVs is a significant
model to combat the distribution of RPW in palm plantations. In order to improve the energy
consumption and cost-aware transmission, a novel method named MRDSASL was presented in
6G network [19]. Then, multi-variate regression function was utilized as a threshold to analyze
the evaluated node condition. Lastly, soft step activation function identified the effective nodes
via regression analyses. Based on the results from deep analyses, 6G framework was implemented
through effective nodes.
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3 The Proposed EADCRP-6GModel

The proposed EADCRP-6G technique is designed to establish effective data collection and
communication process in 6G-enabled UAV networks. The proposed EADCRP-6G technique
encompasses two major processes namely, IRDAC technique for cluster construction and AFSRP
technique for route planning. The detailed working stages of these two processes are offered in
subsequent sections.

3.1 System Model
The upcoming 6G IoT demands the expansion of communication coverage while this ultra-

high coverage is set to turn inevitable trends in the growth of smart cities. At present, drones
are the most effectual solutions to improve transmission coverage due to time consumption and
heavy cost incurred upon installing new BS. There are two major variances exist i.e., UAV
communications and conventional ground wireless transmission. Here, UAV is loaded with fully-
controllable maneuverability upon three dimensions. The horizontal position and height of the
UAV can be adjusted at any point of time for the optimization of transmission efficiency with
ground node. As displayed in Fig. 1, cylindrical antenna array is utilized improve the strength
of transmission connection in an efficient manner. In order to ensure transmission performance
between the UAV and BS, BS should execute precise beam-forming and take a certain location of
UAV. In current research work, it is assumed that GPS and inertial measurement units are given
to motion sensing and position of the UAVs. Each UAV is aware of its own location, location
of the ground station, and location of other neighboring UAVs. Also, UAVs are armed with
long- and short-range transmission with the help of 6G technologies. While the former one is
utilized for data transmission within the cluster in the name of intra-cluster transmission, the latter
one is utilized for data transmission between ground station and the CHs. Moreover, UAV-based
mobile transmission aims at explicit data rate Rb with Quadrature Phase Shift Keying (QPSK)
and predetermined modulation method.

Figure 1: Overall working process of EADCRP-6G model
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3.2 Design of IRDAC Technique
RDA technique is initiated by an initial arbitrary population that is equivalent to that of

the Red Deers (RDs). The number of optimum RDs in a population is determined and are
named after ‘male RD’ while rest are named as ‘hinds’. At first, male RD must roar. Depending
upon the roaring capability, it is categorized under two groups such as Stags and Commanders.
Alternatively, the commander builds the harem. Thus, the number of hinds in a harem is directly
related with the capacity of commander in terms of fighting and roaring activities. At last, the
commander mates with the hind in harem.

It is obvious that other males are named after stags for mating with adjacent hinds and no
deliberation of constrained harems. Generally, the earlier steps of RDA evolve on the basis of
exploration and exploitation phases efficiently. It can be stated that an RD provides a likely solu-
tion X in solution spaces. The dimension of solution X is Nvar. Succeeded by, Nvar dimension
optimization problem, RD, is an 1 × Nvar array that is formalized in Eq. (1):

RedDeer= [
X1,X2,X3, . . . ,XNVA

]
. (1)

Indeed, Eq. (1) shows the element of X. As well, the function value is evaluated for each RD
in Eq. (2):

Value= f (RedDeer)= f (X1,X2,X3, . . . ,XNvar). (2)

To invoke this approach, the early population of size Npop is generated. Later, a group of
optimum RD to Nmale is selected and the remaining one is Nhind (Nhind = Npop −Nmale).
Thus, the Nmale count illustrates an elitist state of a method. In other perceptions, the number
of Nmale maintains the increased features, whereas Nhind considers the diversification stage of
the technique.

Now, a male RD attempts to improve the efficacy using roaring. Therefore, during roaring
procedure, it may be ineffective/effective. It can be stated that a male RD is deliberated as an
optimum solution. In the event of solution area, male RD candidate is recognized. Apparently, it
allows the male RD to alter its position. To upgrade the position of males, the expression given
below is employed i.e., Eq. (3):

malenew =
{
maleo1d + a1× ((UB−LB) ∗ a2)+LBifa3 ≥ 0.5
maleo1d − a1× ((UB−LB) ∗ a2)+LBifa3 < 0.5

}
(3)

In spite of generating a likely neighborhood solution of males, UB and LB limit the search
space. They are deliberated as UB and LB of the search space, consistently.

It is noted that male01d denotes the present location of male RD whereas malenew indicates
the updated location. The randomization of roaring procedure, a1,a2 and a3 are created arbitrarily
by uniform distribution between 0 & 1. In order to develop a connection between this function
and the roaring procedure, it can be observed that a male RD roars before it tries to expand the
area. But, it stirs arbitrarily. These two conditions depend upon the solution space to demonstrate
the influence of roaring procedure [20]. Further, A & B takes place normally in the roaring stage.

In fact, the dramatic variation exists between males i.e., RDs. Particularly, some are effective,
energetic, and attractive in development compared to others. Therefore, RD is categorized as



830 CMC, 2022, vol.71, no.1

two components such as stags and commanders. The number of male commanders is defined by
Eq. (4):

NCom = round {γ .Nmale} (4)

Here, NCom denotes the count of males. It is indicated that γ determines early value of a
method. The range of numbers must be between zero & one. Finally, the amount of stags are
evaluated using Eq. (5):

Nstag =Nmale−NCom (5)

whereas Nstag denotes the amount of stags with respect to male population. In this method, RD
population is used by including a number of hinds, commanders, and stags.

Consider that every commander fights with stags arbitrarily. Thus, two new solutions are
obtained and exchanged by the commanders. These solutions are optimized whereas an optimal
solution is superior to four solutions such as stag, commander, and two new solutions. In the
event of fighting procedure, two mathematical formulas are used in Eqs. (6),(7):

New1= (Com+Stag)
2

+ b1× ((UB−LB) ∗ b2)+LB) (6)

New2= (Com+Stag)
2

− b1× ((UB−LB) ∗ b2)+LB) (7)

Here, New1 & New2 represent the new solutions created with the help of fighting. Stag and
Com indicate stags and commanders, respectively. In the event of new solutions, UB and LB
diminish the search spaces. Since the fighting procedure is randomized, b1 and b2 are created by
uniform distribution function between 0 and 1. Consider four solutions like New2, Stag, Com,
and New1 whereas OF is the optimum one. The connection and performance of male RDs is
demonstrated in fighting. Thus, two new solutions are generated. One is determined as a winner
whereas other one is a looser. As demonstrated, it contains two solutions. The OF solution for
New1 is higher compared to another solution while New1 is the current commander. Fig. 2
illustrates the flowchart of RDA. Based on this procedure, harem is created. The amount of hinds
in harem depends upon energy of male commanders. The efficacy of commander could be defined
by OF amount. In order to develop the harems, hind is separated amongst the commanders by
Eq. (8):

yn= vn−max {vi} (8)

whereas vn denotes the energy of nth commander and yn indicates the normal value. In order to
estimate the normalized power of commander, the provided concept is utilized and is shown in
Eq. (9).

Pn=
∣∣∣∣∣ Vn∑NCom

i=1 Vi

∣∣∣∣∣ (9)

Then, the number of hinds in a harem is calculated by Eq. (10):

N.haremn = round{Pn.Nhind} (10)
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Here, N.haremn denotes the number of hinds in nth harem and Nhind displays the number
of hinds. In order to classify the hinds, N.haremn is chosen arbitrarily from hinds. It can be
determined as shown in Eq. (11).

N.haremmate
n = round {α.N.haremn} (11)

Here, N.haremmate
n denotes the number of hinds in nth harem that mates with the commander.

About the solution space, N.haremmate
n of N.haremnis chosen arbitrarily.

Figure 2: Flowchart of red deer algorithm

Succeeded by, α denotes the initial variable amount of RDA with values ranged between zero
& one. Generally, mating procedure is defined as follows (12):

offs= (Com+Hind)

2
+ (UB−LB)× c (12)

Here, Com & Hind denote hinds and commanders. Additionally, c is created arbitrarily by a
uniform distribution function from 0 & 1.

The harem is chosen in an arbitrary way and male commanders mate with β number of hinds.
Therefore, the commander attacks other harems to catch the opponent’s region and increase the
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values. As well, β displays a primary variable of this method. The amount of hinds in harem,
mated the commander, is defined through the following Eq. (13):

N.haremmate
k = round {β.N.haremk} (13)

whereas N.haremmate
k denotes the number of hinds in kth harem that mates with the commander.

Now, the stags mate with nearby hind. During mating, a male RD needs to employ a useful
hind. It is the desired hind among other hinds without supposing the harem region.

di =
⎛
⎝∑

j∈J
(stagj − hindij)

2

⎞
⎠

1/2

(14)

whereas di denotes the distance from ith hind and stag. It is chosen on the basis of two different
standards. At first, each male RD is maintained to represent a commander and a stag. Next,
it displays the remaining population in following generation. The generated offspring and hinds
are chosen, based on the fitness value and by applying the roulette wheel/fitness tournament
method. Since each approach is a well-known one, the interrelated mathematical equations are
not provided. It can be included in huge iterations; the dominance of optimum solutions could
be recognized within a certain period.

In order to eliminate the RDA from local optimal problem, Levy Distribution (LD) concept
is incorporated in it. LD is an arithmetic method of initiating a sudden drift. Fig. 3 is a diagram
of RDA module. Levy flight is an arbitrary walk procedure where the step length of searching
tasks gets improved with a sudden drift and is denoted by.

Levy (α)∼ t−1−∝, 0<∝< 2 (15)

whereas t denotes a random variable in the range between zero and one and α represents the
stability index. In LD scheme of the searching region, it could be given as follows.

Levy (β)= u×φ

|v|1/β (16)

whereas u & v denote the values of standard distribution, β represents levy exponent and ∅ is
given as follows

φ =

⎡
⎢⎣ � (1+α)× sin

(
πα
2

)
�

(
(1+α)

2

)
×α× 2

(
α−1
2

)
⎤
⎥⎦

1
α

(17)

whereas α is equivalent to 1.5, u & v represent random values. In IRDA method, a random
individual is given the following equation to initiate the procedure of population.

Xi =
{
Xlb+ a×Levy (α)× (

Xj−Xk
)

if r1 () < r2 ()

Xub+ a×Levy (α)× (
Xj−Xk

)
otherwise

(18)

whereas r() denotes a random variable. When RDA is not appropriately used in the search space,
Levy imposed solution contributes to the unchanged feature of current individual.
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Figure 3: Energy consumption analysis of EADCRP-6G model

Generally, there exists four objective functions while every function encloses a substantial
factor which is required for many purposes such as energy efficient clustering, energy maintenance
by limiting the number of CHs, recognizing the current energy ratio, reducing the distance between
BS and CH, mitigation of intracluster distances, enhanced intercluster distance between CHs, and
load balancing amongst CHs. The recently-proposed hybrid WGWO method provides an optimum
solution by deriving a FF with the help of distance to neighbours, energy, network load, and
distance to BS. Thus, FF is defined in the recently used method as follows.

FF =minimum (mly1+m2y2+m3y3+m4y4) (19)

Here, m1,m2,m3, and m4 denote the weight constants defined by user, and FF indicates
the FF. In addition, y1,y2,y3, and y4, indicate the objective functions. The proposed IRDA is
employed in the identification of an optimum solution on the basis of FF. Now, the solution is
attained by an agent. Therefore, the optimized solution for the aforementioned FF is made up of
minimum number of clusters with maximal link< quality and dynamically-determined CHs with
maximum RE. The primary function is to conserve energy whereas energy ratio is defined below.
When there are R clusters and M nodes, then the ratio of nodes’ energy and current CHs energy
are defined through Eq. (20).

y1 =
∑M

p=1Energy
(
nodep

)
∑R

q=1Energy
(
clusterheadp

) (20)

The following function defines the distance to neighbours, defined as Euclidean distance
between the SNs.

y2 =
R∑
q=1

∑
∀nodej∈clusterq euclidean−distance

(
nodej, cluster−headq

)
minimum∀nodej∈clusterrqeuclidean−distance

(
nodej, cluster−headq

) (21)
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The 3rd function decreases the distance between CH & BS. This method is deliberated as
A×A where the entire cluster denotes R as demonstrated in Eq. (21).

y3 =
1
R

∑R
q=1 euclidean−distance

(
cluster−headq,base− station

)
A
2

(22)

The last function is used for load management from CH. Eq. (23) tells the high load
constraints amongst CHs. |CNq| denotes the number of nodes in cluster q. Then, an area is
deliberated as A×A while an entire cluster denotes R.

y4 =
MAXIMUM

(∣∣CNq
∣∣)

1
R

∑R
q=l

(∣∣CNq
∣∣) (23)

3.3 Design of AFSRP Technique
AFSA is a popular SI optimization module developed on the basis of fish swarming

behaviour. This method is highly useful in the development of intelligent models to identify the
global optimum solutions and does not attain gradient details of the objective function. Now, an
artificial fish explores for food based on the foraging hierarchy of swarming nature and arbitrary
behavior. Furthermore, artificial fish permits mutual data transmissions until a global optimal
solution is attained. Assume X = (x1,x2, . . .xn) as the location of artificial fish and Y = f (X)

represents the fitness at location X . Consider dij =
∣∣|Xi−Xj

∣∣ | as the distance between the location
Xi & Xj, and Visual & Step indicate the perception range and moving step of artificial fish,
correspondingly.

(1) Foraging behavior

Assume Xi as the present state of artificial fish and the position Xj is randomly selected from
the Visual range. If Yj<Yi, then artificial fish is stirred up a Step in the way of (Xj−Xi). Else, a
position Xj is determined in an arbitrary manner to select before it encounters further conditions.
If the criteria is not fulfilled, then a haphazard behavior is experienced. The foraging nature can
be defined as follows.

X̃i =
{
Xi+Step · Xj−Xjdjj

· rand, if (Yj <Xi)

arbitarybehavior, or else
(24)

whereas X̃i denotes the future position of artificial fish, rand represents the uniformly-generated
values from zero and one.

(2) Swarming behavior

In a fish swarm, artificial fish Xi has to search the intermediate position Xc of NF artificial
fish in current neighborhood (dij < Visual). When (YC/NF > δYi), the artificial fish Xi gets stirred
towards Xc. The numerical function of swarming behavior is given herewith.

X̃i =
{
Xi+Step · Xc−XidiC

· rand, if (Yc/NF < δ ·Yi)
foragyingbehavior, otherwise

(25)

whereas δ ∈ (0, 1) represents food attentiveness.

(3) Following behavior
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When Xlbest is a local optimal unit in present neighborhood of Xi, then, (Ylbest/NF > δYi), the
artificial fish Xi gets stirred in a direction (Xlbest−Xi). The arithmetical function of this behavior
is given herewith.

X̃i =
{
Xi+Step · Xlbest−Xidi,lbest

· rcmd, if (Ylbest/NF < δ ·Yi)
foragingbehavior, otherwise

(26)

(4) Random behavior

The artificial fish determines a state arbitrarily from Visual range and travels to the corre-
sponding location. It is called default behavior.

(5) Behavior selection

In the event of AF, the predetermined behavior is compared and performed [21]. Thus, an
optimum nature is determined to upgrade the current position of AF. Bulleting can be employed
to record the best position i.e., Xbest in a fish swarm. Each AF is related to respective position
by bulletin after a step is forwarded. If the condition becomes normal, then a bulletin may get
updated.

Thus, AFSA employs the social nature of fish swarm to resolve the optimization problem. It is
highly helpful for fish environment data and self-information to change the search direction so as
to gain an optimal convergence and diversity. Thus, AF attains a location, where the food resource
is maximal. Although AFSA is a superior member of global optimization methods among other
optimization problems, it is still at risk in converging to sub optimum methods like metaheuristics.
It is called early convergence of complex optimization problems which results in low performance.
In order to detect an optimum set of routes, the dimension of every fish is made equivalent
to CHs and further positions are located in BS. Assume, θ i = (θ i1, θ

i
2|θ ip+1) denotes ith fish, θ ini

denotes a real value in the range of zero and one. Then, the provided function is applied in the
determination of next hop to BS and is determined as follows

f (x)= {i, for which
∣∣∣∣
(
i
k
−Xif j

)∣∣∣∣ is minimum,∀i1≤ i≤ k (27)

The aim is to define an optimal set of routes from CH to BS with the help of FF including
two variables such as distance and energy. Initially, the RE of subsequent hop node is defined
and the node with maximal energy is processed as a relay node. In order to transmit the data, the
source node transmits it to relay node that additionally moves towards the BS through inter CHs.
Thus, the node with high RE is processed as a subsequent hop node. The initial sub objective f 1
is given as herewith.

f 1=
m∑
i=1

ECHi (28)

Also, Euclidean distance is employed in the calculation of distance from CHs to BS. The
minimization of energy dissipation mostly depends upon the transmission distance. In the event
of low distance, the energy gets considerably stored. When the distance is raised, a huge volume
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of energy is consumed. Hence, a node using minimal distance is preferred for a relay node. Thus,
the following sub-objective i.e., f 2 through distance is denoted.

f 2= 1∑m
i=1 dis(CHi,NH)+ dis(NH,BS)

(29)

The aforementioned sub-objectives are summarized as a FF herewith, in which α1 and α2
denote the weights allocated to every sub-objective.

Fitness= α1 (f 1)+α2 (f 2) ,where
2∑
i=1

αi = 1αiε (0, 1) ; (30)

4 Performance Validation

The current section examines the performance of the proposed EADCRP-6G technique under
different performance measures. Tab. 1 shows the results achieved from Energy Consumption
Analysis (ECA) and Network Lifetime Analysis (NLTA) of EADCRP-6G technique under varying
number of UAVs. Fig. 3 shows ECA results of the proposed EADCRP-6G technique against
existing techniques under distinct UAVs. From the figure, it can be inferred that the proposed
EADCRP-6G technique accomplished an optimum performance over other methods with low
ECA. For instance, with 10 UAVs, EADCRP-6G technique obtained a minimal ECA of 36
mJ, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR techniques attained the maximum
ECA values such as 45, 49, 51, and 60 mJ respectively. Meanwhile, with 30 UAVs, EADCRP-
6G approach attained a lesser ECA value of 73 mJ, whereas GSO-CR, GWO-CR, IPSO-CR,
and PSO-CR methods gained high ECA values of 98, 102, 109, and 115 mJ correspondingly.
Eventually, with 50 UAVs, the proposed EADCRP-6G technique achieved a minimum ECA of
104 mJ, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR techniques achieved high ECA
values such as 131, 138, 150, and 170 mJ correspondingly. In line with these, at 70 UAVs,
EADCRP-6G method obtained a minimal ECA of 124 mJ, whereas GSO-CR, GWO-CR, IPSO-
CR, and PSO-CR methods gained maximum ECA values such as 155, 170, 182, and 191 mJ
correspondingly. Lastly, with 100 UAVs, EADCRP-6G technique obtained the least ECA of 159
mJ, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR methodologies attained high ECA
values such as 179, 201, 218, and 227 mJ correspondingly.

Fig. 4 shows the detailed results of NLTA achieved by EADCRP-6G technique under varying
UAVs. The experimental results demonstrate that the proposed EADCRP-6G technique attained
effective outcomes with an improved NLTA. For instance, with 10 UAVs, EADCRP-6G technique
demonstrated a high NLTA of 6250 rounds, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-
CR techniques produced low NLTA values such as 5900, 5850, 5660, and 5100 rounds respectively.
Followed by, with 30 UAVs, the proposed EADCRP-6G approach outperformed other methods
with a superior NLTA of 6000 rounds, while GSO-CR, GWO-CR, IPSO-CR, and PSO-CR
methods yielded less NLTA values such as 5620, 5300, 5150, and 4920 rounds correspondingly.
Concurrently, with 50 UAVs, EADCRP-6G technique exhibited a high NLTA of 5510 rounds,
whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR techniques achieved low NLTA values as
given herewith; 5340, 5150, 4720, and 4370 rounds correspondingly. In the meantime, under 70
UAVs, EADCRP-6G method demonstrated a high NLTA of 5050 rounds, whereas GSO-CR,
GWO-CR, IPSO-CR, and PSO-CR methods achieved low NLTA values such as 4740, 4790,
4140, and 4000 rounds correspondingly. Finally, under 100UAVs, the presented EADCRP-6G
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algorithm portrayed a maximum NLTA of 4490 rounds, whereas GSO-CR, GWO-CR, IPSO-CR,
and PSO-CR methods achieved less NLTA values such as 3880, 3710, 3610, and 3540 rounds
correspondingly.

Table 1: Results of the analysis of proposed EADCRP-6G method against existing methods with
respect to energy consumption (mJ) and network lifetime (Rounds)

No. of UAV’s Energy consumption (mJ)

EADCRP-6G GSO-CR GWO-CR IPSO-CR PSO-CR

10 36 45 49 51 60
20 57 69 74 76 85
30 73 98 102 109 115
40 80 104 113 116 145
50 104 131 138 150 170
60 117 149 166 177 183
70 124 155 170 182 191
80 138 166 183 197 202
90 143 171 195 203 216
100 159 179 201 218 227

No. of UAV’s Network lifetime (Rounds)

EADCRP-6G GSO-CR GWO-CR IPSO-CR PSO-CR

10 6250 5900 5850 5660 5100
20 6140 5850 5620 5480 5050
30 6000 5620 5300 5150 4920
40 5740 5580 5280 4930 4510
50 5510 5340 5150 4720 4370
60 5230 4950 5000 4410 4190
70 5050 4740 4790 4140 4000
80 4760 4410 4170 4090 3920
90 4530 4130 3940 3700 3610
100 4490 3880 3710 3610 3540

Tab. 2 examines the results of throughput and average delay accomplished by the proposed
EADCRP-6G method under varying numbers of UAVs. A brief throughput of EADCRP-6G
method is shown in Fig. 5 under varying UAVs. The experimental outcomes showcase that
the proposed EADCRP-6G method achieved effective outcomes with increased throughput. For
sample, under 10 UAVs, the proposed EADCRP-6G technique displayed a superior throughput
of 0.88 Mbps, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR algorithms offered low
throughput values such as 0.82, 0.81, 0.79, and 0.75 Mbps correspondingly. Likewise, under
30 UAVs, the proposed EADCRP-6G technique demonstrated an increased throughput of 0.79
Mbps, whereas other methods such as GSO-CR, GWO-CR, IPSO-CR, and PSO-CR achieved
low throughput values such as 0.69, 0.61, 0.56, and 0.53 Mbps respectively. Similarly, under 50
UAVs, EADCRP-6G method achieved a maximum throughput of 0.74 Mbps, whereas GSO-CR,
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GWO-CR, IPSO-CR, and PSO-CR techniques accomplished minimum throughput values such as
0.57, 0.50, 0.45, and 0.37 Mbps respectively.

Figure 4: Network lifetime analysis of EADCRP-6G model

Table 2: Analysis results of the proposed EADCRP-6G technique against existing methods with
respect to throughput (Mbps) and average delay (s)

No. of UAV’s Throughput (Mbps)

EADCRP-6G GSO-CR GWO-CR IPSO-CR PSO-CR

10 0.88 0.82 0.81 0.79 0.75
20 0.85 0.76 0.70 0.66 0.62
30 0.79 0.69 0.61 0.56 0.53
40 0.76 0.61 0.55 0.49 0.42
50 0.74 0.57 0.50 0.45 0.37
60 0.72 0.53 0.47 0.43 0.34
70 0.70 0.51 0.44 0.42 0.33
80 0.67 0.50 0.42 0.41 0.31
90 0.64 0.48 0.39 0.40 0.30
100 0.63 0.46 0.38 0.37 0.28

No. of UAV’s Average delay (s)

EADCRP-6G GSO-CR GWO-CR IPSO-CR PSO-CR

10 1.94 2.07 2.10 2.17 2.76
20 2.06 2.57 2.85 3.67 4.86
30 2.44 3.27 3.55 4.77 6.06
40 3.66 4.17 4.75 5.57 7.76
50 4.96 5.77 5.95 6.17 8.86
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Table 2: Continued

No. of UAV’s Average delay (s)

EADCRP-6G GSO-CR GWO-CR IPSO-CR PSO-CR

60 5.79 6.25 6.65 6.76 9.25
70 5.88 6.81 7.15 7.38 9.79
80 6.33 7.07 7.72 8.26 10.29
90 6.62 7.60 8.48 8.86 10.72
100 6.88 8.06 8.82 9.09 11.79

Also, under 70 UAVs, the proposed EADCRP-6G technique depicted an increase in the
throughput of 0.70 Mbps, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR techniques
achieved low throughput values such as 0.51, 0.44, 0.42, and 0.33 Mbps respectively. Lastly, under
100 UAVs, EADCRP-6G methodology outperformed all other methods with a superior through-
put of 0.63 Mbps, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR methods achieved
minimal throughput values such as 0.46, 0.38, 0.37, and 0.28 Mbps correspondingly.

Figure 5: Throughput analysis of EADCRP-6G model

Fig. 6 shows the average delay results of EADCRP-6G method against existing algorithms
under different UAVs. From the figure, it can be understood that the proposed EADCRP-6G
technique accomplished a better performance over other methods with the least average delay. For
instance, under 10 UAVs, the proposed EADCRP-6G method attained a low average delay of 1.94
s, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR methodologies reached maximal average
delays of 2.07, 2.10, 2.17, and 2.76 s correspondingly. In line with this, at 30 UAVs, EADCRP-6G
approach attained the minimum average delay of 2.44 s, whereas GSO-CR, GWO-CR, IPSO-CR,
and PSO-CR techniques attained maximum average delay values such as 3.27, 3.55, 4.77, and
6.06 s correspondingly. Likewise, with 50 UAVs, EADCRP-6G technique obtained a minimum
average delay of 4.96 s, whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR techniques accom-
plished the maximum average delay time such as 5.77, 5.95, 6.17, and 8.86 s correspondingly. At
the same time, with 70 UAVs, EADCRP-6G technique attained a less average delay of 5.88 s,
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whereas GSO-CR, GWO-CR, IPSO-CR, and PSO-CR methods gained the maximum average
delays such as 6.81, 7.15, 7.38, and 9.79 s correspondingly. Finally, with 100 UAVs, the proposed
EADCRP-6G manner attained the least average delay of 6.88 s, whereas GSO-CR, GWO-CR,
IPSO-CR, and PSO-CR algorithms attained the maximal average delay values such as 8.06, 8.82,
9.09, and 11.79 s correspondingly.

Figure 6: Average delay analysis of EADCRP-6G model

5 Conclusion

The current research paper presented a novel EADCRP-6G technique to execute effective data
collection and communication process in 6G-enabled UAV networks. The proposed EADCRP-6G
technique encompasses two major processes namely, IRDAC technique for cluster construction
and AFSRP technique for route planning. EADCRP-6G technique includes IRDAC technique
in order to elect an optimal set of CHs and organize the selected clusters. Besides, AFSRP
technique is deployed to elect an optimum set of routes for UAV communication in 6G networks.
In order to validate the enhanced performance of EADCRP-6G technique, a series of simulations
was conducted and the outcomes were investigated under different dimensions. The experimental
results showcase that the performance of the proposed model got enhanced under different eval-
uation parameters. In future, effective MAC scheduling techniques can be designed to accomplish
effective resource-balanced 6G-enabled UAV networking.
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