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Abstract: Renewable energy is a safe and limitless energy source that can be
utilized for heating, cooling, and other purposes. Wind energy is one of the
most important renewable energy sources. Power fluctuation of wind turbines
occurs due to variation of wind velocity. A wind cube is used to decrease
power fluctuation and increase the wind turbine’s power. The optimum design
for a wind cube is the main contribution of this work. The decisive design
parameters used to optimize the wind cube are its inner and outer radius, the
roughness factor, and the height of the wind turbine hub. A Gradient-Based
Optimizer (GBO) is used as a new metaheuristic algorithm in this problem.
The objective function of this research includes two parts: the first part is
to minimize the probability of generated energy loss, and the second is to
minimize the cost of the wind turbine and wind cube. The Gradient-Based
Optimizer (GBO) is applied to optimize the variables of two wind turbine
types and the design of the wind cube. The metrological data of the Red Sea
governorate of Egypt is used as a case study for this analysis. Based on the
results, the optimum design of a wind cube is achieved, and an improvement
in energy produced from the wind turbine with a wind cube will be compared
with energy generated without a wind cube. The energy generated from a wind
turbine with the optimized cube is more than 20 times that of a wind turbine
without a wind cube for all cases studied.

Keywords: Wind turbine; wind cube; gradient-based optimizer; metaheuris-
tics; energy source

1 Introduction

Quality of life improvements are necessary as an economy and society develop. One corre-
sponding challenge is to decrease environmental pollution. Replacing fossil fuels with clean energy
is one of the main components to decrease environmental pollution. Renewable energy utilized at
a large scale can help to meet daily energy demands [1–5]. Industries and academic institutions
alike are interested in developing electricity from renewable and clean energy sources, and with
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the advancement of existing technology, these factors justify the importance of wind energy in
recent years [6,7]. A wind cube is a modern wind turbine built to absorb and amplify more
kilowatt-hours (kWh) of wind. When wind hits the wind cube, it concentrates and generates
the speed, in turn producing more power. The modern wind cube system has been designed
to solve low wind speed problems and collect wind power under these circumstances [8]. Wind
cubes are used to improve the efficiency of wind turbines and result in great productivity [8].
Because of the wind’s nonlinear nature, optimization techniques are essential. Optimizing the
layout is achieved through soft computing technology [7]. The meta-heuristic optimization algo-
rithms are used to extract the optimum solution for several problems. One of these problems is
the estimation of parameters in photovoltaic models such as the Harris Hawks optimization [9],
the Marine Predators Algorithm [10], the multi-strategy success-history-based adaptive differential
evolution [11], the bacterial foraging algorithm [12], the differential evolution algorithms [13],
Enhanced leader particle swarm optimization (ELPSO) [14], Time varying acceleration coefficients
particle swarm optimization (TVACPSO) [15], and the shuffled frog leaping algorithm [16]. Meta-
heuristic optimization applied to a wind farm layout is one of the main tools used to determine
optimum wind farm position and maximize the generated power. The optimization algorithms
used for these are modified genetic algorithms based on a Boolean code [17], the Monte Carlo
method [18], a genetic algorithm-based local search [19], a new pseudo-random number generation
method [20], and a multi-level extended pattern search algorithm [21].

The following items summarize the contributions of this paper:

• Increasing the power generated from the wind turbine over a year using the wind cube.
• The inner and outer radius of the wind cube, roughness factor and the height of the

wind turbine hub are the decision variables extracted using a new optimization algorithm
(Gradient-Based Optimizer).

• Comparison between the proposed GBO algorithm with Tunicate swarm algorithm (TSA)
and Chimp optimization algorithm (ChOA) is performed for the same wind turbine.

• Minimizing the probability generated energy loss.
• Minimizing the wind turbine and wind cube cost using the meter cubic function.
• Comparison between the power generated from the wind turbine with and without a wind

cube.

The paper organization is as follows, Section two explains the problem formulation and
metrological data. The objective function is illustrated also in Section 2. Section 3 dissects the
Gradient-Based Optimizer algorithm. The study cases are illustrated in Section 4. The conclusion
and future work is in Section 5.

2 Problem Formulation and Metrological Data

2.1 Wind Turbine Analysis
The variation of wind speed is the main factor affecting the power generated from the wind

turbine. The characteristics of wind turbine output power are dependent on the boundaries of
the wind speed (cut-in speed Vci, rated speed Vr and cut-off speed Vco) as in the following
equation [22,23]:
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where Pr and Vr are the rated power and rated speed, respectively. The hub height of the wind
turbine is affected by the stream speed to the wind turbine, so that the stream velocity is changed
according to the hub height with the following equation [24]:

Vh.2
Vh.1

=
(
h2
h1

)∝
(2)

where Vh.2 is the velocity at the new hub height h2 and Vh.1 is the reference velocity at the
reference hub of height for the wind turbine h1. For the neutral stability condition, α is the
roughness ingredient factor which ranges from 0.14 to 0.25 [25]. The improvement of the power
generated from the wind turbine is processed using the wind cube. The principle theory for wind
cube design is the Bernoulli theory. The wind cube size is changed to achieve the optimal design.
The configuration of the wind cube is explained in Fig. 1.

Figure 1: Wind cube configuration

Based on Bernoulli’s theory and continuity equation, the main equation for the wind cube is
shown as follows:

A1V1 =A2V2 (3)

where V1 is the wind speed input to the wind cube from the air side, V2 is the wind speed output
from the wind cube, A1 is the area of the wind cube from the air side and A2 is the area of the
wind cube from the wind turbine side. The power generated from the wind turbine with the wind
cube is given in this equation:
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where R1 is the input radius of the wind cube from the air side and R2 is the output radius of
the wind cube from the wind turbine side.

2.2 Metrological Data
Hurghada City in the Red Sea governate of Egypt is the site used in this work to simulate

the power output improvement. The latitude is 27◦15′26.57"N and the longitude is 33◦48′46.48"E.
The metrological data of the average wind speed for each month is explained in Fig. 21., and the
average wind speed over the year is shown in Fig. 31.

2.3 Analysis of Objective Function
The improvement to the power generated from the wind turbine corresponds with decreasing

the loss of energy generated probability (LEGP) with the maximum speed out from the outer
radius of the wind cube not increasing 80% of the cut-off speed for the turbine. The decision
variables required for optimal sizing are the two radiuses of the wind cube, the wind turbine hub’s
height, and the roughness factor. The mathematical equation for the LEGP is as follows:

LEGP= Eg.rated −Eg.actual
Eg.rated

(5)

where Eg.rated, is the energy generated at rated power from the wind turbine, Eg.rated. The proposed
algorithm is applied to an independent run for the objective function before another objective
function (meter cubic function) is applied to choose the optimal solution that achieves the mini-
mum parameters. The minimum parameters indicate that the cost of the wind turbine and wind
cube is at its minimum. The second objective function is as follows:

fobj2=R1×R1× h2 (6)

Figure 2: The average wind speed for each month

1 http://www.wunderground.com

http://www.wunderground.com
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Figure 3: The wind speed average over the year

3 Gradient-Based Optimizer (GBO)

Recently, Ahmadianfar et al. [26–28] have proposed a new metaheuristic algorithm called
the Gradient-Based Optimizer (GBO), which mimics the gradient and population-based methods
together. In the GBO, in order to explore the search domain utilizing a set of vectors and two
main operators (like local escaping operators and the gradient search rule), Newton’s method is
utilized to specify the search direction. The main process of the GBO are as follows:

3.1 The Initialization Process
In the GBO, the control parameters α and the probability rate are used to balance and switch

from exploration to exploitation. Furthermore, the population size and iteration numbers are due
to the problem’s complexity. In the GBO, N vectors in a D-dimensional search space can be
defined as:

Xn,d =
[
Xn,d ,Xn,d, . . .Xn,d

]
, n= 1,2, . . .N; d = 1,2, . . . (7)

Usually, the initial vectors of the GBO are randomly generated in the D-dimensional search
domain, which can be defined as:

Xn=Xmin+ rand (0, 1)× (Xmax−Xmin) (8)

where Xmin, and Xmax are the bounds of decision variables X , and rand(0, 1) is a random number
in [0, 1].

3.2 Gradient Search Rule (GSR) Process
In the GBO algorithm, to guarantee a balance between exploration of significant search

space regions and exploitation to reach near optimum and global points, a significant factor ρ1
is employed as follows:

ρ1= 2× rand×α−α (9)

α=
∣∣∣∣βsin

(
3π
2

+ sin
(

β × 3π
2

))∣∣∣∣ (10)
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where βmin and βmaxare constant values 0.2 and 1.2, respectively, m represents the current iteration
number, while M represents the total number of iterations. Particularly, the parameter ρ1 is
responsible for balancing the exploration and exploitation based on sine function α. This param-
eter value changes through iterations, starting with a large value through first the optimization
iterations to improve population diversity. Then the value decreases through iterations to accelerate
population convergence. The parameter value increases through defined iterations within a range
[550, 750] to increase solution diversity and convergence around the best obtained solution. This
also allows for exploration of more solutions, therefore enabling the algorithm to avoid local
sub-regions. Thus, GSR can be determined as follows:

GSR= randn× ρ1× 2�x× xn
xworst−xbest+ ε

(12)

The concept of GSR is to provide the GBO algorithm with a random behavior through
iterations, therefore strengthening exploration behavior and escape from local optima. In Eq. (12),
it is defined by the factor Δx that delivers the difference between the best solution xbest and a
randomly selected solution xmr1. The parameter δ is changed through iterations due to Eq. (15). In
addition, a random number randn is included to improve exploration as follows:

Δx= rand(1: N)× |step| (13)

step =
(
xbest−xmr1

)+ δ

2
(14)

δ= 2× rand×
(∣∣xmr1+xmr2+xmr3+xmr4∣∣

4
−xmn

)
(15)

where rand(1: N) is a vector of N random values ∈ [0, 1]. Also, four random integers are chosen
from [1, N] which are r1–r4 such that r1 �=r2 �=r3 �=r4 �=n, and the parameter step represents a step
size which is determined by xbest and xmr1.

Moreover, Direction Movement (DM) is employed to converge around the solution area xn.
To provide a convenient local search tendency with a significant effect on the GBO convergence,
the term DM uses the best vector and moves the current vector xn in the direction of xbest− xn
and is computed as follows:

DM= rand× ρ2× (xbest−xn) (16)

where, rand is a uniform distributed number within the range [0, 1], and ρ2 is a random parameter
employed to modify step size of each vector agent. The ρ2 parameter is considered a significant
parameter of the GBO exploration process. The ρ2 parameter is computed as follows:

ρ2= 2× rand×α−α (17)

Finally, depending on these terms GSR and DM, Eqs. (18) and (19) are used to update the
position of the current vector xmn .

X1mn = xmn −GSR+DM (18)
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where, X1mn is the new vector generated by updating xmn . According to Eqs. (12) and (16), X1mn
can be reformulated as:

X1mn = xmn −randn× ρ1× 2�x×xn
xworst−xbest+ε

+rand× ρ2× (xbest−xn) (19)

where ypmn and yqmn are equal to yn+Δx and yn−Δx, respectively, and yn is a vector equal to the
average of the two vectors: current solution xn and the vector zn+1 that are calculated as follows:

zn+1= xn−randn× 2�x× xn
xworst−xbest+ ε

(20)

while xn represents the current solution vector, randn is a random solution vector of dimension n,
xworst and xbest represent the worst and best solutions, and �x is given by Eq. (13). Based on the
previous formula, when replacing the best solution vector xbest with the current solution vector
xmn , we get X2mn as follows:

X2mn = xbest− randn× ρ1× 2�x× xmn
xworst−xbest+ ε

+ rand× ρ2×
(
xmr1−xmr2

)
(21)

Specifically, the GBO algorithm aims to enhance the exploration and exploitation phases
using Eq. (19) to improve the global search for the exploration phase, while Eq. (21) is used to
improve the local search capability for the exploitation phase. Finally, the new solution for the
next iteration is as follows:

xm+1
n = ra×

(
rb×X1mn + (1−rb)×X2mn

)+ (1−rα)×X3mn (22)

where ra, and rb are random numbers determined in the range [0, 1], and X3mn is defined as:

X3mn =Xm+1
n −ρ1× (X2mn −X1mn ) (23)

3.3 The Local Escaping Operator (LEO) Process
The LEO is introduced to strengthen the performance of the optimization algorithm to solve

complex problems. The LEO can effectively update the position of the solution, to assist an
algorithm to exit local optima points and speed the convergence of the optimization algorithm.
The LEO targets generate a new solution with a superior performance Xm

LEO by several solutions
(Xbest best solution, the solutions X1mn and X2mn are randomly selected from population, Xm

r1,
X1mr2 are randomly generated solutions) to update the current solution effectively. This process is
performed based on following scheme:

If rand< pr

Xm
LEO =

⎧⎪⎨
⎪⎩
Xm+1
n + f1

(
u1xbest− u2xmk

)+f2ρ1(u3 (X2mn −X1mn
)+ u2

(
xmr1−xmr2

)
)/2, if rand< 0.5

xbest+ f1
(
u1xbest− u2xmk

)+ f2ρ1(u3
(
X2mn −X1mn

)+ u2
(
xmr1−xmr2

)
)/2, otherwise

(24)

End
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where pr is a probability value, pr = 0.5, the values f1 and f2 are uniform distribution random
numbers ∈[−1, 1], and u1, u2 and u3 are random values generated as follows:

u1 =
{
2× rand, if μ1 < 0.5
1, otherwise

(25)

u2 =
{
2× rand, if μ1 < 0.5
1, otherwise

(26)

u3 =
{
rand, if μ1 < 0.5
1, otherwise

(27)

where rand represents a random number ∈ [0, 1] and μ1 is a number in range [0, 1]. The previous
equations for u1, u2 and u3 can be simply explained as follows:

u1=L1× 2× rand+ (1−L1) (28)

u2=L1× rand+ (1−L1) (29)

u3=L1× rand+ (1−L1) (30)

where L1 is a binary parameter take value 0 or 1, such as if parameter μ1 < 0.5, then value of
L1 = 1, otherwise L1 = 0. Where the solution xmk is generated as follows:

xmk =
{
xrand , if μ2 < 0.5
xmp , otherwise (31)

where xrand is a random generated solution according to the following formula:

xrand =Xmin×rand(0,1)×(Xmax−Xmin) (32)

and xmp is a randomly selected solution from the population, μ2 is a random number ∈ [0, 1]. For
more details about GBO see [24].

4 Analysis of Results and Discussion

For fair benchmark comparison, the simulation settings are the same for all algorithms. fur-
thermore, the algorithm parameter is set to their default values. This section presents the analysis
of the proposed algorithm’s results for the wind turbine explained in Tab. 1. The boundary limits
for the decision variable of each turbine are explained in Tab. 2. The selection of boundaries
for each turbine is dependent on the rotor blades radius and the height of the turbine hub. The
wind cube radius from the turbine side is not almost less than the rotor blades radius. The wind
cube radius from the airside is more than the rotor blade radius and smaller than the hub height
with a specific distance according to each turbine to ensure that the cube does not touch the
ground.2,3

2 https://en.wind-turbine-models.com/turbines/493-aeolian-aeo-20
3 https://en.wind-turbine-models.com/turbines/1380-aerolite-a-11

https://en.wind-turbine-models.com/turbines/493-aeolian-aeo-20
https://en.wind-turbine-models.com/turbines/1380-aerolite-a-11
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Table 1: Types of wind turbines

Type Rated power Rotor radius Cut-in speed Cut-off speed Rated speed

6 kW 6000 3.05 3.6 25 9.8
30 kW 30000 5.5 3.6 25 13.4

Table 2: Boundary limits for the decision variable

Type Lower boundaries Upper boundaries

6 kW 30 kW 6 kW 30 kW

R1 4.96 6.5 6 15
R2 3.1 5.55 3.5 5.95
h2 30 30 60 60
α 0.14 0.14 0.25 0.25

4.1 Wind Turbine of 6 kW
Based on analysis described in Section 2 and data reported in Tabs. 1 and 2, the proposed

GBO algorithm is applied to the 6-kW wind turbine. Tab. 3 explains the proposed GBO algo-
rithm’s results for a 6-kW wind turbine based on minimizing the loss of the probability of a
generated energy loss. The optimum solution for these results is determined according to the
second objective function that satisfies the minimum meter cubic function.

Tab. 3 shows that all runs achieve zero probability of generated energy loss; the result in
run 30 is the optimum solution due to this solution achieving the minimum objective function
of minimizing the meter cubic function. Tab. 4 show the best solution from the proposed GBO
algorithm in compared with Tunicate swarm algorithm (TSA) [29] and Chimp optimization algo-
rithm (ChOA) [30] for 6-kW wind turbine. Based on this results the proposed GBO achieve the
best meter cubic function compared with the other competitor algorithms. Fig. 4 shows the power
demand output from the wind turbine without a wind cube at the same height as the wind turbine
hub and the optimum solution’s roughness coefficient. Fig. 5 shows the power demand output
from the wind turbine with wind cube at the optimum solution for run 30 of the proposed GBO
algorithm.

4.2 Wind Turbine of 30 kW
Based on analysis described in Section 2 and data reported in Tabs. 1 and 2, the proposed

GBO algorithm is applied to the 30-kW wind turbine. Tab. 5 explains the proposed GBO algo-
rithm’s results for a 30-kW wind turbine based on minimizing the loss of the probability of
a generated energy loss. The optimum solution for these results is determined according to the
second objective function that satisfies the minimum meter cubic function.
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Table 3: Results of the decision variable for 6 kW from a GBO based on the LEGP

Run h2 A R2 R1 fobj2

1 57.40128 0.157887 3.311413 5.942579 1129.561463
2 45.26694 0.152597 3.226155 5.8442 853.4763615
3 48.98618 0.222489 3.157694 5.918605 915.509757
4 32.27097 0.194206 3.217166 5.97835 620.6787187
5 57.46627 0.214215 3.119393 5.748713 1030.513524
6 40.41741 0.157574 3.114831 5.703932 718.0874355
7 50.6326 0.169845 3.297265 5.90975 986.6271951
8 54.04965 0.220564 3.195539 5.836084 1007.995303
9 46.48875 0.245294 3.189204 5.851694 867.5845803
10 51.28276 0.179077 3.178343 5.976067 974.0640628
11 56.23774 0.152181 3.256936 5.863454 1073.966373
12 42.95625 0.174857 3.102174 5.894946 785.5472124
13 52.33389 0.155133 3.33319 5.951809 1038.226451
14 54.72452 0.221956 3.376278 5.98674 1106.141125
15 47.29105 0.191712 3.128933 5.646466 835.510537
16 48.00857 0.166523 3.295603 5.905486 934.3494325
17 56.98286 0.218793 3.285613 5.866266 1098.303595
18 56.9222 0.144987 3.125514 5.91272 1051.938866
19 46.19192 0.193511 3.111921 5.582244 802.4229603
20 31.96327 0.160249 3.125179 5.952396 594.5903487
21 52.14464 0.229889 3.328248 5.888502 1021.951462
22 49.90867 0.233568 3.133448 5.86657 917.4507097
23 49.84812 0.140284 3.116203 5.631328 874.7529775
24 50.54733 0.226675 3.122786 5.923438 935.0056141
25 57.52945 0.163827 3.268732 5.759444 1083.053909
26 32.30148 0.157218 3.139406 5.784851 586.6271031
27 56.02531 0.201424 3.100072 5.971138 1037.081919
28 51.44141 0.168626 3.161804 5.712825 929.1776024
29 31.19217 0.169806 3.171518 5.947532 588.3686953
30 31.08461 0.168752 3.15661 5.929514 581.8158272

Table 4: The best solution for 6-kW from a GBO, TSA and ChOA algorithms based on the LEGP

Algorithm h2 A R2 R1 fobj2

GBO 31.08461 0.168752 3.15661 5.929514 581.8158272
TSA 33.95042 0.151096 3.190784 5.859134 634.7109261
ChOA 32.71091 0.164894 3.130075 5.811248 594.9997839
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Figure 4: Power generated from a 6-kW wind turbine without a wind cube

Figure 5: Output power of a 6-kW wind turbine with an optimized wind cube

Tab. 5 shows that all runs achieve 0.079240007 probability of a generated energy loss; the
result in run 23 is the optimum solution because this solution achieves the minimum objective
function of minimizing the meter cubic function. Tab. 6 show the best solution from the proposed
GBO algorithm in compared with Tunicate swarm algorithm (TSA) and Chimp optimization
algorithm (ChOA) for 30-kW wind turbine. Based on this results the proposed GBO achieve the
best meter cubic function compared with the other competitor algorithms. Fig. 6 shows the power
demand output from the wind turbine without a wind cube at the same height as the wind turbine
hub and the optimum solution’s roughness coefficient. Fig. 7 shows the power demand output
from the wind turbine with a wind cube at the optimum solution for run 30 of the proposed
GBO algorithm.
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Table 5: Results of the decision variable for 30 kW from a GBO based on the LEGP

Run h2 α R2 R1 fobj2

1 33.9903 0.168467 5.576217 10.58872 2006.95769
2 41.23584 0.176445 5.90803 11.04344 2690.430679
3 59.99437 0.249611 5.947948 10.66068 3804.191615
4 34.07007 0.150989 5.593785 10.59017 2018.280502
5 41.17549 0.160371 5.915031 11.0462 2690.349584
6 59.99185 0.24995 5.94891 10.66202 3805.125321
7 56.3486 0.17893 5.787966 10.52267 3431.904241
8 46.87051 0.153597 5.65338 10.44837 2768.576657
9 59.66264 0.243826 5.732932 10.28951 3519.441572
10 46.07201 0.21587 5.72789 10.60664 2799.044078
11 56.52102 0.155246 5.551946 10.11289 3173.441056
12 51.64603 0.24933 5.552197 10.13934 2907.444836
13 33.72516 0.205779 5.799582 11.08859 2168.836732
14 35.23807 0.212581 5.807014 11.06361 2263.924172
15 53.90231 0.147021 5.881671 10.75907 3411.007878
16 30.02507 0.223701 5.841212 11.34799 1990.24277
17 45.81277 0.17039 5.893233 10.91312 2946.381392
18 39.48589 0.229741 5.575304 10.51012 2313.7594
19 34.81782 0.249944 5.751105 11.03274 2209.204985
20 36.73943 0.15563 5.635884 10.61535 2198.004659
21 49.66252 0.155886 5.887991 10.83304 3167.716883
22 32.88174 0.18592 5.763045 11.00836 2086.072849
23 31.16894 0.199724 5.550141 10.68478 1848.380943
24 39.46348 0.149229 5.55141 10.39238 2276.742437
25 50.89265 0.169445 5.929976 10.88363 3284.594438
26 59.15301 0.175359 5.66672 10.26178 3439.786336
27 44.19609 0.154358 5.8718 10.90138 2829.023782
28 59.96046 0.24965 5.844689 10.47629 3671.418304
29 56.1891 0.216415 5.757975 10.43581 3376.356052
30 35.94489 0.190275 5.571909 10.56166 2115.30706

Table 6: The best solution for 30-kW from a GBO, TSA and ChOA algorithms based on the
LEGP

Algorithm h2 A R2 R1 fobj2

GBO 31.16894 0.199724 5.550141 10.68478 1848.380943
TSA 30.36002 0.170384 5.73696 11.00257 1916.363658
ChOA 30 0.25 5.640492 11.02396 1865.416509
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Figure 6: Power generated from 30-kW wind turbine without a wind cube

Figure 7: Output power of a 30-kW wind turbine with the optimized wind cube

5 Conclusion

Increasing the generated energy from the wind turbine is important work. Wind cubes improve
wind turbine output using an effective optimization technique. A GBO is used to estimate the
roughness factor’s decision variable, the inner radius of the wind cube, the wind turbine hub’s
height, and the outer radius of the wind cube. The extraction of these parameters is dependent on
minimizing the probability of a loss of generated energy and decreasing the decision variable to
make these variables more cost-efficient. There is a tolerance of a 20% air speed increase for the
site as compared with the speed recorded in this work. A comparison between wind turbine output
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power with and without the optimized wind cube was performed. Based on this comparison, the
energy generated from a 30-kW wind turbine with the optimized wind cube as 55.7317 times the
energy generated without the wind cube. The energy generated from a 6-kW wind turbine with
the optimized wind cube is 23.8123 times the energy generated without the wind cube. The future
work will concentrate on apply GBO for several problems such as power flow in power system,
wind farm layout problem.
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