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Abstract: Transmission line is a vital part of the power system that connects
two major points, the generation, and the distribution. For an efficient design,
stable control, and steady operation of the power system, adequate knowledge
of the transmission line parameters resistance, inductance, capacitance, and
conductance is of great importance. These parameters are essential for trans-
mission network expansion planning in which a new parallel line is needed to
be installed due to increased load demand or the overhead line is replaced with
an underground cable. This paper presents a method to optimally estimate
the parameters using the input-output quantities i.e., voltages, currents, and
power factor of the transmission line. The equivalent π -network model is
used and the terminal data i.e., sending-end and receiving-end quantities are
assumed as available measured data. The parameter estimation problem is
converted to an optimization problem by formulating an error-minimizing
objective function. An improved particle swarm optimization (PSO) in terms
of time-varying control parameters and chaos-based initialization is used to
optimally estimate the line parameters. Two cases are considered for param-
eter estimation, the first case is when the line conductance is neglected and
in the second case, the conductance is considered into account. The results
obtained by the improved algorithm are compared with the standard version
of the algorithm, firefly algorithm and artificial bee colony algorithm for 30
number of trials. It is concluded that the improved algorithm is tremendously
sufficient in estimating the line parameters in both cases validated by low error
values and statistical analysis, comparatively.
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Nomenclature

PSO Particle swarm optimization
CITVPSO Chaos initialized particle swarm optimization
FA Firefly algorithm
ABC Artificial bee colony
ω Inertia constant
Vs Sending-end voltage
Vr Receiving-end voltage γ Propagation constant
Is Sending-end current
Ir Receiving-end current Z Impedance of the line Y Admittance of the line
cosϕr Receiving-end power factor
Z◦ Characteristics impedance

1 Introduction

The major part of the power system consists of transmission lines which are the main medium
of power flow between generation and distribution ends. The Loss of transmission lines means loss
of power between two vital points which is not affordable at any cost. Long transmission lines are
normally characterized by their line parameters such as series resistance, series reactance, shunt
capacitance, and shunt conductance. The efficiency and reliability of the system are assured with
continuous monitoring, protection, and control of the power system [1]. These parameters are very
essential in determining the performance of the line, its analysis, and finding the location of the
fault [2].

Therefore, accurate information of transmission line parameters and range of variations with
boundary limits are of great importance to monitor the performance of the line and to design
the protection schemes for fault conditions, these schemes can be fault location-based or current
differential protection [3]. One method is to determine or estimate line impedance and admittance
parameters from historical data [4], but the disadvantage of this method is that it does not presume
real-time data of input and output variables; another approach is to identify parameters from input-
output voltages, currents, powers and/or power factors measured at both ends of the transmission line
[5]. Traditionally calculations of parameters were performed in offline mode using handbook-based
formulas from tower geometry and properties of the conductor [6], these methods have many disad-
vantages as they do not incorporate short-term changes due to joule heating, ambient temperature
variations which can contribute to incorrect operation of protection schemes. The transmission line
parameters obtained from input-output measurements are also dependent on the time of measurement
and weather conditions.

The paper provides a technique to accurately estimate transmission line parameters with minimum
possible error and assumes that the input-output data of voltages, currents and power factor is available
from measurement units at two ends of the line. This method considers distributed nature of the line
parameters and estimates the per phase line parameters using the equivalent π-network model of the
long transmission line. The input-output modeling used in this paper is based on the determination
of the transmission line model from input-output measured/available data which is also known as the
black-box approach [7]. In this paper set of nonlinear equations are used to determine transmission
line parameters in which the validity of the model is not compared with linear equations, where a small
change in operating conditions can change input-output parameters and lead to incorrect estimation
of the line parameters. The input-output measurements of voltages, currents, and power factors are
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carried out by using synchronized phasor measurement units (PMUs) installed at both ends of the
transmission line.

The PMUs are employed in the power system to measure magnitudes along with phase angles
of voltages and currents at different locations [8,9], they also process the data acquired by digital
recorders at substations. By using this measured input-output data the long transmission line, the line
parameters from the set of nonlinear equations are then estimated. It is assumed that in absence of
PMU the existing SCADA system employed at substations will perform measurements of voltages,
currents, and power factor at both ends of the transmission line [10].

Recently, metaheuristic optimization algorithms have gained wide applications in solving com-
plex, nonlinear engineering optimization problems [11] particularly in parameter estimation problems
[12]. The metaheuristic algorithms are derivative-free algorithms compared to numerical optimization
algorithms where a bad choice of initial solution can lead to diverging solutions instead of converging
ones. Besides the many advantages associated with the metaheuristic algorithms, they suffer from
premature convergence and trapping into a local optimal point problem [13]. The chaotic maps
are bounded nonlinear deterministic systems that provide a way to generate initial population and
updating control parameters of metaheuristic algorithms. The chaos search are also hybridized with
metaheuristic algorithms to cope with the premature convergence problem. In literature there are many
algorithms have been proposed for numerical function optimization that incorporate chaos theory to
enhance performance in reaching the optimum solution [14–22].

In this paper long transmission line parameters estimation problem is formulated as an optimiza-
tion problem and then solved using an improved particle swarm optimization (PSO) algorithm. The
control parameters of the algorithm are made time-varying to achieve a dynamic behavior in achieving
the global optimum and a chaos-based strategy is used to initialize the swarm of candidate solutions.
The results obtained are then compared with the standard version of the algorithm, the firefly
algorithm and the artificial bee colony algorithm in estimating the parameters of the transmission
line model.

The paper is organized as follows, this Section is followed by Section 2 which presents the model of
the transmission line and problem formulation, Section 3 outlines the optimization algorithms, Section
4 presents the simulation results and discussion whereas conclusions and references are provided at the
end of the paper.

2 The Long Transmission Line Model and Problem Formulation

General equations representing long transmission line voltage and current are given in (1) and (2).

Vs = Vr. cos h γ l + Z◦. sin h γ l .Ir (1)

Is = Ir. cos h γ l + Vr

Z◦
. sin h γ l (2)

where,

cos hγ l =
(

eγ l + e−γ l

2

)
(3)

sin hγ l =
(

eγ l − e−γ l

2

)
(4)



272 CMC, 2022, vol.71, no.1

The characteristics impedance of the line [23] will be,

Z◦ =
√

r + jωl
g + jωc

(5)

For a lossless line, the characteristics impedance [23] will be,

Z◦ =
√

l
c

(6)

In case when the losses are neglected the above equation can be called as surge impedance or
natural impedance equation of the line.

The equivalent pi network model of the transmission line [23] shown in Fig. 1 produces,

Vs = (1 + ZY).Vr + Z.Ir (7)

Is = (2Y + ZY 2).Vr + (1 + ZY).Ir (8)

Figure 1: Equivalent π-network model of long transmission line

The impedance and admittance of the line is represented by (9) and (10).

Z = R + jX (9)

Y = G + jB (10)

Ir = Ir (cos ϕr − jsinϕr) (11)

From [23] comparing Eqs. (1) and (2) with (7) and (8), we get Z = Z◦. sin h γ l (12)

Y = 1
Z◦

. tan h(γ l/2) (13)
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In this paper, the data is used from [14] and assumed as available measured data of the long
transmission line from measuring units at both ends of the line. Two different case studies of the line
with conductance and without conductance are considered to estimate line parameters.

2.1 Transmission Line-Neglecting Shunt Conductance

The problem formulation uses the available data of voltages, currents, powers, power factors from
[14], it is assumed that the data is coming from measurement units at both ends of the transmission
line to estimate three unknown parameters R, X , and B as shown in the equivalent pi-network model
of the long transmission line. In this case, the shunt conductance of the line is neglected. Taking Vr as
a reference phasor, the two Eqs. (7) and (8) are separated into real and imaginary parts [23].

Vs (real) = Vr − BXVr + RIr cosϕr + XIr sinϕr (14)

a, say

Vs (img) = BRVr + XIr cosϕr − RIr sinϕr (15)

b, say

Combining real and imaginary parts, the sending end voltage equation will be represented by (16).

Vs = a + jb (16)

Is(real) = −RB2Vr + Ir cosϕr − XBIr cosϕr − RBIr sinϕr (17)

c, say

Is (img) = 2BVr − XB2Vr − Irsinϕr + RBIrcosϕr + XBIrsinϕr (18)

d, say

Is = c + jd (19)

It should be noted that the sending and receiving end power factor values are available from
PMU or SCADA measurements at both ends of the transmission line. An error minimization objective
function is formulated using Eqs. (17) and (19) to estimate unknown long transmission line parameters
as expressed in (20).

e1 = (|Vs, measured − Vs, estimated|) (20)

e2 = (|Is, measured − Is, estimated|) (21)

Absolute Error = e1 + e2 (22)

The per-unit values of line parameters R, L, and C are calculated by considering the equivalent
circuit of the long transmission line as in [14] are given by Eqs. (25) and (26). The propagation constant
per unit length is given as follows,

γ = α + jB
l

(23)
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The characteristics impedance per unit length of the line will be,

Z◦ = R + jX
sin h γ l

(24)

The per-unit impedance of the line along its length will be,

Z = Z◦γ (25)

The per-unit admittance of the line will be,

Y = Y
Z◦

(26)

2.2 Transmission Line-Considering Shunt Conductance

Normally line losses are much greater than the insulation resistance of the line and the value of
line conductance is very small. If due to environmental pollution and weather conditions the value of
actual insulation resistance is very small, then the loss is represented by the conductance G in parallel
with the capacitance of the line. The admittance of the line is given by Y= G + jB and the Eqs. (14),
(15), (17) and (18) will be modified to consider the conductance of the line G, the real and imaginary
parts of sending end voltage and currents are given as follows.

Vs(real) = Vr + RGVr − BXVr + RIr cosϕr + XIr sinϕr (27)

a, say

Vs(img) = XGVr + BRVr + XIr cosϕr − RIr sinϕr (28)

b, say

Is(real) = 2GVr +RG2Vr −RB2Vr −2XGBVr +Ir cosϕr −XBIr cosϕr +RGIrcosϕr +RBIr sinϕr +XGIr sinϕr

(29)

c, say

Is(img) = 2BVr+XG2Vr−XB2Vr+2RGBVr−Irsinϕr−RGIrsinϕr+XBIrsinϕr+RBIrcosϕr+XGIrcosϕr (30)

d, say

By combining real and imaginary parts, we get the complete sending end voltage and current
equations representing the π-model of the long transmission line model are given by (31) and (32).

Vs = a + jb (31)

Is = c + jd (32)

The above equations are used to estimate long transmission line parameters considering the shunt
conductance of the line. From the equivalent circuit, the per-unit lengths of the line parameters R, L,
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C, and G are derived using the below equations.

cos hγ l = 1 + ZY (33)

= 1 + RG − XB + j(RB + XG) (34)

Suppose

cos hγ l = cos h(α + jB) (35)

then,

cos α cos β = 1 + RG − XB (36)

sin α sin β = RB + XG (37)

Assigning

X1 = 1 + RG − XB (38)

y1 = RB + XG (39)

Eliminating α from (36) and (37), we get

cos2β =
[
x1 − √

(x1
2 − 4y1

2)
]/

2 (40)

From (36), we get

cos hα = y1/ cos β (41)

The per unit length values of the line parameters R, L, C, and G are obtained using (40) and (41).

3 Chaos Initialized Time-Varying PSO Algorithm (CITVPSO)

In this paper, an improved version of the particle swarm optimization algorithm, termed Chaos
Initialized Time-Varying Particle Swarm Optimization (CITVPSO) is employed to estimate the
parameters of the transmission line.

3.1 Particle Swarm Optimization (PSO)

The PSO is the most widely used swarm intelligence-based algorithm for engineering optimization
problems. The algorithm simulates the food search behavior of birds. An optimization problem is
formulated and optimized in terms of parameters update. In solving an optimization problem using
the PSO algorithm; the candidate solution is termed as a particle. A group (swarm) of particles is
employed to explore the problem search-space with the potential global solution. The PSO involves
only two equations to be updated in each iteration, the velocity and position of the swarm of the
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particles expressed by (42) and (43)

vk+1
i = ωvk

i + c1r1(pBk
i − X k

i ) + c2r2(gBk − X k
i ) (42)

Xk+1
i = X k

i + vk+1
i (43)

In (42) and (43), vi represents the velocity of particle i, k represents current iteration, ω represents
inertia, c1 is a coefficient representing personal acceleration, c2 represents global acceleration coeffi-
cient, pB represents the personal best position of particle i in the current iteration, gB represents global
best position among all particles achieved so far, r1 and r2 are two random numbers between 0 and 1,
and Xi is particle’s current position. The standard version of the algorithm is hereafter termed as the
standard particle swarm optimization (SPSO) algorithm.

3.2 CITVPSO

In this work, a variant of PSO is proposed. The proposed variant differs from the standard PSO
SPSO in terms of swarm initialization and algorithm parameters. In SPSO the particles are initialized
randomly following a normal distribution whereas in the used variant the particles are initialized using
a one-dimensional chaotic map and in the SPSO the algorithm parameters (ω, c1, c2) are assigned
constant values throughout the iterations whereas in the proposed variant the parameters are made
time-varying [24,25] to achieve good exploration and exploitation capabilities.

ωk = (ωmax. − ωmin.) × kmax. − k
kmax.

+ ωmin. (44)

c1 = (c1max. − c1min.) × kmax. − k
kmax.

+ c1min. (45)

c2 = (c2min. − c2max.) × kmax. − k
kmax.

+ c2max. (46)

In (44)–(46), ωmax. and ωmin. denote maximum and minimum values of the inertia coefficient
ω, respectively; c1max. and c1min. denote maximum and minimum values of the cognitive coefficient
c1, respectively; c2max. and c2min. denote maximum and minimum values of the global coefficient c2,
respectively. Whereas k represents current iteration and kmax. is the number of maximum iterations.
The idea behind using the time-varying coefficients is to penalize the cognitive and global movements
to facilitate global search in starting iterations and local search in the final iterations. This strategy
provides a balance in exploring and exploiting the search space to find the global solution within
some desired accuracy. The ω is varied between 0.4 and 0.9, c1 and c2 are varied between 0.5 and
2.5 in instances governed by current iteration and the maximum number of iterations as expressed
in (44)–(46).
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3.3 Chaos Initialization

Chaos can be termed as a bounded nonlinear system with deterministic nature having stochastic
properties and much sensitivity to initial conditions and parameters [26]. Mathematically, chaos is
deterministic and can be predicted because it is generated by iterating some deterministic equations,
it is having a regularity parameter. Tent map is a one-dimensional chaos equation that has been used
widely due to its advantages such as simple shape, higher iterative speed than other one-dimensional
chaos maps like logistic map [26,27]. The equation for generating a tent map is expressed in (47); where
z denotes the chaotic variable.

zn+1 =
{

2zn, znε(0, 0.5)

2(1 − zn), znε(0.5, 1)
(47)

There is a limitation associated with the tent map that is due to the limitation of computer word
length causing fractional parts of digits of floating-point numbers to be zero after a certain number of
iterations. This makes the numbers to stuck at the fixed point 0 due to plunging at (0.2, 0.4, 0.6, 0.8)
and some unstable points like (0, 0.5, 0.75) [17]. The solution to this problem is to provide a minor
perturb when the chaos variable is stuck to the points stated above. The pseudo code for the tent map
is provided below.

1: Begin

2: Initialize chaotic variables randomly

3: While (maximum iterations)

4: If the chaotic variable plunges

5: Provide a minor perturbation

6: Else

7: Update the variables by the Tent map equation

8: End

9: Next generation until maximum iterations

10: Scale the chaotic variables into the problem search space

11: End

The chaotic variables are generated in the range between 0 and 1 and then scaled into the problem
search space using the relation expressed in (48).

X = Xmin. + (Xmax. − Xmin.) × z (48)

where X represents the parameter vector with dimensions (1 × 3) and (1 × 4) for case-1 and case-
2, respectively. Whereas Xmin. and Xmax. represent minimum and maximum limits of the parameters
respectively and z is the chaotic number.

The flow diagram of the CITVPSO is shown in Fig. 2.
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Figure 2: Flow chart of CITVPSO

4 Results & Discussion

In this Section two case studies of long transmission lines are discussed, one without considering
the conductance while in the other case shunt conductance is taken into consideration for estimation
of line parameters. To make a fair comparison all the algorithms are tested for the same swarm size
and 30 trial runs in estimating parameters in both the cases. The swarm size or population size is set
as 100 for all algorithms. For SPSO ω, c1 and c2 are set as 0.9, 2, and 2, respectively. The maximum
number of iterations is set as 500 for all the algorithms. For CITVPSO the parameter settings used are
as stated before. The settings for FA and ABC algorithms are adopted from [28] and [29], respectively.
The control parameters’ values are used in this paper are chosen based on personal experience and
literature reviewed.
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4.1 Case-I: Neglecting Shunt Conductance

A three-phase 220 kV overhead transmission line having a 300 km length, and frequency of
60 Hz, is considered. The per phase, per meter actual π-model line parameters, are taken, as given in
[14], the line is delivering a load of 135 MW (3-ϕ) and 5.7 MVAr (3-ϕ). Considering Vr (receiving end
voltage) as the reference phasor. The following quantities in Tab. 1 are assumed to be available data.
To test the algorithms a wide parameter limit is used as given in (49) for case-I.⎧⎨
⎩

10 ≤ R ≤ 50
0 ≤ L ≤ 1
0 ≤ C ≤ 5

(49)

The actual and estimated values of the parameters R, L, and C using the CITVPSO algorithm
are tabulated in Tab. 2. The table also gives the percentage error between the actual and the estimated
values. It can be seen that for the parameter R the percentage error is in the order of 10e−12 whereas for
the parameters L and C it is in the order of 10e-3. A comparison of the CITVPSO, SPSO, FA and ABC
algorithms in terms of four different statistical indicators, for 30 trial runs of each algorithm, is given
in Tab. 3. It is evident from the table that the CITVPSO algorithm has outperformed the counterpart
SPSO, FA and ABC algorithms by achieving almost consistent minimal objective values in each run.
The CITVPSO algorithm achieved an average and standard deviation of the order of 10e-14 whereas in
the competing algorithms the FA could only achieve an average and standard deviation values that is in
the order of 10e-04. The SPSO and ABC are far behind in this comparison. In comparison, CTVPSO
proved to be a better solution for parameter estimation of the π-model of a long transmission line
without considering the conductance. The convergence of the CITVPSO algorithm for the best run is
depicted in Fig. 3, the algorithm can converge to the optimal objective value in less than 50 iterations.
The estimated parameters trajectories are shown in Fig. 4 along with the actual parameter values. The
estimated parameters are precisely tracking the actual parameters in a less number of iterations.

Table 1: Available/measured data of transmission line for case-I [23]

Available per phase transmission line data

Sending end voltage/phase 127 kV
Sending end current/phase 416 A
Sending end real power 150 MW
Receiving end power factor 0.999 lagging
Receiving end voltage/phase 102 kV
Receiving end current/phase 440 A
Receiving end real power 135 MW

4.2 Case-II: Considering the Shunt Conductance

The actual long transmission line is represented by considering the effect of conductance in
parallel, though the effect is very small but cannot be neglected. A π-type underground cable is
considered to have a unity power factor, supplying a load of 100 MW per phase at receiving end with
a voltage of 345 kV, the length of the line is 15-mile (24.14 km). The cable data is given in [23] and
assumed as available or measured data for the underground cable and is tabulated in Tab. 4.
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Table 2: Actual and estimated parameters for case-I using CITVPSO

Parameters Actual values CITVPSO % age error

R(Omega) 26.4 26.4000 3.9080e−12
L(H) 0.3883 0.3883 3.8061e−03
C(μF) 1.3554 1.3555 6.9599e−03

Table 3: Statistical analysis for 30 trial runs (Case-I)

Statistics CITVPSO SPSO ABC FA

Best 1.7764e−14 0.2334 1.9146 1.3759e−4
Worst 1.2022e−13 135.4021 37.7220 5.5134e−4
Average 2.1179e−14 42.0996 14.1384 3.1719e−4
Standard
Deviation

1.8705e−14 37.7675 8.4963 1.2400e−4

Figure 3: Convergence curve for best trial run of CITVPSO for Case-I

Figure 4: Parameter trajectories along with actual parameters for Case-I
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Table 4: Available/Measured data of transmission line for case-II [14]

Available data of underground cable

Sending end voltage (L-N) 198.9 kV
Sending end current 0.596 kA
Sending end real power (3-phase) 302 MW
Receiving end power factor Unity
Receiving end voltage (L-N) 199.2 kV
Receiving end current 0.502 kA
Receiving end real power (3-phase) 300 MW

Assuming the above data as available/measured data of underground cable, the long transmission
line parameters are estimated by considering the shunt conductance of the line. The parameters are
presented in Tab. 4. The parameter limits for case-II are given in (50).⎧⎪⎪⎨
⎪⎪⎩

0 ≤ R ≤ 5
0 ≤ L ≤ 0.5
0 ≤ C ≤ 5
0 ≤ G ≤ 10

(50)

The parameters are estimated using the available data and the four optimization algorithms i.e.,
CITVPSO, SPSO, FA and ABC for 30 trial runs. It turned out that the CITVPSO has tremendous
performance in estimating the parameter with very low objective values, consistent in all trial runs, as
compared to the other three algorithms.

The actual and estimated parameters for the best run of the CITVPSO algorithm along with per-
centage error are shown in Table. The algorithm is capable of precisely estimating the parameter with
a very low percentage error evident from Tab. 5. Fig. 5 shows the convergence curve for the best run of
the CITVPSO algorithm. The algorithm converged in less than 215 iterations. Further, the parameter
trajectories for the estimated parameters are plotted in Fig. 6 along with the actual parameter values.
It is clearly visible that the estimated parameters precisely track the actual parameters in a very less
number of iterations.

Table 5: Actual and estimated parameters for case-II using CITVPSO

Parameters Actual values CITVPSO %age error

R	) 1.25 1.250000 0
L(H) 0.01565 0.015650 3.2203e−01
C(μF) 2.1486 2.148591 3.8482–04
G(S) 4.38 4.379999 1.5614e−12

The statistics for the trial runs are presented in Tab. 6. The SPSO, FA and ABC lag behind the
CITVPSO algorithm in all the statistical performance indicators and could only reach a best of order
of 10e-4 in all the trial runs whereas the CITVPSO attained a best objective value of 2.5535e−15 which
is far better than the values attained by the other three algorithms. The average and standard deviations
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of the SPSO, FA and ABC are too larger than the CITVPSO. Further, the global best achieved by all
the algorithms in each trial run for both cases is given in Tab. A in Annexure.

Figure 5: Convergence curve for best trial run of CITVPSO for Case-II

Figure 6: Parameter trajectories along with actual parameters for Case-II

Table 6: Statistical analysis for 30 trial runs (Case-II)

Statistics CITVPSO SPSO ABC FA

Best 2.5535e−15 8.5277e−4 2.5275e−4 1.1489e−4
Worst 8.1183e−12 2.0894 4.5894e−3 3.9517e−4
Average 2.7308e−13 0.7711 1.6320e−3 2.3853e−4
Standard deviation 1.4817e−12 0.5544 9.9240e−4 6.7610e−5

5 Conclusion

The paper presented an optimal method to estimate long transmission line parameters using
input-output quantities i.e., voltages, currents, and/or power-factor measured at both ends of the
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transmission line. The measured data should be carefully recorded from measurement devices to
avoid any error which will adversely affect the estimation process. An improved particle swarm
optimization algorithm to avoid premature convergence and trapping in a local optimal is suggested.
The control parameters of the PSO are made dynamic and the initialization is made chaotic to achieve
better exploration and exploitation to support in finding the global solution. The performance of
the algorithm is evaluated for two cases of parameter estimation: one case neglects the effects of
conductance whereas in the other case the conductance is considered. The improved algorithm when
compared with the standard version of the PSO algorithm, Firefly algorithm and Artificial bee colony
algorithm, in the parameter estimation problem, turned out to be more effective and efficient indicated
by the low percentage error values. The algorithm is tested for 30 trial runs and statistical analysis is
performed for the trial runs. The statistical analysis revealed a superior performance of the improved
algorithm over the standard PSO, firefly and artificial bee colony algorithms in terms of achieving
low average and standard deviation values for the trial runs. The CITIVPSO achieved 1.7764e-14,
1.2022e-13, 2.1179e-14 and 1.8705e-14 best, worst, average and standard deviation values for Case-I
respectively and 2.5535e-15, 8.1183e-12, 2.7308e-13 and 1.4817e-12 best, worst, average and standard
deviation values for case-II respectively which is far better than the values achieved by the SPSO,
FA and ABC algorithms. In this paper, the CITVPSO algorithm proved to be a good algorithm for
the transmission line parameter estimation problem, comparatively. The method can be implemented
to the real transmission line to evaluate the performance of the line, expansion of transmission line
network in case of load growth, or when underground cable replaces the overhead lines and parameters
of parallel lines or the cable are required to be determined. In future, other recent algorithms can be
applied to this problem for comparison and any better performance.
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Annexure

Table A: Best achieved by both algorithms in 30 runs for Case-I and Case-II

Run Case-I Case-II
CITVPSO SPSO ABC FA CITVPSO SPSO ABC FA

1. 1.7764e−14 4.7288e+01 2.7846e+01 3.6175e−04 2.5535e−15 1.4662e−01 1.0782e−03 2.7142e−04
2. 1.7764e−14 1.1116e+02 6.9268e+00 4.2849e−04 2.5535e−15 2.7362e−01 1.2464e−03 1.8257e−04
3. 1.7764e−14 2.3341e−01 1.5267e+01 2.7539e−04 2.5535e−15 6.9949e−01 1.2858e−03 3.1852e−04
4. 1.2022e−13 2.3892e+00 1.0817e+01 3.7284e−04 2.5535e−15 1.1583e+00 1.6534e−03 3.0564e−04
5. 1.7764e−14 8.5408e−01 8.7079e+00 3.7861e−04 2.5535e−15 3.7481e−01 9.3135e−04 1.2310e−04
6. 1.7764e−14 1.1319e+02 3.7722e+01 2.7495e−04 2.5535e−15 9.4587e−01 3.2126e−03 2.4277e−04
7. 1.7764e−14 2.7552e+01 2.4102e+01 2.2951e−04 2.5535e−15 7.3397e−01 8.6218e−04 2.7291e−04
8. 1.7764e−14 2.6596e+00 9.7350e+00 2.1551e−04 2.5535e−15 1.2083e+00 2.6386e−03 2.8069e−04
9. 1.7764e−14 2.3239e+01 1.1333e+01 1.9365e−04 2.5535e−15 1.0365e+00 5.3365e−04 2.3135e−04
10. 1.7764e−14 3.2693e+00 3.2056e+01 3.4152e−04 2.5535e−15 1.3449e+00 1.5062e−03 1.5529e−04
11. 1.7764e−14 4.7640e+01 7.7415e+00 1.4635e−04 8.1183e−12 8.5277e−04 1.1873e−03 2.2129e−04
12. 1.7764e−14 3.7868e+01 1.9146e+00 4.6952e−04 2.5535e−15 4.3359e−01 1.3073e−03 2.9282e−04
13. 1.7764e−14 4.6073e+01 1.7770e+01 1.3759e−04 2.5535e−15 4.3043e−01 2.8152e−03 2.0290e−04
14. 1.7764e−14 2.7593e+01 1.5160e+01 3.3061e−04 2.5535e−15 5.7835e−01 8.0888e−04 2.8356e−04
15. 1.7764e−14 2.9881e+01 4.4513e+00 1.3816e−04 2.5535e−15 7.9639e−01 1.3594e−03 2.8055e−04
16. 1.7764e−14 9.5493e+00 1.8652e+01 3.7793e−04 2.5535e−15 1.1734e+00 9.4819e−04 2.8899e−04
17. 1.7764e−14 1.2090e+01 1.0732e+01 1.3854e−04 2.5535e−15 2.0894e+00 4.5894e−03 2.2526e−04
18. 1.7764e−14 3.5981e+01 1.1959e+01 3.1066e−04 2.5535e−15 1.8348e−01 5.4461e−04 1.1489e−04
19. 1.7764e−14 8.8233e+01 1.1191e+01 5.1217e−04 2.5535e−15 1.5694e+00 2.5275e−04 2.4133e−04
20. 1.7764e−14 9.8121e+01 2.8892e+01 1.9900e−04 2.5535e−15 1.3347e−01 2.7887e−03 3.0123e−04
21. 1.7764e−14 3.7720e+01 9.5032e+00 2.6050e−04 2.5535e−15 1.5249e+00 2.0647e−03 1.2235e−04
22. 1.7764e−14 6.9296e+00 1.4013e+01 1.9314e−04 2.5535e−15 1.5128e+00 2.0632e−03 2.1516e−04
23. 1.7764e−14 3.7933e+01 1.9345e+01 4.8990e−04 2.5535e−15 8.2464e−02 8.3520e−04 2.4579e−04
24. 1.7764e−14 1.9700e+01 7.4811e+00 2.3497e−04 2.5535e−15 1.3512e+00 1.4701e−03 2.6942e−04
25. 1.7764e−14 1.3542e+02 9.6379e+00 3.3589e−04 2.5535e−15 9.9694e−02 1.9128e−03 3.9517e−04
26. 1.7764e−14 7.7534e+01 1.2056e+01 4.8697e−04 2.5535e−15 1.0893e+00 2.2836e−03 1.2921e−04
27. 1.7764e−14 5.1507e+01 1.2838e+01 5.5134e−04 2.5535e−15 1.2744e−01 1.0659e−03 2.9398e−04
28. 1.7764e−14 8.1419e+01 5.9912e+00 3.1106e−04 2.5535e−15 9.7898e−01 1.0219e−03 2.7732e−04
29. 1.7764e−14 4.9527e+01 1.3972e+01 2.9469e−04 2.5535e−15 2.6861e−01 3.5348e−03 1.5270e−04
30. 1.7764e−14 4.3347e−01 6.3385e+00 5.2463e−04 2.5535e−15 7.8673e−01 1.1578e−03 2.1783e−04
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