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Abstract: Biometric recognition refers to the process of recognizing a per-

son’s identity using physiological or behavioral modalities, such as face,

voice, fingerprint, gait, etc. Such biometric modalities are mostly used in

recognition tasks separately as in unimodal systems, or jointly with two or

more as in multimodal systems. However, multimodal systems can usually

enhance the recognition performance over unimodal systems by integrating

the biometric data of multiple modalities at different fusion levels. Despite

this enhancement, in real-life applications some factors degrade multimodal

systems’ performance, such as occlusion, face poses, and noise in voice data.

In this paper, we propose two algorithms that effectively apply dynamic fusion

at feature level based on the data quality of multimodal biometrics. The

proposed algorithms attempt to minimize the negative influence of confusing

and low-quality features by either exclusion or weight reduction to achieve

better recognition performance. The proposed dynamic fusion was achieved

using face and voice biometrics, where face features were extracted using

principal component analysis (PCA), andGabor filters separately, whilst voice

features were extracted usingMel-Frequency Cepstral Coefficients (MFCCs).

Here, the facial data quality assessment of face images is mainly based on

the existence of occlusion, whereas the assessment of voice data quality is

substantially based on the calculation of signal to noise ratio (SNR) as per the

existence of noise. To evaluate the performance of the proposed algorithms,

several experiments were conducted using two combinations of three different

databases, AR database, and the extended Yale Face Database B for face

images, in addition to VOiCES database for voice data. The obtained results

show that both proposed dynamic fusion algorithms attain improved perfor-

mance and offer more advantages in identification and verification over not

only the standard unimodal algorithms but also the multimodal algorithms

using standard fusion methods.
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1 Introduction

Biometrics has long been known as a robust approach for person recognition that uses different

physiological or behavioral traits, such as face, voice, fingerprint, iris, gait, and many others [1]. The

greatest majority of existing real-life biometric systems are unimodal, which means they make use of

a single biometric modality and need to be accurately enrolled in a database to train a discriminative

algorithm, and then to be sufficiently acceptable and usable in the recaptured probe or test samples for

achieving successful recognition. Consequently, such systems mostly suffer from different limitations

against some challenges, such as noise in sensed data, intra-class variation, inter-class similarity,

and non-universality [2]. Multimodal biometric systems have thus been alternatively used for person

recognition, as they are expected to be more accurate and reliable than unimodal systems and may

overcome some of the unimodal limitations, because of the presence of multiple independent pieces

of evidence [3] to be integrated and fused at either of four fusion levels, namely, sensor level, feature

level, matching score level, and decision level [4].

Fusion at feature level is based on a concatenation of different feature vectors extracted from

different biometric modalities to create a new more powerful feature vector with a higher dimension-

ality that represents the individual more accurately [5,6]. Since the feature sets may contain richer

information from biometric modalities than the mere match scores or final decisions, using fusion at

the feature level is expected to achieve better recognition results [7]. However, in some systems feature

level fusion is more difficult to implement than other fusion levels, because of the relationship between

the features spaces of different biometric systems may not be known and concatenating two feature

vectors might lead to the dimensionality problem. Also, since the multimodal system may not have

access to the feature values of individualmodalities due to their proprietary nature, in such cases, fusion

at the matching score or decision levels are the only option [3]. The standard fusion technique is used

in the majority of literature, where representations frommultimodalities are simply and symmetrically

concatenated at any fusion level. On the other hand, few studies apply dynamic fusion mostly at the

score level or dynamic selection of the classifier or fusion algorithm based on the quality or context

of data [8]. In several earlier research studies [8–10], dynamic biometric fusion or classifier selection

could improve the recognition performance over their standard fusion counterparts [8–10].

In this research, information of face and voice modalities are used for dynamic fusion at feature

level. Human face is the most natural, user-friendly, and non-intrusive biometric measure; it is

extensively used in daily life for identification, authentication, and retrieval, in such a way does

not disturb people being identified [11]. Recently, face recognition techniques have achieved high

performance using some public databases [12]. However, the accuracy of face recognitionmay degrade

for many likely reasons, such as illumination, occlusion, facial expressions, and poses [12]. The other

modality used here is voice, which has recently become one of the most efficient measures used to

provide protection to an individual’s computerized and electronic belongings [13]. The idea of voice

recognition is to capture the voice as well as linguistic behavior of the speaker [1]. Therefore, voice can

be considered as a combination of physiological and behavioral biometric forms [3]. Voice biometric

has high potentiality for growth; since no special or sophisticated sensor is required, where a PC that

already contains a microphone will be sufficient [1]. Similar to face recognition, voice recognition also

has drawbacks, which influence the recognition accuracy in real life usage, such as environmental noise,

medical conditions (e.g., a common cold), emotional state, etc. [3].

Recently, the coronavirus disease 2019 (COVID-19) pandemic has increased the focus on hygienic

and contactless person recognition methods [14]. However, people worldwide are legally allowed or

even obliged to wear face masks, which in turn degrade or negatively affect face and voice recognition
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performance. Hence, the prevalence of masked faces everywhere has become a serious concern to

consider and a real challenge for face biometric systems to confront for successfully achieving person

identification or verification (authentication). For instance, several security-related face recognition

issues have been escalated in many regions after dozens of crimes were committed by criminals taking

advantage of the COVID-19 face-covering rules. Users of voice authentication and identification

systems also have been somewhat impacted by some consequent circumstances of the COVID-19

epidemic, as wearing a face mask may affect speech production by presenting an obstacle to the

usual transmission of speech sounds. The effect of face masks on voice recognition can be similar

to those caused by acoustic filters, like the sound-absorbing fabrics used for sound insulation [15].

Motivated by the challenging context of recognizing low-quality face and voice probe data besides the

increased and urgent needs for developing such robust capabilities, we propose two dynamic feature-

level fusion algorithms for improved and adaptive multimodal biometric identification/verification.

The main contributions of this research are:

• A new proposed dynamic feature fusion method, with dynamic feature vector size, based on

biometric data quality analysis and assessment of probe samples.

• A new proposed dynamic feature fusion algorithm, with dynamic weighting for features, based

on the biometric data quality analysis and assessment of probe samples.

• An investigation of the effects and performance of using the proposed dynamic feature level

fusion of face and voice biometrics for person identification and verification tasks.

• Performance comparisons of the proposed dynamic fusion approaches with two standard

unimodal approaches using voice or face, and with a multimodal approach using the standard

fusion of face and voice biometrics.

The rest of this paper is organized as follows. Section 2 shows a literature review of occluded

face recognition, noisy voice recognition, standard face and voice fusion, and dynamic and quality-

based person recognition systems. Section 3 shows the proposed framework of dynamic biometric

fusion and the biometric data quality assessment along with two proposed dynamic feature fusion

algorithms. The methodology, including databases description, a brief background about the used

feature extraction methods, preprocessing, feature fusion, and the classifier used in our experiments,

is shown in Section 4. Section 5 shows the experimental results and analysis. This research is eventually

concluded in Section 6.

2 Related Work

2.1 Occluded Face Recognition

A number of recent research studies are concerned with removing the occlusion area to effectively

recognize occluded faces [16–20]. Jianxin et al. [16] proposed a block-oriented method for partially

occluded face recognition. Their proposed algorithm was designed to segment the face image and

extract Histogram of Oriented Gradient (HOG) and Local Binary Pattern (LBP) features from each

block of the image to obtain HOG-LBP joint features. Then to attain identification using sparse

representation reconstruction residual, where their algorithm enhanced the recognition performance

and provided more robustness against occlusions compared with other traditional algorithms. In [17],

two approaches were proposed for masked faces recognition. The first approach was designed using

an attention-based module to focus on the region around the eyes, which improved the performance

of masked face recognition over other attention modules in comparison. The second approach was a

cropping-based investigating the optimal cropping for each case inmasked face recognition, which also

improved the recognition performance as per their experimental results. Another proposed method
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for partially occluded face recognition [18] was implemented by dividing each image into sub-images

and detecting occluded regions using eigenfaces, then using Gabor filters to extract features from

unoccluded sub-images, where only those unoccluded sub-images were used in matching. Wu et al.

[19] proposed a partial occlusion facial attitude estimation algorithm based on HOG in the direction

of the pyramid. Their approach divides a detected face horizontally into two sub-images, to predict the

existence of any occlusions in these two sub-regions individually. After that, pyramid HOG features

are extracted from unoccluded sub-images and used with a Support Vector Machine (SVM) classifier

to recognize a person’s identity. Moreover, Song et al. [20] developed a different approach for occluded

face recognition based on PairwiseDifferential SiameseNetwork (PDSN) such that, amask dictionary

is established using the differences between the top convoluted features of occluded and unoccluded

face pairs, which indicated the correspondence between occluded facial areas and damaged feature

elements. Their experimental results on synthetic and realistic occluded face datasets showed that their

proposed approach achieved higher performance compared with some state-of-the-art results.

2.2 Noisy Voice Recognition

Voice recognition nowadays is increasingly explored and effectively utilized in numerous applica-

tions, such as security, access control, and forensics [21]. Despite the significant advances and increased

accuracy in performance of this biometric modality, it still faces serious challenges, such as noise

in probe data [22]. Consequently, several research studies explore the efficacy of voice recognition

in noisy environments using Mel-Frequency Cepstral Coefficients (MFCCs) for feature extraction

[13,21–24]. In [23], the researchers proposed an architecture using a convolutional neural network

(CNN) and MFCC to identify the speaker in a noisy environment. The proposed methods are

based on a hybrid feature extraction using CNN as a feature extractor combined with MFCC as a

single feature set, then the speakers were classified using a deep neural network. They achieved an

improved performance reaching up to 87% accuracy. Kawakami et al. [24] proposed a method for

speaker identification in a noisy environment and investigated the effect of pitch synchronous phase

information when combined with MFCC for speaker identification by combining Gaussian Mixture

Model (GMM) based on MFCC with GMM based on phase information. This method improved

remarkably the recognition accuracy from31.8% to 61.6%. In [25], an architecture pipeline of near real-

time speaker recognition was proposed, which exploited the advantages of hybrid feature extraction

techniques by using Gabor filters, CNN, and statistical parameters. To minimize the influence of the

environmental noise, their proposed system enforced the recursive least squares (RLS) as an adaptive

filtering method for the noise cancellation. Their experimental results showed that the recognition

accuracy was enhanced up to 9% when compared to the standard AlexNet architecture. In [26], a

forensic speaker verification systemwas proposed investigating the efficiency of combining the features

of MFCCs with MFCC extracted from the discrete wavelet transform (DWT). The performance of

this system was evaluated for these features with and without warping, and the experimental results

showed that the fusion feature warping DWT-MFCC and feature-warped MFCC approach achieved

high verification performance under different environmental noise and reverberation conditions.

2.3 Face and Voice Fusion

Several recent research efforts have presented different multimodal biometric schemes for person

recognition using voice and face in fusion. In [27], a multimodal biometric system using face and

voice was developed and different fusion techniques were tested and compared to measure their

performance. The results showed that feature level fusion of face and voice data achieved the best

recognition score, rank, and decision among the test fusion levels. In [4], they designed and developed
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Android-based multimodal biometric authentication system, using LBP and MFCC features for face

and voice, respectively. Their experiments were conducted using the Georgia Tech face (GT_DB)

database and TIMIT database for face and voice data, respectively. Their proposed method achieved

higher verification performance than the other compared methods in their experiments. Another

multimodal identification approach for human authentication based on face and voice recognition

was proposed in [28], where face feature was extracted using principal component analysis (PCA)

and eigenfaces, while voice feature extraction was done using MFCC, linear prediction coefficients

(LPC), and linear prediction Cepstral coefficients (LPCC). The classification was attained using

GMM, SVM, and artificial neural network (ANN) for each modality separately, as they used and

compared matching score level fusion and feature level fusion. Thus, matching score fusion achieved

0.62% equal error rate (EER), whereas feature fusion achieved 2.81% EER. In [29], a face-voice

multimodal recognition approach was proposed and a number of experiments were conducted in three

feature fusion mechanisms, concatenation of pre-normalized features, merging normalized features,

and multiplication of features. The results showed that the merging fusion was the most effective

mechanism.

2.4 Dynamic and Quality-Based Recognition

Several research studies improved the person recognition performance by applying dynamic score

fusion or dynamic classifier selection. In [9], the researchers proposed a method that optimizes the

accuracy and computation time by performing a dynamic selection of classifiers and fusion schemes

based on the quality and pose of the input biometric data, while in [8] a framework was proposed

for dynamic classifiers selection and fusion based on the data quality of gallery and probe images

for face and fingerprint biometrics. The experimental results showed that the quality-based classifier

selection maintained good performance even though the quality of image data is not optimal. In [30],

a quality-based recognition method was offered, in which the quality information was used to switch

between different system modules depending on the data source and to reject channels with low-

quality data during the fusion. This method achieved an overall improvement of 25% in terms of EER.

A quality-based multimodal biometric system was explored in [10], which adaptively combines the

scores from individual classifiers.Moreover, it was reported to achieve 99.5% accuracywith 0.5%EER,

outperforming the other compared state-of-the-art methods. In [31], the suggested method improved

the performance by incorporating quality measures in multimodal biometric fusion to determine the

reliability of the results given by fusion methods. Furthermore, another research work developed a

mobile biometric recognition system to analyze face and voice information using a score-level fusion

scheme driven by the quality of the biometric samples, as in [32], which yielded increased accuracy

by 4.14% and 7.86% over the counterpart unimodal face and voice respectively. Sellahewa et al. [33]

demonstrated the usefulness of quality-based adaptive normalization and adaptive score fusion for

face recognition, to overcome the adverse effects of varying illumination conditions. Tab. 1 summarize

some of relevant methods shown in this section.
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Table 1: A summary review of some most relevant methods

Reference Biometric Classifier Dataset Evaluation

metric

Result Limitations

[20] Face CNN MegaFace,

AR, LFW

Accuracy 99.2% Requirements

of paired

pictures are

difficult to

be satisfied

in real-life

applications

[23] Voice in

noisy

environment

CNN Their own

collected

dataset.

Accuracy 87% High dimen-

sionality of

feature

vectors, and

high

computation

time.

[27] Face and

voice

KNN AR, voice Accuracy 100% Face features

with high

dimensional-

ity & did not

consider low

quality

challenges.

[33] Face KNN Extended

Yale B

EER 7.9% Both high

quality and

low-quality

parts of

image is used

in

identification

3 Proposed Framework of Dynamic Biometric Fusion

Based on the literature, it appears that dynamic fusion at the feature level has yet to be extensively

explored; therefore, in this research, we propose a framework of dynamic biometric fusion along

with two dynamic feature fusion algorithms based on the data quality of test modalities. This is to

improve the person recognition performance and robustness against various types of face occlusion

and environmental noise in voice data. We firstly analyze and assess the biometric data quality of the

probe samples in order to appropriately apply the dynamic fusion. In this framework, other than the

standard processes of feature extraction, modeling, and biometric template storage, the training phase

is followed by an additional process in which dynamicity occurs on training data to reconstruct the

templates corresponding to the dynamic size or weight, as decided by the data quality-based analysis

and assessment in the test phase as shown in Fig. 1. As such, the first algorithm adopts a dynamic
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size for the feature vector by excluding the low-quality features, whilst the second algorithm is based

on dynamic weighting for affected features. As illustrated in Fig. 1, both dynamic fusion algorithms

handle the training data initially in the same manner as the standard fusion. However, the dynamic

fusion takes place for both training and testing data only at testing time.

Figure 1: Overview of the proposed dynamic biometric fusion framework

3.1 Biometric Data Quality Assessment

3.1.1 Face Data Quality Assessment

The quality of face image data varies due to different factors include occlusion, illumination,

pose, aging, and expression [34,35]. Regardless of the type of face occlusion, the existence of occlusion

in the face image can degrade the data/information quality, which consequently affects the quality

of extracted features and its suitability for automated matching [15,36]. In the proposed framework,

the quality assessment and analysis considered in the dynamic fusion framework are mainly based

on the existence of face occlusion. Therefore, we consider four categories of face images, which are

normal/unoccluded face image (does not contain any occlusion), face with sunglasses occlusion (upper

part of face is occluded), face with scarf occlusion (lower part of face is occluded), and side occlusion

(one side of face is vertically occluded). A normal face image is considered as a high-quality image;

therefore, the whole extracted face feature vector will be used in the fusion standardly, whilst an image

of a face with sunglasses, scarf, or side occlusion is considered as a low-quality image, where either

dynamic resizing or reweighting will be applied in such cases.

In this research, SVM classifier is used to assess the image data quality by detecting the existence

of occlusion in a probe image, since it is widely used and has proved its effectiveness for occlusion

detection in several research studies [16,37,38]. SVMclassifier is used here to classify images into one of

the four aforementioned categories (i.e., normal/unoccluded face, face with sunglasses occlusion, face

with scarf occlusion, and side occlusion). When a face image is classified as an image with sunglasses,

scarf, or side occlusion, the occlusion area is then determined using the watershed algorithm, which is

deemed as a fast, simple, and intuitive method for such detection processes [39]. It is an unsupervised
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algorithm designed for region segmentation that uses an intensity-based topographical representation

of a grayscale image, where the bright pixels in the image represent higher altitudes or the ‘hills’ and

the darker pixels correspond to the ‘valleys’ of the topography, which then is flooded from the bottom

up, eventually the watersheds appear as lines dividing different regions in the image [40]. The resulting

segmentation of an image consists of sets of connected pixels belonging to the same region, where the

regions are non-overlapped, and sets of watershed pixels represent the border between regions. Fig. 2

shows an example of different categories of face occlusion detected and segmented using the watershed

algorithm.

Figure 2: Pairwise examples of quality assessment result for low-quality occluded face data samples,

in each pair, left: is the original image, and right: is the detected and segmented occlusion

3.1.2 Voice Data Quality Assessment

Speech signal quality is of fundamental importance for accurate speaker recognition [34]. The

current situation of COVID-19 influences voice recognition systems, since coveringmouth and nose by

face masks often affects the production of speech by forming an obstacle to the usual transmission of

speech sounds [15]. In this research, the data quality assessment and analysis of the probe voice sample

were done by calculating signal to noise ratio (SNR) for each probe sample, since it is commonly used

for such a purpose and its effectiveness has been verified in different research studies [41,42]. SNR

can estimate speech quality by comparing the level of the desired signal to the level of background

noise. Intuitively, higher values of SNR mean higher signal qualities, which lead to fewer errors in

recognition. To calculate SNR, an energy-based voice activity detector was used to detect voiced and

unvoiced sections as shown in [21], then the audio wave was separated into non-overlapping frames

of 20 milliseconds, and the average energy was calculated for both voiced and non-voiced frames.

Eventually, SNR can be computed as follows [21]:

SNR = 10 × log

(

Evoiced

Eunvoiced

)

(1)

whereEvoiced andEunvoiced refer to themean energies of the voiced and unvoiced sections, respectively. The

result of SNR is used as voice quality assessment result. Our experiments confirm the result shown in

[41], which shows performance reductionwhen SNRwas less than 20 dB.Hence, the voice is considered

low-quality when the calculated SNR is less than 20 dB.

3.2 Dynamic Multimodal Biometric Fusion Algorithms

3.2.1 Dynamic Size Fusion Algorithm

The first proposed algorithm is based on adopting a dynamic size of the feature vector nascent

by the multimodal biometric fusion. Since the fusion is performed based on the quality of the probe

image and audio, the feature vector size reduction was done by excluding unnecessary confusable

information and minimizing the number of features of the low-quality modality/modalities. Hence,

we can consider four cases of biometric feature fusion, which are:
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First Case:When both face and voice samples are with high-quality information, the full extracted

feature vectors of both face and voice information will be used in the fusion, so final feature fusion

will be accomplished as same as the standard way.

Second Case:When the face sample is with high-quality information and the voice sample is noisy

with low-quality information, the full extracted face feature vector will be used in fusion, while the

extracted voice feature vector will be minimized to the most relevant high-quality feature information

using PCA. As such, the final nascent feature vector size will be smaller than the feature vector of the

standard fusion.

Third Case: When the face sample is with low-quality information and the voice sample is with

high-quality information, the extracted face feature vector will be minimized by PCA to the most

high-quality relevant feature, while the full extracted voice feature vector will be used in the fusion

operation. Thus, the final resultant feature vector size will be smaller than the feature vector of the

standard fusion.

Fourth Case:When both face and voice samples are with low-quality information, both extracted

feature vectors will be minimized by PCA to the most high-quality relevant features. Thus, the final

resultant feature vector size will be further smaller than the feature vector derived by the standard

fusion.

Algorithm 1: Dynamic size fusion

1. INPUT: Test face and voice data

2. Detect occlusion in Test face image

3. Measure signal_to_noise_ratio

4. IF: occlusion_existence == true

5. THEN: face_quality = low

6. ELSE: face_quality = high

7. END IF

8. IF: signal_to_noise_ratio < threshold

9. THEN: voice_quality = low

10. ELSE: voice_quality = high

11. END IF

12. IF: face_quality = low

13. THEN:

14. Remove occlusion area from Test image

15. Remove the same Test occlusion area from Train images

16. Apply feature extraction to Test and Train face images

17. Select only top-k high-quality unoccluded features

18. Minimize size of Test face feature vector based on top-k

19. Resize all Training face feature vectors accordingly

20. ELSE:

21. Use full-size for Test and all Training face feature vectors

22. END IF

23. IF: voice_quality = low

24. THEN:

(Continued)
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25. Select top-k high-quality features

26. Minimize size of Test voice feature vector based on top-k

27. Resize all Training voice feature vectors accordingly

28. ELSE:

29. Use full-size for Test and all Training voice feature vectors

30. END IF

31. Combine face and voice feature vectors

32. Match Test and Training feature vectors

33. RETURN recognized person identity

3.2.2 Dynamic Weighting Fusion Algorithm

The second proposed algorithm is based on dynamic weighting for low-quality features, which

adopts a fixed size of feature vectors after fusion, but a dynamic weight range of those features based

on their feature information quality. When a face image sample is classified as a face with sunglasses,

scarf, or side occlusion, the occlusion area is determined as explained in Section 3.1.1. After that,

the extracted features from occlusion pixels will be minimized to range of weight smaller than the

remaining features extracted from the pixels of unoccluded face region, where this is carried out by

multiplying the pixels of occlusion by a reduction weight ranging between 0 and 1. Also, when a voice

sample has an SNR less than 20 dB, which means the audio is either captured in a noisy environment

or the speaker is speaking in a low voice, then the features will be minimized to range of weight less

than the range of the face features to be fused with them. Thus, there are four cases of feature weighting

in this algorithm, which are:

First Case: When both face and voice samples are with high-quality information, the full feature

vectors will be normalized using min-max normalization and used as they are.

Second Case: When the face sample is with low-quality information and the voice sample is with

high-quality information, the features derived from the occlusion pixels will be normalized using

min-max normalization and multiplied by a suited dynamic reduction weight (0–1) determined based

on empirical analysis to minimize their adverse effects on recognition performance, whilst the voice

feature vector will be normalized using min-max normalization and used as it is.

Third Case:When face sample is with high-quality information and the voice sample is with low-

quality information, the voice features will be normalized using min-max normalization then multi-

plied by a suited dynamic reduction weight (0–1) calculated based on the resulting SNR to minimize

their adverse effects on recognition performance, whereas the face features will be normalized using

min-max normalization and used as they are. The weight, in this case, is calculated as follows:

Weight =
SNR

20
(2)

where SNR refers to the calculated signal-to-noise ratio of test audio data.

Fourth Case: When both face and voice are with low-quality information, they both normalized

using min-max normalization, then the voice features will be multiplied by a suited dynamic reduction

weight (0–1) computed relatively to the SNRusing the Eq. (2). Furthermore, the face features extracted
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from occluded pixels will be multiplied by a suited dynamic reduction weight (0–1). While the face

features inferred from unoccluded pixels will be used as they are.

Algorithm 2: Dynamic weighting fusion

1. INPUT: Test face and voice data

2. Detect occlusion in Test face image

3. Measure signal_to_noise_ratio

4. IF: occlusion_existence == true

5. THEN: face_quality = low

6. ELSE: face_quality = high

7. END IF

8. IF: signal_to_noise_ratio < threshold

9. THEN: voice_quality = low

10. ELSE: voice_quality = high

11. END IF

12. IF: face_quality = low

13. THEN:

14. Segment occlusion pixels and determine occlusion_features

15. weighted_occlusion_features = occlusion_features × reduced_weight

16. Replace occlusion_features with weighted_occlusion_features

17. ELSE:

18. Use same weighting for Test and all Training face feature vectors

19. END IF

20. IF: voice_quality = low

21. THEN:

22. weighted_voice_features = voice_features × reduced_weight

23. Replace voice_features with weighted_voice_features

24. END IF

25. Combine face and voice feature vectors

26. Match Test and Training feature vectors

27. RETURN recognized person identity

4 Methodology

4.1 Databases Description

In this research, three different standard databases were used for conducting the experimental

work, comprising AR [43] and Extended Yale Face database B [44,45] datasets for face image data,

besides VOiCES database [46] for voice data. Note that the usage of these different face image

databases enables evaluation and comparison of variation in recognition performance of the proposed

dynamic fusion techniques from different aspects and on different realistic or synthetic occlusion

forms.
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4.1.1 Face Databases

AR database is one of the widely used databases to evaluate recognition performance on occluded

faces using various algorithms [17,47,48]. It includes 26 frontal face images with different facial

expressions, lighting conditions and occlusions for each of 126 distinct persons, 70 males, and 56

females. The images of most persons were taken in two sessions (13 images per session), separated

by two weeks. Fig. 3 demonstrates some AR database face samples used for training and testing.

Figure 3: Face data samples of AR database: (a) high-quality (no occlusions) data samples used for

training, and (b) high-/low-quality (unoccluded/occluded) data samples used for testing

Extended Yale Face database B has been also extensively used to evaluate the recognition

performance of different algorithms under synthesized occlusions [17,47,48]. It consists of 16128

frontal images of 28 distinct persons with nine different poses and 64 illumination conditions. In our

experiments, approximately 14 different images per person with different illuminations and poses were

used for training, whereas a synthetic occlusion was added to a set of about 80% of face testing images

to emulate different forms of realistic occlusions such as mask, scarf, and side occlusion. Figs. 4a

and 4b demonstrates some Extended Yale face database B samples used for training and testing,

respectively.

Figure 4:Face data samples of ExtendedYale database B: (a) high-quality (no occlusions) data samples

for training, and (b) high-/low-quality (unoccluded/synthetically occluded) data samples for testing

4.1.2 Voice Database

VOiCES database consists of 3,903 clear audio files for 300 different speakers. In our experiments,

approximately 14 audio files per speaker were used for training. For testing, to emulate environmental

noise we added synthetic non-stationary noise obtained from two different noise types (street, rain).

Hence, testing was accomplished using a combination of clear and noisy audio files, where synthesized

noises with different levels and durations at different times were added to most of the testing audio

files. Fig. 5 shows clear and noisy voice wave samples, illustrating the difference of amplitude between

the unvoiced sections of the clear and noisy voices.

It is noteworthy that in our experimental work we have conceptually and consistently assigned

persons’ face data with speakers’ data, so each subject in our experiments has both unique person
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images and unique speaker audio files, assuming that they are the face and voice biometrics of the

same person.

Figure 5:Clear and noisy voice waves: blue represents noisy voice and light green represents clear voice

4.2 Preprocessing

4.2.1 Face Data Preprocessing

Since, the used face images are from different databases with different properties, a suitable

preprocessing is necessary for normalization. Consequently, we carry out a face detection using Haar

cascade classifier which is object detection method proposed by Paul Viola and Michael Jones were

used to localize the face region to be then cropped and used as the area of interest. For face detection

using various multiple Haar features, each feature produces a numerical value by calculating the

difference between the number of pixels under the white area and the number of pixels under the black

area [49]. At some predefined threshold, the Haar features can classify face existence in a processed

image as positive or negative [50]. At the end of Haar face detection process, we remove the other

non-face or background parts of the image and keep a square image area containing only the face.

Finally, the cropped face image is resized to 64 × 64 pixels. Fig. 6 shows a face sample before and after

preprocessing.

4.2.2 Voice Data Preprocessing

Since the voice samples of VOiCES database have different durations and to prepare voice data for

feature extraction, we implement cropping for each sample to maintain and use only the first voiced

seven seconds.Moreover, external synthetic noises with different levels at different times and durations

have been added only to test samples to investigate and compare the effect of environmental noise on

the performance of the proposed dynamic fusion algorithms vs. their standard fusion counterpart.

4.3 Feature Extraction

4.3.1 Face Feature Extraction

After preprocessing, the face features are extracted using different feature extraction methods

to verify the effectiveness of the proposed dynamic fusion techniques. A number of experiments
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are conducted using Gabor-based and PCA-based feature extraction from face data, for either

constructing a unimodal feature vector or standard fusion feature vector (as baselines for performance

comparison), or to be used in dynamic fusion by either minimizing the size of the feature vector or

reweighting its features.

Figure 6: AR face sample before and after preprocessing: (a) original image, and (b) preprocessed

image

• Gabor-based features:
Gabor features have attracted considerable attention and achieved enormous success in many face

recognition purposes due to their capabilities for analyzing the visual appearance of an image and

extracting discriminative feature vectors [51,52]. Gabor filters have been used and confirmed to be

useful in several biometric applications, including face detection or recognition, iris recognition, and

fingerprint recognition [53]. There are several research studies, as reviewed in [47], where Gabor based

algorithms have achieved high accuracies in occluded face recognition. In this research, 2D Gabor

filters were used as one of feature extraction methods, which can be mathematically represented as

follows:

ΨF (u, v; f , θ) = e
−π2

f 2
(γ 2(u′−f )2+η2v′2)

(3)

where

u′ = u cos θ + v sin θ , v′ = −u sin θ + v cos θ (4)

where u and v are the variable pair of the filter frequency, f refers to the central frequency of the filter,

θ refers to the rotation angle of the Gaussian major axis and the plane wave, γ and η refers to the

sharpness along the major and minor axes, respectively [51].

In this research, face features were extracted using 14 different Gabor filters were used, with two

different scales (3 and 6), and seven different rotation angles θ (15◦, 30◦, 45◦, 60◦, 75◦, 90◦, and 120◦),

as demonstrated on the spatial domain in Fig. 7. An example of the resulting 14 face images after

applying these Gabor filters on an image sample are shown in Fig. 8.
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Figure 7: The 14 created and used Gabor filters

Figure 8: A sample of face image after filtering

Gabor filters-based feature extraction methods are usually computationally expensive due to the

high dimensionality in calculation. Hence, the dimensionality of the whole extracted feature vector

was reduced using an effective dimensionality reduction method proposed in [53]. This method was

designed to address a single large image comprising all 14 concatenated filtered images. In this large

image, for each i row-group consisting of d rows and each j group of columns consisting of d columns,

the dimensionality is reduced by removing the d th row from each i row-group and the d th column from

each j column-group. The used level of dimensionality reduction in our experiments was set to the

dimension of (d = 2).

• PCA-based features:
The other feature extraction method for face images was PCA, which another widely used feature

extraction and reduction method for face recognition [54]. It transforms the original data into a new

less dimension set of data containing the most relevant information that may reveal characteristics of

the data that were once hidden before the transformation [55]. This is done by constructingM feature

vector fromM training samples, each vector of size N, where N = image height × image width. After

that, an average image is constructed from the createdM vectors using the following formula:

m =
1

M

M
∑

n=1

Ŵn (5)

where m refers to the average image, and r refers to the image vector. After that, the average image is

subtracted from each input image as follows:

xi = Ŵi −m (6)
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The results are arranged on amatrixX = [xl, x2, . . . , xn] of dimensionM ×N, where each column

in the matrix represents an image sample. Then a covariance matrix is obtained as:

CX = XXT (7)

Next, eigenvectors and eigenvalues are calculated from the following formula:

CXU = U3 (8)

where 3 is the diagonal matrix of eigenvalues of matrix CX , and U is the associated eigenvector. For

image vector x, there are N possible projections, defined as:

yj = uT
j
x (9)

where j = 0, 1, . . . , N, and uj refers to the eigenvectors of the covariance matrix CX . The resulting yj
is the principal components that are also called the eigenfaces [56,57].

4.3.2 Voice Feature Extraction

• MFCC-based features:

The acoustic features were extracted using MFCCs, which is perhaps the most commonly used

feature extraction technique for speaker recognition [36]. MFCCs are based on short-term analysis,

which carries the speech in the frequency domainwith short segments and computes theMFCC feature

vector from each segment [23]. In this research, MFCCs were used as they were found to be robust

against noise and capable to detect speech characteristics even in low-frequency regions [23]. InMFCC,

the digitized audio signal was blocked into small duration frames of 22 to 32milliseconds [23,58]. Then

a hamming window function was performed on each individual frame. This offers the bell-shaped

weighting function with no zero at the edges of the window, to minimize the spectral distortion. This

window can be defined as:

wn = 0.54 − 0.46cos

(

2πn

N − 1

)

, where 0 ≤ n ≤ N (10)

where N is the number of samples in each frame [23,58]. The result of the windowing step can be

defined as:

Y1[n] = x[n] · w[n] (11)

where x[n] is the nth speech sample in the frame. After that, Fast Fourier transform (FFT) is performed

on every frame to get the magnitude frequency. The FFT can be formulated on the set ofN as follows:

Y2[n] =
N−1
∑

k=0

Y1[k]e
−2π jkn

N (12)

Here, n = 0, 1, 2, . . . , N−1, and j refers to the imaginary unit, which is
√−1. Then to compute

the spectrum, the square of the magnitude for each frequency component is taken as follows [13]:

Y3[n] = (real(Y2[n])
2) + (imag(Y2[n])

2) (13)

To simulate non-linear of the human ear, we need to convert signals in frequency into Mel-

frequency by Mel-scale, using the following formula [13]:

mel(f ) = 2595 ∗ log10

(

1 + f

700

)

(14)
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where f is the frequency in Hz. To simulate human perception, a Mel Filter Bank filters an input

power spectrum through a bank of Mel-filters. The filter banks are a set of triangular windows spaced

uniformly on the Mel-scale. The output is an array of filtered values, typically called Mel-spectrum,

calculated as follows:

Y4 [n] =
N
2

∑

i=0

Y3 [i] ×melweight [n] [i] , where 0 < n < k (15)

where k is number of filters. At the end of this step, only the useful features are preserved [23,58]. The

resultant values from theMel filter bank are reduced by calculating the natural logarithm of each value

as follows:

Y5 [n] = ln (Y4 [n]) , where 0 ≤ n < k (16)

Eventually, Discrete Cosine Transform (DCT) is used to convert log Mel back into the time

domain, where the result of this step is called the MFCC [21] which can be calculated as:

Y6[n] =
K

∑

k=1

Y5[k] cos

[

n

(

k −
1

2

)

π

K

]

, n = 1, 2, 3, . . .K (17)

The process of MFCC extraction is summarized as shown in Fig. 9.

Figure 9: Block diagram for MFCC extraction process

4.3.3 Feature Fusion

After face and voice feature extraction, the fusion of multimodal feature vectors is applied based

on the proposed dynamic fusion methods described in Section 3.2.1 and 3.2.2. The output of such

fusions is a single feature vector of higher dimensionality obtained by the concatenation of face and

voice feature vectors based on dynamic size/weight.

4.4 Classifier Training

To investigate the validity and potency of the dynamic fusion framework for improving the

recognition performance, we train and use an SVM-based classifier for experimenting the proposed

dynamic fusion approaches. The idea of SVM is based on structural riskminimization that tries to find

an optimal hyperplane that maximizes themargin between classes [59,60]. The separation can be tuned

by the C value (known as regularization parameter or penalty factor), which refers to the softness of

the margin. A minimal value of C refers to a softer margin, where this yields some classification errors

to maximize the separation margin, whereas the large value of C makes the SVM fitting better the

training data with regard to the decision function’s margin maximization [61].
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In this research, an SVM classifier with soft margin and linear kernel is adopted and learned

for person recognition. In each conducted experiment, a corresponding SVM classifier is trained and

tested using four different types of feature vectors derived using PCA, Gabor and MFCC feature

extractors as follows: first, feature vectors based on unimodality derived for each of face and voice

data, as two face unimodal feature vectors are separately extracted and tested using PCA and Gabor

feature extractors; second, a standard fusion consisted of the whole extracted features constructed using

(PCA/Gabor-based) face and voice feature vectors; third, a dynamic size fusion comprising aminimized

feature vector derived using the first proposed dynamic fusion method; and fourth, a dynamic weight

fusion implicating the whole extracted features with reduced weights for low-quality features was

performed using the second proposed fusion method of dynamic weighting for extracted features. To

investigate and compare variation in recognition performance, the same experiments were separately

conducted on each combination of theARwithVOiCES databases andExtendedYale BwithVOiCES

databases.

5 Experiments and Analysis

In this section, the conducted experiments and the achieved results are shown and analyzed, where

all experiments were similarly conducted per face database using the three different types of feature

fusion, ‘standard fusion’, ‘dynamic size fusion’, and ‘dynamic weight fusion’, as well as three unimodal

face and voice algorithms, which were all initially extracted using either PCA or Gabor filtering-based

approaches for face features, and MFCC for voice features. Here, the performance was evaluated for

identification and verification. As such, the identification performance was evaluated using different

standard evaluation measurements, including accuracy, precision, and F1 score, as reported in Tab. 2,

which can be calculated using the following formulas [62]:

Accuracy =
True Positive+ True Negative

True Positive+ True Negative+ False Positive+ False Negative
(18)

Precision =
True Positives

True Positives+ False Positives
(19)

F1 score = 2 ×
Precision × Recall

Precision + Recall
, where Recall =

True Positive

True Positive+ False Negative
(20)

On the other hand, verification (authentication) performance was measured using appropriate

standard evaluation metrics including receiver operator characteristic (ROC), where SVM was used

for computing the likelihood as the conditional probability of each sample x [62] as follows:

ROC =
P (x|positive)
P (x|negative)

(21)
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Table 2: Identification performance comparison of dynamic fusion, unimodal and standard fusion

Metric Feature AR database Extended Yale database

Unimodal Standard

fusion

Dynamic

size

Dynamic

weight

Unimodal Standard

fusion

Dynamic

size

Dynamic

weight

Accuracy PCA 81.6 PCA &

MFCC

87.3

PCA &

MFCC

92.9

PCA &

MFCC

95.7

82 PCA &

MFCC

82

PCA &

MFCC

90

PCA &

MFCC

94
MFCC 49.3 49.3

Gabor &

MFCC

85.9

Gabor &

MFCC

92.9

Gabor &

MFCC

90.1

Gabor &

MFCC

92

Gabor &

MFCC

96

Gabor &

MFCC

96Gabor 84.5 88

Precision PCA 82.9 PCA &

MFCC

86

PCA &

MFCC

90.8

PCA &

MFCC

94.3

87.8 PCA &

MFCC

91.1

PCA &

MFCC

97.3

PCA &

MFCC

93.3
MFCC 44.1 44.1

Gabor &

MFCC

82.3

Gabor &

MFCC

89.9

Gabor &

MFCC

89.2

Gabor &

MFCC

91.1

Gabor &

MFCC

97.6

Gabor &

MFCC

97.1Gabor 82.3 96.2

F1 score PCA 82.2 PCA &

MFCC

86.6

PCA &

MFCC

91.9

PCA &

MFCC

94.9

84.8 PCA &

MFCC

86.3

PCA &

MFCC

93.5

PCA &

MFCC

93.6
MFCC 46.5 46.5

Gabor &

MFCC

84

Gabor &

MFCC

91.3

Gabor &

MFCC

89.6

Gabor &

MFCC

91.5

Gabor &

MFCC

96.7

Gabor &

MFCC

96.5Gabor 81.6 91.9
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Moreover, area under the curve (AUC), andEERwere deduced fromROCanalysis for verification

performance comparisons from different aspects, as reported in Tab. 3. EER refers to a common value

of the false acceptance rate (FAR) and false rejection rate (FRR), where the FAR, FRR, andEERwere

calculated as [63]:

FalseAcceptanceRate = False PositiveRate =
False Positive

(False Positive+ TrueNegative)
(22)

FalseRejectionRate = FalseNegativeRate =
FalseNegative

(FalseNegative+ TruePositive)
(23)

Equal ErrorRate =
FalseAcceptanceRate+ FalseRejectionRate

2
(24)

Hence, the lower EER value indicates the higher performance of the system. In addition, AUCwas

calculated, as a measure that analyzes the verification performance with respect to each ROC curve

by computing the area under it. Thus, the higher AUC value refers to the better performance, where

the values close to 0.5 indicate low performance similar to random performance [64]. To prove the

effectiveness of the proposed dynamic feature fusion framework, both identification and verification

were conducted per database for the four different types of biometric feature vectors, explained in

Section 4.4, then all tested methods were compared as summarized in Tabs. 2 and 3.

In overview, the experimental results show that the voice unimodal achieved the worst identifica-

tion and verification performance, as 49.3% accuracy of identification and 0.308 EER of verification,

while both unimodal face identification and verification achieved better results as Gabor-based

achieved 84.5% accuracy with 0.0871 EER and 88% accuracy with 0.692 EER, when tested on

AR and Extended Yale B, respectively. The PCA-based unimodal achieved about 82% accuracy of

identification in both face databases, whereas for verification performance it received around 0.097

EER in both databases. The standard fusion scores show a slight performance improvement over the

unimodal methods as the average accuracy improvement in identification was about 2.7% for both

PCA-based and Gabor-based standard fusion methods. Furthermore, likewise, a slight performance

improvement in verification is observed for the standard fusion methods over the unimodal methods,

as illustrated in Figs. 13 and 14. Note that the proposed dynamic fusion methods were tested

and compared to the other aforementioned baseline methods (i.e., unimodal and standard fusion

methods).

5.1 Dynamic Size-Based Fusion of Face and Voice Biometrics

5.1.1 Dynamic Size-Based Fusion of Gabor and MFCC Traits

In this experiment, the proposed dynamic size fusion algorithm was applied using Gabor (face)

and MFCC (voice) feature sets extracted for mostly low-quality and few high-quality probe data

for both face and voice modalities. The experimental results show a remarkable enhancement in the

performance of the dynamic size fusion method by about 7% in terms of accuracy, precision, and F1

score over the corresponding standard fusion method, when tested on AR and VOiCES databases, as

can be deduced from Tab. 2. Accordingly, the dynamic size fusion method definitely outperforms the

Gabor-based unimodal andMFCC-based unimodal in identification by 8.4% and 43.6%, respectively,

as shown in Fig. 10.



C
M
C
,
2
0
2
2
,
v
o
l.7

1
,
n
o
.1

1
3
0
3

Table 3: Face verification performance comparison of dynamic fusion, unimodal and standard fusion

Metric Feature AR database Extended Yale database

Unimodal Standard

fusion

Dynamic

size

Dynamic

weight

Unimodal Standard

fusion

Dynamic

size

Dynamic

weight

EER PCA 0.0971 PCA &

MFCC

0.074

PCA &

MFCC

0.041

PCA &

MFCC

0.016

0.0968 PCA &

MFCC

0.078

PCA &

MFCC

0.054

PCA &

MFCC

0.017
MFCC 0.308 0.308

Gabor &

MFCC

0.077

Gabor &

MFCC

0.035

Gabor &

MFCC

0.050

Gabor &

MFCC

0.064

Gabor &

MFCC

0.017

Gabor &

MFCC

0.026Gabor 0.087 0.069

AUC PCA 0.953 PCA &

MFCC

0.980

PCA &

MFCC

0.994

PCA &

MFCC

0.990

0.976 PCA &

MFCC

0.982

PCA &

MFCC

0.989

PCA &

MFCC

0.999
MFCC 0.781 0.781

Gabor &

MFCC

0.977

Gabor &

MFCC

0.986

Gabor &

MFCC

0.986

Gabor &

MFCC

0.991

Gabor &

MFCC

0.998

Gabor &

MFCC

0.997Gabor 0.957 0.968
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The overall identification and verification results of this method comes second in performance

after dynamic weight fusion of PCA and MFCC features. Nevertheless, it achieves the best attained

performance results on Extended Yale face B and VOiCES databases, which reaches up to 96% of

identification accuracy. The other compared results emphasize the superiority of the first proposed

dynamic size fusion algorithm, by which exceeding the accuracy of the standard fusion by 4%, the

Gabor-based unimodal by 8%, and the MFCC-based unimodal by about 47%, as demonstrated in

Fig. 11.

Correspondingly, the ROC performance of all examined Gabor-based approaches is compared

in Figs. 13a and 14a, where the dynamic size fusion approach provides the best verification metric

values of EER and AUC, as can be observed in Tab. 3, where the EER of the dynamic size fusion

is 0.035 indicating less errors than the EER rate received as 0.077 by the standard fusion, using

AR and VOiCES databases. Moreover, the EER of dynamic size fusion using the Extended Yale B

database is the best and offers similar EER to the dynamic weight fusion of PCA andMFCC features,

this enhancement due to the minimizing bad occlusion and noisy features. The reported results in

Tab. 3, clarify the achieved improvement in verification using dynamic size fusion of Gabor andMFCC

features.

Figure 10: Face identification performance of standard and proposed methods on AR database

5.1.2 Dynamic Size-Based Fusion of PCA and MFCC Traits

In this experiment, the extracted PCA (face) and MFCC (voice) features were used to evaluate

the first proposed method adopting dynamic size fusion. Here again the performance of dynamic size

fusion of PCA and MFCC traits outperform the standard fusion of the same features by 5.6% on AR

database, whilst the accuracy improvement on Extended Yale B reaches up to 8%, as shown in Figs. 10

and 11. These results signify consistent and similar performance enhancement to the results described

for using the same dynamic size fusion method with Gabor features (Section 5.1.1).

Furthermore, the verification performance of this method achieves better results compared with

the standard fusion and unimodal in terms of EER and AUC, as reported in Tab. 3. The dynamic

size fusion achieves better EER and AUC than the standard fusion, and improve their scores by 0.033

and 0.014, respectively, on AR and VOiCES databases. On the other hand, the inferred EER when

testing this method on Extended Yale B and VOiCES databases outperforms the standard fusion

and unimodal by about 0.024 and 0.043, respectively. These results emphasize the superiority of
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dynamic size fusion over the standard fusion, and unimodal methods regardless of the database and

the used feature extraction method, this is due to low-quality features exclusion or size minimization,

by excluding whole occlusion features, and minimizing the size of noisy voice features. The achieved

results shown in Figs. 13b and 14b. Fig. 12 shows few examples of correctly and incorrectly identified

samples from different used databases and with different occlusion categories.

Figure 11: Face identification performance of standard and proposed methods on Extended Yale

database

Figure 12: Examples of occluded face classification: (a) correct identification, (b) incorrect

identification

5.2 Dynamic Weight-Based Fusion of Face and Voice Biometrics

5.2.1 Dynamic Weight-Based Fusion of Gabor and MFCC Traits

Here, the second proposed algorithm of dynamic weight fusion was experimented using Gabor

(face) and MFCC (voice) features. As shown in Tab. 2 and Fig. 10, the results of this experiment on

AR and VOiCES databases show a significant enhancement in identification performance over the

standard fusion by 4.2% in terms of accuracy, 6.9% for precision, and 5.6% for F1 score. In addition,

the identification result on the Extended Yale B and VOiCES databases offers the best attained results,

reaching up to 96% of identification accuracy, as shown in Fig. 11. These results are similar to the

results obtained by the first algorithm of dynamic size fusion, when examined on the same databases,
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with respect to accuracy. Although Gabor-based dynamic size fusion outperforms all other Gabor-

based approaches, the overall identification performance of both dynamic fusion approaches is close

on AR database and even much similar on Extended Yale B database in most comparable aspects.

Additionally, the verification results of this method using AR and VOiCES databases are

improved, as shown in Fig. 13a, where this is presented as a reduction in EER value, such that the

dynamic weight fusion provides the minimumEER value of 0.05, whilst the EER values of the standard

fusion, the face unimodal, and voice unimodal in verification are worse larger values reported as 0.077,

0.087, and 0.308, respectively. The improved verification performance appears also as an increased

AUC value, since the dynamic weight fusion achieves 0.986 AUC, whilst the AUC values achieved by

the standard fusion and the face unimodal are 0.977 and 0.957, respectively. Similarly, the results of

dynamic weight fusion for Extended Yale B show similar improvement for AUC and EER as illustrated

in Tab. 3, and Fig. 14a.

Figure 13: ROC verification performance of standard and proposed methods on AR database: (a)

Gabor-based features, and (b) PCA-based features

Figure 14: ROC verification performance of standard and proposed methods on Extended Yale B

database: (a) Gabor-based features, and (b) PCA-based features
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5.2.2 Dynamic Weight-Based Fusion of PCA and MFCC Traits

In this experiment, the second proposed dynamic weight fusion algorithm was tested for both

identification and verification using PCA and MFCC features, see Tabs. 2 and 3. The performance

evaluation onAR andVOiCES databases yields 95.7% accuracy as the best attained result, as shown in

Fig. 10, by which outperforms the standard fusion and face unimodal by 8.4% and 14.1%, respectively.

As shown in Figs. 13b and 14b, the verification results of the same databases also show high per-

formance by achieving the minimum-attained EER compared to all experimented approaches, which

equals 0.016. Moreover, this method achieves 94% accuracy on the Extended Yale B and VOiCES

databases, as shown in Fig. 11, which is also the best achieved result overall PCA-based methods using

the ExtendedYale B and VOiCES databases. This method consistently enhances identification with up

to 12% over the standard fusion, which also represents the largest improvement and difference between

standard and dynamic fusions. The ROC analysis in Fig. 14b shows comparable cures the methods

based on PCA and MFCC feature set including the face/voice unimodal, the standard fusion, and

both proposed dynamic fusion methods, when tested on Extended Yale B and VOiCES databases. The

illustrated results show that the dynamic weight fusion achieves the best attained results, as shown in

Fig. 13b on AR and VOiCES databases. The corresponding AUC results also confirm the superiority

of the dynamic weight fusion by all means in verification performance. This can be observed as obvious

increase in AUC values and decrease in EER values for both ‘dynamic size fusion’ and ‘dynamic weight

fusion’.

Finally, it can be noticed the overall performance of the dynamic size fusion is better when used

withGabor andMFCC features. Thismay be due to the large number ofGabor features comparedwith

MFCC features, which might make Gabor face features more dominant than the other MFCC voice

features in fusion and recognition as well. Finally, despite the achieved performance improvement

when using dynamic fusion, the accurate selection of the weight and size values may have a great

impact on the dynamic fusion performance.

6 Conclusion

In this work, we propose two data/information quality-based dynamic fusions at feature level,

which are capable to improve person recognition performance of face and voice data based on dynamic

multimodal biometric fusion. The first proposed fusion method adopts a dynamic size feature vector

by excluding detected low-quality feature information, whilst the second proposed algorithm adopts

dynamic weighting for detected low-quality feature information.

The experimental results show that both proposed dynamic fusion algorithms achieved high

identification and verification performance under different realistic and synthetic low-quality data

conditions adversely affecting face and voice biometrics. Moreover, multiple performance compar-

isons of the proposed dynamic fusion methods with other standard unimodal and multimodal

fusion methods indicated remarkable improvements over the other standard counterparts. The overall

obtained results show the dynamic size-based fusion performed better with Gabor and MFCC

features, whereas the dynamic weight-based fusion achieved the best attained performance when using

PCA and MFCC features.

The proposed dynamic biometric fusion framework provides promising results and likely potential

solutions for several real life applications. The current nowadays situation of the COVID-19 pandemic

is one good example of such applications, as it has posed many challenges to existing face and voice

biometric recognition systems, which have been severely affected by global mask covering billions of
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people’ noses and mouths and affecting their face looking and speech production. Therefore, there is

an increasing need to develop accurate recognition systems and methods to be more suitable for use

in such COVID-19 era.
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