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Abstract: The paper deals with factorial experimental design models decoding.
For the ease of calculation of the experimental mathematical models, it is con-
venient first to code the independent variables. When selecting independent
variables, it is necessary to take into account the range covered by each. A
wide range of choices of different variables is presented in this paper. After
calculating the regression model, its variables must be returned to their origi-
nal values for the model to be easy recognized and represented. In the paper,
the procedures of simple first order models, with interactions and with second
order models, are presented, which could be a very complicated process.
Models without and with the mutual influence of independent variables differ.
The encoding and decoding procedure on a model with two independent
first-order parameters is presented in details. Also, the procedure of model
decoding is presented in the experimental surface roughness parameters mod-
els’ determination, in the face milling machining process, using the first and
second order model central compositional experimental design. The simple
calculation procedure is recommended in the case study. Also, a large number
of examples using mathematical models obtained on the basis of the presented
methodology are presented throughout the paper.

Keywords: Mathematical modeling; design of experiments; functions; coding;
decoding; variable; regression coefficients

1 Introduction

The model expresses the essential properties of an object, process or system. The mathematical
model itself consists of a system of equations, states and algorithmic rules [1,2]. This includes the
appropriate algebraic techniques used in considering exact solutions in equations [3]. When setting up
a mathematical model, basic sources of information are used.
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The main goal of mathematical modeling is:

• calculation and analysis of the object, process or system in order to obtain new and more
complete knowledge and legality of the studied process;

• discovering the mechanisms of interaction within the studied process;
• testing the set hypotheses about the rightness mechanisms of internal interactions and systems;
• forecasting the state and behaviour of processes, systems and phenomena;
• optimization based on set optimization criteria;
• management of objects, processes or systems in space and time [4].

The field of application of mathematical modeling is very widespread and wide. There are some
important mathematical models that are used to explain the computational properties of real world
problems and they have been described in the literature, such as [5,6]. Fractional derivatives with
a non-distinct nucleus as well as nonlinear crystal shapes were processed by mathematical models.
The application of complex dynamic tools in order to solve nonlinear equations is a growing area
of research in literary works [5,7]. Thus, in the literature we find the application of factor plans in
complex systems that deal with the distribution of supply of appropriate products to different locations
by different suppliers and levels of quality of raw materials [8]. As well as specific activities, such as
the implementation of digital marketing with the analysis of influencing factors on its profitability
in relation to the already existing traditional print marketing [9]. Furthermore, it is also possible to
apply factor plans in determining the investments of individual companies in developing countries,
all in relation to the factors that affect the level and amount of these investments. This refers, for
example, to factors such as the level of education of the population in the regions where an industrial
giant wants to be implemented, the age of the population, the amount of payroll taxes, the inflow of
foreign direct investment, investment in infrastructure projects [10]. All these factors can be described
mathematically using the language of numbers. That such models are not only applicable in the field
of economics is shown by other areas of application. Thus, we find application in the transport
sector in order to present a mathematical model for the transition of the traffic signal plan [11]. A
mathematical model for predicting the reduction of wüstite crystals during the casting process has also
been developed [12]. Also in the literature we find the application of the factor plan for determining
the optimal level of carbon adsorption in order to remove dyes from aqueous solutions [13]. We find
a very interesting work from the aspect of the complexity of influencing factors in the research of
“elegance” as a characteristic of a good system [14]. The authors analyze elegance in the context of
systems engineering from the aspect of eight different factors, among which the visual arts, Gestalt
psychology, neuroscience and complexity theory stand out.

Finally, when observing the application of the factor plan in production systems, the range is
endless. Thus, we find application in the field of metallurgical characteristics such as identification of
corrosion intensity [15], optimization of tool trajectory in order to increase productivity [16], selection
of the most favourable tool angles from the aspect of precision [17], determining the measurement
uncertainty of the coordinate measuring machine [18], selection of the most favourable processing
regimes from the aspect of machinability [19–23], determining the state of construction systems, in
terms of damage [24], testing the influence of operating parameters on the rotating elements of the
machine [25].

Application of the design of experiments (DoE) in illustration or in the analysis of results is very
common. The field of application is wide, and this can also be seen through the literature sources
[26–29] where different spheres of scientific research are represented. Thus, we find the application of
DOE in testing the physical and mechanical properties of resins used as organic coatings [22]. DOE
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application can be found in the optimization of yields of appropriate agricultural crops, where the
effects of individual concentrations of appropriate media such as yeast are examined [23]. DOE also
finds its wide application in the production of glass fibers [24], as well as in the examination of light
effects in photocatalysts [25].

Also, it can be stated that the equations obtained on the basis of DoE can serve as a basis for the
application of modeling through artificial intelligence. Thus, we have examples that the limit values in
modeling with the help of genetic algorithms are determined on the basis of already existing values
in the equations, which were previously obtained on the basis of DoE [19,30–32]. The authors in the
paper [26] on the basis of regression values obtained on the basis of DOE analysis form a model for the
prediction of tool life. When optimizing the processing parameters of difficult-to-process composite
pipes in the form of finding the optimal cutting force, genetic algorithms were applied, which based
their regression coefficients on models obtained with the help of DOE [27]. When testing the properties
of gasoline engines, DOE was used as a basis on which, through genetic algorithms, expansion to non-
orthogonal spaces was performed, which is a common problem in engineering applications [28].

Based on the literature review, it can be stated that the basic characteristics of multifactor
experimental plans are the minimum set of experimental points within the experimental hyperspace
(many times lower costs and shorter duration of expensive experimental tests), as well as the maximum
set of information on the effects of the mathematical model of the process formed thanks to the
research according to the cybernetic approach.

The first stage of experimental research is the collection, study and analysis of all available
and relevant information about the object of research. The results of the first stage are: a list of
influencing factors (preferably ranked according to the degree of influence), the scattering limit and
other characteristics of the factors, criteria and optimization parameters in accordance with the set
goal and the like. If the number of influential factors is large, it is necessary to separate a smaller
number of significant ones from a larger number of less influential ones, by applying appropriate
methods.

In key works from the theory of engineering experiment [33–36] the decoding of mathematical
models is avoided, already the model is left in coded coordinates and the actual values are obtained
by logarithm zing the calculated values. In that way, deviations from the actual values occur.

Specifically, this paper deals with the coding and decoding of factorial experimental design
models. The procedures for selecting and defining the range or rank of each independent variable
are presented. The possibility of choosing the most favorable mathematical model from the aspect of
various researches is given in order to obtain the simplest or most accurate model.

2 Selection and Coding of Model Parameters

The experimental space is determined by possible values of independently variable quantities xij.
In this area there are all the points of the experimental plan, which correspond to the regimes and
conditions for the test.

The most common multifactor models are experiments in which the factors vary in two levels
(maximum and minimum value), where the mean value of the factor is not treated as a level of
variation. These are experiments of the type:

N = 2k + n0, (1)

where: k-number of factors (variables), n0–number of experimental variables.
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The matrix plan of a multifactor plan must satisfy the conditions of symmetry, normality and
orthogonality. The orthogonality of the plan is one very important feature of the experimental plan.
Mathematically defined:∑

xiuxju = 0, i �= j, i, j = 0, 1, 2, . . . , k. (2)

This characteristic of the plan means that the information matrix and the dispersion matrix are
transformed into a diagonal one. This means that the regression coefficients are calculated (evaluated)
independently of each other. This greatly simplifies the calculation of these coefficients.

The rotatability of the centrally composite plan of the experiment is achieved by adding the state of
the experiment so that all states are equally distant from the center of the experiment, i.e., rotatability
depends on the axial distance α (distance of the state in the axes from the center).

Special selection of parameters xij (3) simplifies solving the system of equations for determining
the regression coefficients by reducing the coefficient matrix to the unit matrix.

If the level and size xij are encoded using the transformation Eq. (4), then the change in size will
be determined by the interval:

−1 ≤ xi ≥ +1, i = 1 · · · k. (3)

The coded start is moved from the original point to a new point, which indicates the zero level of
the factor, so that now the values of the factors in the new coordinate system are:

xi = Xi−Xoi
wi

, i = 1 · · · k. (4)

where i-the variation interval is independently variable xi and the Xoi-is the natural coordinate of the
point of the center of the plan.

Xoi = xi max − wi = ln Fi − wi, (5)

for xii = ln Fi respectively xi max = ln Fi max the interval is:

i = 1
2

(ln F1 max − ln Fi min) , (6)

by substituting Eqs. (5) and (6) for Eq. (4), the equation for coding the factor levels is obtained:

xi = 1 + 2
ln Fi − ln Fi max

ln Fi max − ln Fi min

, (7)

based on this equation, the values of the factor levels are selected:

Fiα min coded xi = −α

Fi min coded xi = −1

Fio coded xi = −0 (8)

Fi max coded xi = +1

Fiα max coded xi = +α,

α-value at axial points

F 2
io = Fi min · Fi max. (9)
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The actual analytical form of the response function is usually not known because the law of the
studied process is unknown or partially known, so it is not possible to apply only the experimental
method to obtain a mathematical model.

Based on the experience of previous tests, an approximate mathematical model is chosen. After
that, experimental plan X is designed, testing techniques are performed, experiments are performed
and the adequacy of the model is checked. In case of model inadequacy, the previous cycle is repeated
until an adequate model is found.

The basic criteria for selecting basic functions are:

• ease of calculation when using the model with sufficient reliability
• cost-effective experimental model determination.

Regression model and multiple regression model:

ŷ =
k∑

i=0

bi · fi (x) , (10)

it can be presented in a mathematical sense as a decomposition of the reaction function R = R (p · · · x)

that is ŷ = ŷ (b · · · x) in the order composed of basic functions and to the extent and scope of
decomposition, which makes the regression model adequate. At the same time, we go from simple
to complex, i.e., from the first order model to the higher order all the way to satisfying the adequacy
criteria.

The criterion of the compositionality of a certain experimental plan enables the experimental plan
to be divided into a successive series of plans. The first cycle begins with a simpler plan-a first-order
plan. The second and subsequent cycles are more complex plans-second-order and subsequent-order
plans. In doing so, when processing experimental results at the end of a some plan or cycle, the results
of plans from the previous cycle are also used [37,38].

For nonlinear second-order polynomial response functions, Box and Wilson set up a special
method [39] based on a central composition plan. With this plan you can:

• identify the optimal area with the optimal point on the unknown surface of the response
function;

• mathematically model the optimal area with an adequate polynomial of the second or higher
order;

• define the tolerance limits of the optimal range of each of the variables of the multifactor object.

The authors [40–44] in their works give in detail the possibilities of solving analytical problems
in the processes of material processing. They elaborate in detail and set the types of equations that
approximate a certain observed quantity (cutting forces, tool stability, temperature in the cutting zone),
giving an answer to whether the set type of equation is adequate, i.e., whether the selected parameters
are significant.

Multiple first-order plans cannot be used for second-and higher-order models, but second-order
plans are applicable to identify the process of second-order models, noting that in this case more
experimental points are planned than necessary. Models with mutual influences are obtained by
extending the model with appropriate coefficients without additional experiments.
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Polynomials are most often used as basic functions, so that:

1. First order model:

ŷ =
k∑

i=0

bi · xi. (11)

2. First order model with mutual influence:

ŷ =
k∑

i=0

bi · xi +
k∑

i<j

bij · xixj +
k∑

i<j<n

bijn · xixjxn + · · · . (12)

3. Second and higher order model:

ŷ =
k∑

i=0

bi · xi +
k∑

i=1

bi · x2
i +

k∑
i<j

bij · xixj + · · · . (13)

The models presented in this way are used for mathematical modeling of phenomena and processes
in technology and science.

After determining the coefficients using the least squares method based on the known formula in
matrix form:

B = (X ′ · X)
−1 X ′ · Y , (14)

it is necessary to return to the actual coordinates, i.e., coefficients pi, this process is called decoding.

3 Decoding Mathematical Models

As an example of decoding, a two-factor model with mutual influence can be presented, which
has the following form in the coded factors based on Eq. (11):

ŷ = b0 + b1x1 + b2x2 + b12x1x2, (15)

If the equation replaces the value of the encoded factors xi based on the Eq. (7) is obtained:

ŷ = b0 + b1

⎡
⎣2

ln F1 − ln F11

ln
(

F11
F12

) + 1

⎤
⎦ + b2

⎡
⎣2

ln F2 − ln F21

ln
(

F21
F22

) + 1

⎤
⎦+

+ b12

⎡
⎣2

ln F1 − ln F11

ln
(

F11
F12

) + 1

⎤
⎦ ·

⎡
⎣2

ln F2 − ln F21

ln
(

F21
F22

) + 1

⎤
⎦ . (16)

To simplify this expression, tags are introduced:

Ai = 2
ln (Fi1/Fi2)

, (17)

ai = 1 − Ai ln Fi max, (18)

where: i = 1 · · · k.
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After replacing these notations (17), (18) in Eq. (11) is obtained by:

ŷ = b0 + b1 (A1 ln F1 + 1 − A1 ln F11) +
+ b2 (A2 ln F2 + 1 − A2 ln F21) +
+ b12 (A1 ln F1 + 1 − A1 ln F11) · (A2 ln F2 + 1 − A2 ln F21) . (19)

After multiplying and grouping individual members is obtained by:

ŷ = p0 + p1 ln F1 + p2 ln F2 + p12 ln F1 · ln F2, (20)

where the following labels have been introduced:

p0 = b0 + b1a1 + b2a2 + b12a1a2, (21)

p1 = A1 (b1 + b12a2) , (22)

p2 = A2 (b2 + b12a1) , (23)

p12 = b12 · A1 · A2. (24)

By the same principle, decoding is performed by substituting the values of the coded factors i =
1 · · · k in the Eqs. (11)–(13).

After sorting, the equations for the coefficients are obtained:

3.1 First Order Model

po = bo +
k∑

i=1

biai, (25)

pi = Aibi, (26)

C = exp (po) , (27)

R = C · Fp1
1 · Fp2

2 · · · Fpk
k . (28)

3.2 First Order Model with Mutual Influence

po = bo +
k∑

i=1

biai +
k∑

i<j

bijaiaj +
k∑

i<j<n

bijnaiajan + . . . , (29)

pi = Ai(bi +
k∑

i<j

bijaj +
k∑

i<j<n

bijnaian + . . . , (30)

pij = AiAj(bij +
k∑

i<j<n

bijnan + . . . , (31)

pijn = AiAjAn

(
bijn + . . .

)
, (32)
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R = C · Fp1
1 · Fp2

2 · · · Fpk
k exp

(
k∑

i<j

pij ln Fi ln Fj +
k∑

i<j<n

pijn ln Fi ln Fj ln Fk + . . .

)
. (33)

3.3 Second and Higher Order Model

po = bo +
k∑

i=1

biai +
k∑

i=1

biia2
i +

k∑
i<j

bijaiaj, (34)

pi = Ai

(
bi + 2biiai +

k∑
i<j

bijaiaj

)
, (35)

pii = A2
i bii, (36)

pij = AiAjbij, (37)

R = C · Fp1
1 · Fp2

2 · · · Fpk
k exp

[
k∑

i=1

pii (ln Fi)
2 +

k∑
i<j

pij ln Fi ln Fj

]
, (38)

C = exp (po) . (39)

4 Results and Discussion-Application of the Presented Models

The following is an example of the application of the three mentioned models, which were realized
as part of one engineering experiment. Namely, it is a question of modeling the output characteristics
of the state of the milling process. The experiment was performed according to a three-factor plan.
The matrix plan for the central composition plan is shown in Fig. 1. The basic factor plan of the first-
order model is marked in red. Then, with a blue frame, a first-order model was also presented, but
with the mutual influence of the examined parameters. Finally, a second-order model with the mutual
influence of parameters is presented in green.

The functional dependence of the three examined parameters on the response variable, with
different types of models, is represented by Eqs. (40)–(42).

R = CFp1
1 Fp2

2 Fp3
3 , (40)

R = CFp1
1 Fp2

2 Fp3
3 exp(p12 ln F1 ln F2 + p13 ln F1 ln F3+

+ p23 ln F2 ln F3 + p123 ln F1 ln F2 ln F3), (41)

R = CFp1
1 Fp2

2 Fp3
3 exp [ p11 (ln F1)

2 + p22 (ln F2)
2 +

+ p33 (ln F3)
2 + p12 ln F1 ln F2+

+ p13 ln F1 ln F3 + p23 ln F2 ln F3 ] . (42)

where independent variables are represented by Fi and dependent variables by R.

Example: Roughness of the machined surface during face milling depending on the cutting speed (v),
feed per tooth (f z ) and cutting depth (a)
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Figure 1: Matrix plan

Tab. 1 shows the matrix plan for the maximum surface roughness for the three-factor plan of
the second work previously shown in Fig. 1. The presented results were obtained experimentally by
combined face milling, with a milling head with a diameter of 100 mm and inserted hard metal plates
of quality class K20. Aluminum alloy 7075 with 4.4% Cu as the first alloying element was used as the
processing material. Roughness measurement was performed with the help of the device “MarSurf
PS1”.

After generating the independent parameters (v, fz and a) and the dependent variable Rmax in
Eqs. (40)–(42), the proposed models have the following form:

Rmax = Cvp1f p2
z ap3 , (43)

Rmax = Cvp1f p2
z ap3 exp(p12 ln v ln fz + p13 ln v ln a+

+ p23 ln fz ln a + p123 ln v ln fz ln a), (44)

Rmax = Cvp1f p2
z ap3 exp

[
p11 (ln v)2 + p22 (ln fz)

2 + +p33 (ln a)
2 +

+p12 ln v ln fz + +p13 ln v ln a + p23 ln fz ln a

]
. (45)

After mathematical data processing, i.e., coding of independent variables, i.e., decoding according
to the previously presented model, the following coefficients are obtained in the proposed regression
equations, Tab. 2.
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Table 1: Experimental results required for factorial design models of experiments

No. Factor The maximum
surface roughness

v [m/s] fz [mm/t] a [mm] Rmax [μm]

1 2.93 0.112 0.75 8.39
2 4.71 0.112 0.75 7.62
3 2.93 0.177 0.75 11.4
4 4.71 0.177 0.75 12.3
5 2.93 0.112 1.72 7.49
6 4.71 0.112 1.72 6.79
7 2.93 0.177 1.72 11.7
8 4.71 0.177 1.72 10.4
9 3.71 0.141 1.14 8.01
10 3.71 0.141 1.14 8.06
11 3.71 0.141 1.14 8.26
12 3.71 0.141 1.14 7.73
13 2.35 0.141 1.14 6.84
14 5.86 0.141 1.14 8.09
15 3.71 0.089 1.14 6.76
16 3.71 0.223 1.14 13.8
17 3.71 0.141 0.5 7.89
18 3.71 0.141 2.6 7.84
19 2.35 0.141 1.14 7.33
20 5.86 0.141 1.14 7.62
21 3.71 0.089 1.14 6.41
22 3.71 0.223 1.14 13.8
23 3.71 0.141 0.5 7.78
24 3.71 0.141 2.6 7.92

By applying the proposed models, it is possible to obtain the calculated values for the dependent
variable, i.e., to select the most favorable model. In that sense, it is possible to calculate the adequacy
of the appropriate model or the percentage deviation of the obtained values in relation to the experi-
mentally read ones. The user of these models, depending on which model describes the experimental
values more closely, has the open possibility of choosing the most relevant model.

Tab. 3 shows the values of the experimentally obtained data for the maximum surface roughness
as well as the calculated values obtained on the basis of the three discussed models. The user has the
opportunity to choose the appropriate model with aspects of the test rank as well as the accuracy levels
of the model.
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Table 2: Regression coefficients for the proposed models

First-order model without
mutual influence

First-order model with mutual
influence

Second-order model with
mutual influence

Label Values Label Values Label Values

C 62.3288 C 16.6131 C 170057.5608
p1 −0.12439 p1 0.86137 p1 0.75135
p2 0.90559 p2 0.25229 p2 9.71483
p3 −0.11163 p3 3.17696 p3 0.15094
– – p12 0.48670 p11 −0.00628
– – p13 −2.33486 p22 2.33766
– – p23 1.51130 p33 0.15008
– – p123 −1.06436 p12 0.35119
– – – – p13 −0.24826
– – – – p23 0.11449

The level of accuracy, i.e., deviation can be determined on the basis of dispersion analysis where the
adequacy of the proposed models would be analyzed in detail. However, a simpler way is to determine
the accuracy based on the mean percentage error-E, Eq. (46), where the reliability of the models that
described the corresponding output characteristics of the process can also be determined. Efforts
should be made to ensure that the deviation of the data used in the training of the relevant models
does not exceed 10%.

E = |Si mod−Si exp|
Si exp

∗ 100%, i = 1 ÷ n, Si = Rmax i. (46)

Tab. 4 shows the results of the percentage deviation of the error for the three presented models.
Based on the results, it can be concluded that in this example it would be most appropriate to choose:
First-order model with mutual influence.

If we compare the deviation of the experimental error with some similar results [23], we can
conclude that we are on the right track, i.e., that the order of magnitude of the deviation is very similar.
In the presented example, the worst result was obtained with the help of the Second-order model
with mutual influence, however, this does not necessarily mean that it is not sufficiently applicable
in the literature [19,41]. On the other hand, if some tools of artificial intelligence are applied to such
mathematical models, the error of deviations will be even smaller, which can be seen from the literature
[30,44].
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Table 3: Regression coefficients for the proposed models

No. Measured values Calculated values

Maximum surface
roughness Rmax, μm

First-order model
without mutual
influence

First-order model
with mutual
influence

Second-order
model with mutual
influence

1 8.39 7.75 7.99 7.94
2 7.62 7.31 7.25 8.08
3 11.4 11.74 10.85 11.95
4 12.3 11.06 11.71 13.13
5 7.49 7.07 7.13 6.04
6 6.79 6.66 6.46 5.58
7 11.7 10.70 11.14 9.50
8 10.4 10.08 9.90 9.47
9 8.01 8.85 8.85 7.44
10 8.06 8.85 8.85 7.44
11 8.26 8.85 8.85 7.44
12 7.73 8.85 8.85 7.44
13 6.84 – – 7.38
14 8.09 – – 7.48
15 6.76 – – 7.59
16 13.8 – – 19.50
17 7.89 – – 11.07
18 7.84 – – 6.12
19 7.33 – – 7.38
20 7.62 – – 7.48
21 6.41 – – 7.59
22 13.8 – – 19.50
23 7.78 – – 11.07
24 7.92 – – 6.12

Table 4: Regression coefficients for the proposed models

The mean percentage
error

First-order model
without mutual
influence

First-order model with
mutual influence

Second-order model
with mutual influence

E, % 7.15 6.7 15.6
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5 Conclusions

Data modeling is an abstract view of the state of a real system, i.e., defining the data structure.
A certain data model represents a simplified representation of a real system through a set of objects
(entities) as well as the connection between them.

These links contain a set of information on which the relationships and relations between
individual entities (variables) can be based, and thus the creation of different models.

If we look at the modeling of functions and their application, it can be concluded that the field is
very wide, i.e., it can be applied as in social, natural or technical technological sciences.

The process of applying mathematical models to experimental results can be very complicated
and time consuming if the appropriate stages in model formation are not performed. Great relief
is obtained by the coding process, where the experimental values are reduced to prime numbers
which contribute to the formation of simpler forms of equations. After selecting the most favorable
mathematical model, it is necessary to perform decoding and return to the original values of the
variables. If these coding and decoding procedures are skipped, the process of equation formation
is very long and extensive. This paper contributes to the formation and application of models to
experimental results.

Observing the presented example that deals with modeling the machinability functions of the
milling process, i.e., the parameters of the machining regime and the output characteristics of the
process state, the preconditions for predicting, managing and optimizing the machining parameters are
created. The modeling process was performed with the help of mathematical models obtained on the
basis of multifactor regression analysis. The obtained models can be analyzed in parallel and for each
function the adoption of the most favorable model can be proposed from the aspect of obtaining the
smallest possible deviation error from the experimental values. It is also possible to verify the accuracy
of the model based on additional experiments, which were not previously used in their implementation.
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