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Abstract: Cloud computing has gained widespread popularity over the
last decade. Scheduling problem in cloud computing is prejudiced due
to enormous demands of cloud users. Meta-heuristic techniques in cloud
computing have exhibited high performance in comparison to traditional
scheduling algorithms. This paper presents a novel hybrid Nesterov Accel-
erated Gradient-based Cuckoo Search Algorithm (NAGCSA) to address
the scheduling issue in cloud computing. Nesterov Accelerated Gradient
can address trapping at local minima in CSA by updating the position
using future approximation. The local search in the proposed algorithm is
performed by using Nesterov Accelerated Gradient, while the global search
is performed by using levy flights. The amalgamation of NAG and CSA
helps in cost reduction and time-saving for users. The simulation has been
carried out on the CloudSim tool on three different real datasets; NASA,
HPC2N, and SDSC. The results of the proposed hybrid algorithm have been
compared with state-of-art scheduling algorithms (GA, PSO, and CSA), and
statistical significance is carried on mean, standard deviation, and best for
each algorithm. It has been established that the proposed algorithm minimizes
the execution cost and makespan, hence enhancing the quality of service for
users.
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1 Introduction

Cloud computing has become a fundamental part of the computing world nowadays. The
expansion of cloud computing technology act as the backbone of newly developed technology like
Fog Computing [1], Internet of Things (IoT) [2], Cloud of Things [3] etc. Cloud computing provides
services to its users through the internet without knowledge of hardware and other infrastructures.
Cloud uses on-demand policies, i.e., the services are available to its users as per their demand, and user
has to pay to the service provider based on usage of cloud services [4]. However, there are methods of
resource provisioning like leased and reserved, which are used by big organizations [5]. The additional
benefits of cloud computing are scalability, availability, reliability, flexibility, and sustainability [6,7].
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The key technology behind the success of cloud computing is virtualization. Virtualization helps
cloud providers to deliver any kind of computing phenomenon by assembling the required hardware
and software together on a single platform and minimizing the complexity and burden of buying new
hardware and software. Some of the virtualization vendors are Xen [8], Virtual Box [9], VMWare Server
[10]. Mostly offered public clouds are owned by Google Cloud [11], Amazon EC2 [12], Microsoft
Azure [13].

Resource scheduling is a building block in cloud computing that decides how resources are
distributed over time and made available to its users in the best possible way. It helps in providing
the best quality of service to its users and the best utilization of resources to increase profits. The
fluctuating demands of users are unpredictable concerning the time domain, so it is very difficult to
satisfy resource requirements in dynamic nature. Scheduling in cloud computing is done at two levels:
users to virtual machines (VM) and VM to the physical host. The first level scheduling is responsible
for maintaining the quality of service in terms of makespan, execution cost, and response time while
the latter decides load balancing, migrations, energy and resource utilization [14].

As the number of users and virtual machines keeps on changing continuously in cloud computing,
so resource scheduling in the cloud system is an NP-Hard problem. Suppose there exit N users and M
virtual machines for a broker to satisfy the user’s requirements. The number of schedules for N users
for M machines is N2M which increases exponentially in the cloud environment with an increase in the
number of machines and number of users. Therefore, resource scheduling is NP-Hard in nature and
requires efficient algorithms that satisfy both users and cloud service providers. The fitness function
of any scheduling algorithm is focused on cloud service providers and user requirements. The fitness
function considers the availability, cost, makespan, energy, throughput, reliability, fault tolerance, etc.,
for optimal scheduling. An optimization problem can be stated as a fitness function f mapping the
candidate solution to fitness measure = Rn → R. The optimization solution c ∈ Rn achieves the best
optimal solution from all feasible solutions. Therefore, it can satisfy the minimization by Eq. (1) [15].

f (x) < f (y) , ∀ (x, y) ∈ Rn (1)

Hybrid algorithms always try to conquer all factors in solving any optimization problem. The
benefits of combining two or more algorithms are that they always find the best solutions by addressing
the limitations of the single algorithm in terms of speed and accuracy. Hybrid algorithms consist of
some meta-heuristic techniques, while other methods can achieve optimal scheduling.

Cuckoo Search (CS) algorithm is a population-based meta-heuristic technique that has been
widely used by the researcher in various domains of engineering and technology like scheduling,
image processing, structural design, speech recognition etc. [16]. The searching behaviour of CS does
not guarantee finding an optimal solution for specific problems. CS may trap into local minima
and may lead to premature convergence. To solve this problem in CS, the Nesterov Accelerated
Gradient technique is used in local search to improve the convergence rate and identify more feasible
solutions to schedule activities on virtual machines with the lowest execution cost and time, hence
improving the quality of service (QoS) for customers. Therefore, this paper proposes a novel hybrid
Nesterov Accelerated Gradient-based Cuckoo Search (NAGCSA) algorithm to enhance QoS in terms
of makespan and execution cost.
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The vital contributions of this paper are as follows:

• Frame the makespan and execution cost using mathematical models for scheduling as the fitness
functions

• Hybridize the Nesterov Accelerated Gradient with Cuckoo Search for scheduling in IaaS cloud
• Design of hybrid NAGCS algorithm to address the proposed scheduling model.
• Proposed hybrid NAGCS algorithm is implemented in the CloudSim simulation tool.
• Comparability of proposed hybrid NAGCS algorithm with CS algorithm and meta-heuristic

techniques like GA and PSO in terms of makespan and execution cost.

The remaining sections of this paper are organized as follows: Section 2 review some existing
techniques that are used in scheduling for IaaS cloud computing. Problem is formulated in Section
3. Section 4 presents the mathematical models of performance metrics that is used in this research
work. Section 5 presents the explanation for CS search, Nesterov Accelerated Gradient and hybrid
NAGCS algorithm. Section 6 presents the simulations setups for scheduling. Results and discussions
are furnished in Section 7, and finally, we conclude the paper in last with some valuable suggestions.

2 Related Work

There is a vast literature on scheduling techniques in cloud computing. Researchers and scientists
have applied many computational techniques to perform scheduling in cloud computing considering
various constraints like budget, deadlines. The various review articles published in the literature have
shown a broad application of heuristic and meta-heuristics techniques to solve various challenges in
cloud computing [17]. Some past studies like [18] show various requirements of QoS based on particle
swarm optimization. Computational intelligence has been divided into two parts heuristic, and meta-
heuristic and how they were applied in cloud computing is very well explained in studies [19].

Genetic Algorithm (GA) has been widely used in cloud computing for performing scheduling,
load balancing, and VM allocation. Its modified version and hybrid form with other techniques
were also used for efficient scheduling in cloud computing. Author in [20] proposed multi QoS GA-
ACO to schedule tasks on VMs to minimize the execution time and improves resource utilization.
Alla et al. [21] proposed dynamic dispatch queue-based task scheduling strategies optimized using
fuzzy logic and particle swarm optimization (PSO) and simulated annealing with PSO to minimize
waiting time, makespan and cost. The algorithms were tested on both synthetic and real data systems
while disabling the migration systems. The proposed work was extended to add energy parameters to
minimize makespan while deadline as a constraint in [22]. The proposed algorithm improved QoS,
minimize energy and improve resource utilization significantly.

Abari et al. [23] enhanced GA to perform static scheduling for a processor in a heterogeneous
cloud computing environment by replacing random population with some initial population with
relatively optimized solutions to lower repetition. Keshanchi et al. [24] modified GA with Linear
Temporal Logic (LTL) formulas to schedule workflow in the cloud. The modified GA helps in
prioritizing the tasks and determined the best available resource for execution efficiently. Zhou et al.
[25] also modified the GA with a greedy strategy for scheduling the tasks in the cloud computing
environment. The proposed method finds the solution very early in few iterations and helps minimise
the makespan, response time, and maintain good QoS from the user’s perspective.
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Strumberger et al. [26] developed a scheduling algorithm with hybridization of monarch butterfly
algorithm with ABC method to minimize the makespan. The algorithm was tested first on standard
mathematical benchmark functions and then applied to scheduling problems in cloud sim simulator.
Both synthetic and real data set were used to prove the performance of proposed algorithm; however,
how priority of task is taken is not explained in work. Author also applied [27] whale optimization
algorithm for scheduling of task by modifying the exploration stages of whale optimization with ABC
and firefly to remove the weakness of Whale optimization algorithm. The algorithm achieves good
QoS in terms of makespan and resource utilization.

Al-Olimat et al. [28] proposed the hybrid PSO-SA based scheduling technique to schedule the
tasks in cloud computing environment. The SA helps in adjusting the weights of particles and moved
them toward good solution. The proposed method minimizes the makespan however some more
parameters need to be tested to find the performance of algorithm in multi-objective nature. Alsaih
et al. [6] developed a dynamic job scheduling model to map the jobs with resource based on available
resources characteristics and also re-schedule the jobs that get allocated to VM. Proposed method
minimizes the makespan, improved CPU utilization and bandwidth utilization. Beegom et al. [29]
developed discrete-integer based PSO algorithm to schedule tasks in cloud computing and applied
it on single optimization and multiple optimization problem. The algorithm efficiently manages the
degree of imbalance, minimize cost and makespan. Attiya et al. [30] designed a hybrid algorithm by
combining the Harris Hawks Optimization and Simulated Annealing (SA) technique to minimize the
makespan in cloud. The algorithm improves response time and converges early to give good solutions
as search spaces increases.

Madni et al. [31] proposed multi-objective cuckoo search based scheduling to find the non-
dominant solution in cloud computing to minimize execution cost, makespan and improves resource
utilization. The simulations were carried out in CloudSim simulator, and real data set were used to
evaluate the performance of algorithm with other meta-heuristic techniques. Author also extended the
cuckoo search algorithm with gradient descent to increase the performance in [32]. Gradient descent
was used to perform the local search, and levy flight in the cuckoo search was used to perform global
search. The proposed hybrid algorithm was tested on both synthetic datasets and real datasets.

Kaur et al. in [33] proposed the hybrid GA-ACO based scheduling mechanism to minimize the
execution time and makespan. The proposed algorithm was tested on a synthetic dataset inside Matlab
and compare with GA and ACO; however, its performance can be compared with more meta-heuristic
techniques.

The analysis of the reviewed articles established that the majority of studies includes meta-heuristic
techniques like GA, PSO, ABC, and ACO and their hybridization with some heuristic techniques.
These algorithms get trapped in local minima while performing scheduling in cloud computing. The
performance of these algorithms is also not compared with other meta-heuristic techniques. This
article presents a technique to avoid local optima problem using NAG and also performs better at
global minima.

3 Problem Formulation

Resource scheduling in cloud computing is NP-Hard in nature. It is defined as mapping the user’s
task to the best available virtual machines to fulfill the user’s demand. Suppose a cloud datacenter con-
sists of p physical hosts, represented by set P = {

P1, P2, P3 . . . . . . . . . . . . ..Pp

}
. Each host Pi can have two

or more virtual machines running on it. Let VMj = {VM1, VM2, VM3 . . . . . . . . . . . . .VMm} represents
the set of virtual machines. Each VMj is a set of computing capabilities like CPU, memory, bandwidth,
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storage, and price. There are heterogeneous virtual machines, and their CPU capabilities (measured
in millions of instructions per second) are used to find the expected execution time of tasks/cloudlets
submitted by users. Suppose there is a set of activity/task/cloudlet Ai = {A1, A2, A3 . . . . . . . . . . . . .An}
submitted by users. Each activity Ai is a set of id, length, start time, file size. The processing requirement
of an activity is referred as length of activity and is measured in millions of instructions. The expected
execution time EETij of ith activity on jth virtual machine is calculated using Eq. (2).

EETij = Activity.Lengthi

VM.Powerj

(2)

where Activity.Lengthi is the length of activity i and VM.CPUj is computing power of jth VM in terms
of MIPS. Therefore, EET of all the activities can be represented by Eq. (3).⎡
⎢⎢⎣

A1VM1 A1VM2 A1VM3 . . . . . . A1VMm

A2VM1 A2VM2 A2VM3 . . . . . . A2VMm

. . . . . . . . . . . . . . . . . . .
AnVM1 AnVM2 AnVM3 . . . . . . AnVMm

⎤
⎥⎥⎦ (3)

Suppose there is set of Activity cost Ci = (C1, C2, C3, . . . . . . . . . . . . Cn) that is made from cloud
users as their demand per their demands. The broker is required to map all these activities to the virtual
resources VMj = (VM1, VM2, VM3 . . . . . . . . . . . . .VMm) with minimum cost and execution time. The
expected execution cost of all the activities is represented using the EEC matrix in Eq. (4).

Selecting the best resource for cloud user with minimum cost in less time is very complex problem.
To understand the complexity of the problem, a simple example is illustrated in Tab. 1.

Table 1: List of abbreviations

Symbol Description

NAGCSA Nesterov accelerated gradient cuckoo seach algorithm
VM Virtual machines
QoS Quality of service
GA Genetic algorithm
PSO Particle swarm optimization
EET Expected execution time
EEC Expected execution cost
PIR Performance improvement rate

⎡
⎢⎢⎣

C1VM1 C1VM2 C1VM3 . . . . . . C1VMm

C2VM1 C2VM2 C2VM3 . . . . . . C2VMm

. . . . . . . . . . . . . . . . . . .
C1VM1 CnVM2 CnVM3 . . . . . . CnVMm

⎤
⎥⎥⎦ (4)

Suppose there are two virtual machines available (VM1 and VM2) in the cloud datacenter and
three users (A1–A3) requested for resource. The cloud broker can allocate any two users without
waiting, but one user has to wait for some time. Considering this there are two choices available to
broker, either any two users use machine 1 and one user use machine 2 or any two-user use machine
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2 and only one user use machine 1. So, there are multiple decisions available to cloud broker and is
responsible to give good quality of service to his users. The multiple decisions are illustrated in Tab. 2
with execution time and cost value. Similarly, more schedule S7 to S8 can also presented in which two
users can use VM1 and remaining one will use VM2.

Table 2: 3 Jobs and 2 machines scheduling example

VM2 VM1 Makespan, f(x) Execution Cost, f(y) Fitness

S1 A1 A2 A3 47 + 47 + 74.6 + 95.33 =
263.93

3 + 6 + 4 = 13 80.17

S2 A2 A1 A3 74.6 + 74.6 + 47 + 95.33 =
291.53

6 + 3 + 4 = 13 96.559

S3 A2 A3 A1 74.6 + 74.6 + 47 + 78.33 =
284.7

6 + 3 + 4 = 13 94.51

S4 A3 A2 A1 57.2 + 57.2 + 74.6 + 78.33 =
267.33

6 + 4 + 3 = 13 89.21

S5 A1 A3 A2 47 + 47 + 57.2 + 124.3 = 308.2 3 + 3 + 6 = 12 100.86
S6 A3 A1 A2 57.2 + 57.2 + 47 + 124.33 =

285.73
3 + 3 + 6 = 12 94.19

4 Mathematical Model for Scheduling

In this article, makespan time and execution cost are considered as the main objective for
scheduling in cloud computing. Therefore, fitness value of hybrid NABCS can be calculated using
equation Eqs. (5) and (6).

4.1 Makespan Model

Makespan is the maximum finishing time of all activities when they mapped on VMs. It is
calculated using Eq. (5).

Makespan, f (x) = max
m⋃

i=1

Ti, ∀i ∈ N, i = 1, 2, 3 . . . .m (5)

where Ti indicates the completion time of specific activity.

4.2 Execution Cost Model

Execution cost is defined as amount paid by cloud users to CSP for executing their activities on
VMs as per Service Level Agreement (SLA). Eq. (6) is used for calculating execution cost for specific
VM.

ExecutionCost, f (y) =
m∑

i=1

VMi (Ci × Ti) , ∀i ∈ N, i = 1, 2, 3 . . . ..m. (6)

where Ci indicates the cost of VMith per unit time and Ti indicates time of utilization of that resourcei.
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The two functions of makespan and execution cost can be combined together as weighted-product
of two functions respectively. So, combining Eqs. (5), and (6) to into a single objective function:

FitnessFunction, F (X) = f (x)
w × f (y)

1−w (7)

where w is weight factor, that decides importance to makespan and execution cost, and w ∈ [0, 1] .The
Eq. (7) can also be rewritten as:

FitnessFunction, F (X) = ew. ln(f (x))+(1−w). ln(f (y)) (8)

The Eq. (8) inherits the characteristics of weighted sum and weighted product performance
metrics namely; makespan and execution cost. Combining both weighted sum and weighted product
in calculation provides two advantages; firstly, it makes equation analytically tractable and logarithmic
expectation is additive over time [34,35]. It helps to analyze makespan-cost trade-offs in much more
efficient way to enhance QoS.

5 Methodology

In this section, the concepts of CS algorithm and NAG is presented. Then, hybridization of CS
with NAG is presented to explain how NAG is helpful in local search.

5.1 Cuckoo Search

Cuckoo Search Algorithm [36] is a population-based meta-heuristic technique developed by Xin-
She Yang and Suas Deb. The behaviour of various species of Cuckoo of laying their eggs in other’s
nests to maximize the hatching probability [36]. CS has significantly proved in global optimization
problems for its fast convergence and speed. Various problems of engineering have been solved using
CS, including scheduling. The original Cuckoo Search works on three principles: -

• Each Cuckoo lays one egg at a time and places it in a nest that has been selected at random.
• The highest-quality nest will be the carrier of the next generation or solution.
• The number of host nests is fixed, and a host can realize unfamiliar eggs with the probability (0

or 1). In this case, a host can abandon the nest to build a new nest or throw cuckoo egg.

There are three parameters used in CS algorithm.

• Pα ∈ [0, 1] probability worst nest to be abandoned.
• α > 0 step size, depends on scale of the problem, mostly taken α > 1.

→ λ is random step length.

Levy flight is most commonly used in terms of step length with CS to update the solution as
represented in Eq. (9)

xt+1
i = xi + α ⊗ Levy (λ) (9)

where xt+1
i is a new solution,

xi is current solution,

α
⊗

Levy (λ) is a transaction probability.
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Assumptions of CS algorithm

(1) Cuckoo bird lays one egg at a time, which shows one solution.
(2) Nests having the best solution would be most delicate nests, i.e., nest itself represents the

solution.
(3) A fixed number of the nests would be available; there are finite numbers of initial solutions,

which will remain the same throughout the algorithm [36].

The behaviour of CS algorithm performs local and global search based on switching and discovery
probability Pα. In most cases, the value of Pα = 0.25 were taken for local search while a global search is
explored more efficiently for 1 − Pα time i.e., (0.75). The levy flight function helps perform the global
search, and various studies have shown good convergence globally in many multi-discipline areas.

5.2 Nesterov Accelerated Gradient (NAG) Approach

Gradient Descent is commonly used optimization method for finding local minima of a function
[37]. It has been widely used in machine learning to optimize any network. The gradient states that if
a function F(x) is discrete and differentiable near any point a, the value of F(x) decreases if one move
from a in negative of gradient of F at point a, −∇F (a) . So it can be stated that

b = a − γ∇F (a) (10)

where a is current position, b is next position, γ is weight factor, and ∇F(a) is direction of Sleepest
Ascent [38].

The concept of the Nesterov Accelerated Gradient [39] approach helps to update the function’s
position towards minimum with a look ahead. It helps in the correction of position if function moves
away from the optimal solution in any particular iteration. The intuition behind accelerated gradient
follows the rule-“look ahead before you leap” for a particular update. Now, applying this rule on
Eq. (10),

bi = ai − updatei (11)

For particular iteration i.

The updatei can be derived from the momentum-based update rule and can be understood
mathematically as follows:

(1) Without momentum

bi = ai − γ∇F(ai) (12)

(2) With momentum

updatea
i = τ .updatea

i−1 + γ∇F (ai) (13)

b = a − updatea
i (14)

Now applying NAG rule on Eqs. (13) and (14), the look-ahead before you move can be calculated
and updated as follows:

alookahead = a − τ .updatea
i−1 (15)
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updatei = τ .updatea
i−1 + γ∇alookahead (16)

bi = ai − updatei (17)

The updates come in two parts; a partial update and a final update. So, when a function overshoots
and goes away from the optimal solution, NAG helps to take a U-turn and comes closely towards
minima. The updating of a function from a particular point towards minima is based not only on
current position but also on an approximation of future position. This helps in finding more accurate
results and can be used with other meta-heuristic techniques with problem of trapping of a function
at local minima.

5.3 Hybrid Nesterov Accelerated Gradient-Based Cuckoo Search Algorithm

Resource scheduling issues have been solved by various meta-heuristic techniques. Many schedul-
ing algorithms have been proposed to optimize the scheduling issue in IaaS cloud computing, but every
algorithm has limitations like speed or premature convergence. Most of the meta-heuristic techniques
use the current position to update its position towards optimal solution. This hybrid algorithm uses the
look-ahead position to move towards optimal solution even if it moves away from optimal solution.
The proposed hybrid NAGCSA helps in local optimization due to NAG and global search maintains
through breeding behaviour of cuckoo search algorithm.

A set of random integers is generated using an array that represents a solution for scheduling. This
step finds dimension of solutions, given by number of n activities, lower bound and upper bound of
the search space. Therefore, the process of generating xi ∈ X(i = 1, 2, 3 . . . . . . ..N) is given by Eq. (18).

xij = Round
(
lbij + Rand

(
ubij − lbij

))
, j = 1, 2, 3 (18)

where each value of xi has any integer value in the interval [1, m], where m is number of virtual
machines, and Round coverts it to nearest value to whole number. To understand it more clearly,
consider an example of twelve activities on five virtual machines. So, generated values for one solution
using Eq. (13) are given in xi = [4, 3, 2, 2, 1, 3, 1, 5, 2, 4, 3, 3]. The value “four” indicates the first
job will be assigned to fourth machine. So, second, sixth, eleventh and twelfth jobs will be assigned
to third machine. Similarly, interpretation of all other values can be done. The Eqs. (3) and (4) will
calculate requires amount of execution time and cost initially. This xi also represents cuckoo’s eggs in
our algorithm.

After the initialization stage, fitness of all eggs is calculated, the best is selected. All cuckoos now
fly towards the optimal solution with step-size variable. NAG is used for performing local search
when Pα < 0.25 as is done in Eqs. (8)–(12). The local search is carried out using abundant probability
Pα. However, the global search is done using standard levy flight as in Eq. (7) for each iteration.
The criteria to stop the iteration depends upon either fixing the number of iteration or achieving the
required quality of solution. Fig. 1 represents proposed hybrid NAGCSA algorithm.

6 Simulation Setup

The simulation setup is described in this section. Simulation has been prepared on Apache
NetBeans IDE 11.3, supported by CloudSim simulation tool 3.03 [40], which is a Java-based simulator.
The software has been installed on the HP ProDesk desktop computer having 64-bit Windows 10, 16
GB RAM, 3.20 GHz CPU, with eight cores. The performance of the proposed hybrid NAGCSA is
compared with genetic algorithm (GA), particle swarm optimization (PSO), and standard cuckoo



1650 CMC, 2022, vol.71, no.1

search (CS) algorithms, respectively. Parameter setting of each meta-heuristic technique is presented
in Tab. 3. The configuration settings of CloudSim are presented in Tab. 4.

Figure 1: Hybrid nesterov accelerated gradient-based cuckoo search algorithm

Table 3: Parameter settings in meta-heuristics algorithms used in scheduling

Algorithms Parameters Values

GA Population size 1000
Max iteration 1000
Cross-over rate 0.5
Mutation rate 0.1

PSO Particle size 100
Self-recognition coefficients, c1, c2 2
Uniform random number, R1 0,1
Max iteration 1000
Inertia weight 0.9–0.4

CS Population size 50
Abundant probability, Pα 0.25
Step size, α 0.01, 1
Learning rate, γ 0.9

The performance of the proposed hybrid NAGCSA is evaluated on real traces from HPC2N
(High-Performance Computing Center North) [41], NASA Ames iPCS/860 [42], and SDSC (San
Diego Supercomputer Center) [43]. These workload archives are presented by “Ake Sandgren, Bill
Nitzberg and Victor Hazlewood”, in the standard workload format (swf) recognized by the CloudSim
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tool. These workloads are primarily used to evaluate the performance of scheduling algorithms in
cloud computing. HPC2N has 527,371 jobs, NASA has 14,794 jobs, and SDSC has 73,496 jobs.

Table 4: Parameters setting in CloudSim for cloud computing environment

Entities Parameters Values

Users Number of users 50
Number of broker 1

Cloudlet Number of cloudlets/activities 200–2000
Length 800,000
File size 600 KB

VM No. of VMs 50
Type of policy Space shared
RAM 512–2048 MB
Bandwidth 10000 Mbps
MIPS 1000–2000
Size 100–1000 GB
VMM Xen
Operating system Linux
Number of CPUs 1 on each

Host RAM 4096 MB
Storage 100 TB
Bandwidth 10000 Mbps

7 Results and Discussion

This section presents and discusses the computational outcomes of the simulation performed
in CloudSim tool. The makespan time and execution cost are considered to evaluate the Quality of
Service of the proposed algorithm.

Figs. 2–4 show the execution cost calculated of the hybrid NAGCSA algorithm with the help of
NASA, HPC2N and SDSC workload. The simulation has been carried out on a varied number of
cloudlets ranging from 500 to 2000. The other meta-heuristic algorithms used in resource scheduling
(GA, PSO, and CSA) in cloud computing are used for comparison with the proposed hybrid algorithm.
The pricing policy of VMs was taken from Google AppEngine [11], and the unit of cost is dollar ($).
The execution cost calculated by the proposed hybrid algorithm is lower than the other algorithms. It
can be seen that the proposed hybrid algorithm supports cloud users to save more money in a cloud
environment. Execution cost increases while an increase in the number of cloudlets. The performance
of the proposed hybrid algorithm is increasing while an increase in the number of cloudlets. The
performance improvement rate of the proposed hybrid algorithm is shown in Tabs. 5–7.

The performance improvement rate (PIR) is calculated to evaluate the improvement for the xth

algorithm as compared to yth algorithm [31,32,44]. It can be calculated using Eq. (19).
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Figure 2: Execution cost on NASA dataset

PIR (%) =
((∑

xth PM − ∑
yth PM

)
∑

yth PM

)
× 100 (19)

PIR (%) is calculated based on makespan on three different datasets shows that proposed hybrid
Cuckoo Search Algorithm has a significant performance than GA, PSO, and CSA. Proposed hybrid
algorithm minimizes execution cost by 35.59%, 32.22%, and 31.26% as compared to GA; 26.61%,
22.19%, and 24.05% as compared to PSO; and 13.83%, 11.40%, and 16.35% as compared to CSA on
NASA, HPC2N, and SDSC workloads respectively, which is presented in Tab. 5–7.

0

20

40

60

80

100

120

140

500 1000 1500 2000

C
os

t 
($

)

Number of Cloudlets

GA PSO CSA Hybrid CSA

Figure 3: Execution cost on HPC2N dataset

Figs. 5–7 present the makespan calculated by a proposed hybrid algorithm for three different
datasets in seconds. The other meta-heuristic algorithms, GA, PSO, and CSA, were also simulated with
the same configuration to calculate the makespan. Figs. 5–7 show that our proposed hybrid NAGCSA
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algorithm minimizes the makespan and finishes the execution of all cloudlets earlier than GA, PSO,
and CSA. The simulation has been carried out on a varied number of cloudlets from 500 to 2000, and
a mean of 30 simulation results are presented in the form of bar charts. The performance of proposed
hybrid algorithm saves more time. The performance improvement rate (%) in makespan is presented
in Tabs. 8–10 for each dataset. Proposed hybrid algorithm reduces time and exhibits 19.82%, 13.54%,
7.21% improvement on NASA, 7.26%, 4.96%, and 3.20% improvement on HPC2N, 15.09%, 10.24%,
and 8.54% improvement on SDSC over GA, PSO, and CSA respectively.
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Figure 4: Execution cost on SDSC dataset

Table 5: PIR of execution cost on NASA workload

Jobs/
Cloudlets/
Activities

GA PSO CSA Hybrid
CSA

PIR over
GA

PIR over
PSO

PIR over
CSA

500 6.54 6.02 4.84 3.92 66.83 53.57 23.46
1000 11.56 10.95 9.65 8.45 36.80 29.58 14.20
1500 18.74 17.05 16.54 15.65 19.74 8.94 5.68
2000 28.65 27.54 26.97 24.08 18.97 14.36 12.00
Mean % improvement (a. NASA) 35.59 26.61 13.83

Table 6: PIR of execution cost on HPC2N workload

Jobs/
Cloudlets/
Activities

GA PSO CSA Hybrid
CSA

PIR over
GA

PIR over
PSO

PIR over
CSA

500 65.63 58.23 51.45 47.36 38.58 22.95 8.64
1000 87.25 81.45 74.23 67.23 29.78 21.15 10.41
500 96.45 91.25 87.36 77.25 24.85 18.12 13.09
2000 118.36 110.36 98.97 87.23 35.69 26.52 13.46
Mean % improvement (a. HPC2N) 32.22 22.19 11.40
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Table 7: PIR of execution cost on SDSC workload

Jobs/
Cloudlets/
Activities

GA PSO CSA Hybrid
CSA

PIR over
GA

PIR over
PSO

PIR over
CSA

500 55.43 51.23 47.36 41.25 34.38 24.19 14.81
1000 65.25 63.45 67.65 57.63 13.22 10.10 17.39
1500 91.45 87.25 77.69 64.15 42.56 36.01 21.11
2000 105.36 98.36 87.58 78.12 34.87 25.91 12.11
Mean % improvement (c. SDSC) 31.26 24.05 16.35
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Figure 5: Makespan calculated on NASA dataset
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Figure 7: Makespan calculated on SDSC dataset

Table 8: PIR of makespan on NASA workload

Jobs/
Cloudlets/
Activities

GA PSO CSA Hybrid
CSA

PIR over
GA

PIR over
PSO

PIR over
CSA

500 364.41 350.98 315.14 292.65 24.52 19.93 7.68
1000 745.96 694.23 664.85 602.45 23.82 15.23 10.36
1500 1198.47 1145.45 1095.74 1025.45 16.87 11.70 6.85
2000 1705.45 1604.25 1554.23 1495.36 14.05 7.28 3.94
Mean % improvement (a. NASA) 19.82 13.54 7.21

Table 9: PIR of makespan on HPC2N workload

Jobs/
Cloudlets/
Activities

GA PSO CSA Hybrid
CSA

PIR over
GA

PIR over
PSO

PIR over
CSA

500 3258.49 3187.21 3106.45 2987.32 9.08 6.69 3.99
1000 4354.12 4296.41 4208.24 4105.36 6.06 4.65 2.51
1500 5168.54 5004.96 4965.87 4887.47 5.75 2.40 1.60
2000 5865.64 5754.25 5678.54 5423.74 8.15 6.09 4.70
Mean % improvement (b. HPC2N) 7.26 4.96 3.20
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Table 10: PIR of makespan on SDSC workload

Jobs/
Cloudlets/
Activities

GA PSO CSA Hybrid
CSA

PIR over
GA

PIR over
PSO

PIR over
CSA

500 285.65 265.47 263.54 247.95 15.20 7.07 6.29
1000 1725.45 1684.35 1654.23 1537.94 12.19 9.52 7.56
1500 2598.23 2496.23 2467.96 2304.54 12.74 8.32 7.09
2000 3180.36 3069.63 2994.45 2645.24 20.23 16.04 13.20
Mean % improvement (c. SDSC) 15.09 10.24 8.54

The statistical significance of each algorithm for execution cost and makespan after thirty
simulation runs is presented in Tabs. 11 and 12. The comparison is made on mean, standard deviation,
and best value is considered. Tabs. 11 and 12 signifies that our proposed hybrid NAGCSA is more
significant in terms of execution cost and makespan.

Table 11: Statistical significance of execution cost after 30 runs

Statistical significance of execution cost after 30 runs

Algorithm Workload NASA HPC2N SDSC

Number of cloudlet X σ Best X σ Best X σ Best

GA 500 6.54 0.24 6.31 65.63 0.39 63.54 55.43 2.13 53.69
1000 11.56 0.96 10.89 87.25 0.86 85.98 65.25 1.86 62.36
1500 18.74 0.54 18.71 96.45 0.61 95.36 91.45 1.64 89.36
2000 28.65 1.41 27.36 118.36 1.54 117.25 105.36 1.47 103.45

PSO 500 6.02 0.36 5.91 58.23 0.47 57.52 51.23 0.59 49.69
1000 10.95 1.54 9.64 81.45 1.87 80.36 74.45 1.97 72.45
1500 17.05 1.26 16.78 91.25 1.68 90.36 87.25 2.95 84.36
2000 27.54 1.58 26.45 110.36 1.71 106.69 98.36 2.76 94.36

CSA 500 4.84 0.14 4.70 51.45 0.25 50.36 47.36 0.39 46.36
1000 9.65 0.95 8.90 74.23 0.87 72.25 67.65 0.56 65.25
1500 16.54 0.71 16.02 87.36 0.89 84.36 77.69 0.72 76.36
2000 26.97 1.25 25.52 98.97 1.64 96.36 87.58 1.64 85.23

Hybrid
CSA

500 3.92 0.05 3.83 47.36 0.56 45.36 41.36 0.72 40.66
1000 8.45 0.15 8.20 67.23 0.69 65.61 57.63 0.62 55.36
1500 15.65 0.30 15.35 77.25 0.89 75.26 64.15 0.77 62.45
2000 24.08 0.95 23.81 87.23 1.02 85.23 78.12 1.07 76.36
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Table 12: Statistical significance of makespan after 30 runs

Statistical significance of makespan after 30 runs

Algorithm Workload NASA HPC2N SDSC

Number
of
cloudlet

X σ Best X σ Best X σ Best

GA 500 364.41 3.54 361.87 3258.49 9.25 3214.56 285.65 6.25 271.25
1000 745.96 3.96 743.36 4354.12 10.69 4319.65 1725.45 7.25 1694.36
1500 1198.47 4.58 1194.54 5168.54 12.87 5118.74 2598.23 7.21 2564.31
2000 1705.45 4.98 1695.24 5865.64 14.36 5817.23 3180.36 8.54 3119.36

PSO 500 350.98 3.56 347.25 3187.21 8.69 3112.87 265.47 5.36 255.66
1000 694.23 2.66 692.74 4296.41 11.65 4247.32 1684.35 6.32 1677.21
1500 1145.45 3.98 1139.54 5004.96 13.58 4987.23 2496.23 6.35 2474.25
2000 1604.25 2.49 1598.73 5754.25 14.36 5714.11 3069.63 7.88 3015.66

CSA 500 315.14 3.58 313.47 3106.45 8.69 3084.78 263.54 5.45 257.66
1000 664.85 2.98 661.25 4208.24 9.35 4198.45 1654.23 5.98 1598.90
1500 1095.74 2.57 1093.78 4965.87 10.54 4961.54 2467.96 6.36 2395.69
2000 1554.23 2.60 1554.73 5678.54 11.26 5617.12 2994.45 6.87 2923.36

Hybrid
CSA

500 292.65 1.25 291.78 2987.32 8.64 2917.23 247.95 4.36 245.66
1000 602.45 1.95 600.57 4105.36 9.21 4084.23 1587.94 4.98 1577.21
1500 1025.45 2.18 1023.66 4887.47 9.35 4824.23 2304.54 5.3 2285.66
2000 1495.36 2.68 1493.54 5423.74 10.69 5396.36 2645.24 5.91 2654.21

8 Conclusions and Future Work

Scheduling in cloud computing is considered an NP-Hard problem to fulfil the demands of
all users. It has been explored by most scientists and researchers around the world to increase the
performance of scheduling algorithms. The motivation for this paper has explored techniques to
study important parameters of quality of service, i.e., makespan and execution cost, for cloud users.
This paper proposed a novel hybrid Nesterov Accelerated Gradient-based Cuckoo Search Algorithm
to perform the scheduling in the IaaS cloud. The approximation of the future position of using
NAG helps to reach the function towards local minima even if gets overshoots in any iteration. The
simulation was performed in CloudSim on three different datasets; NASA, HPC2N, and SDSC with
GA, PSO, and CSA scheduling algorithms. The results show that our proposed hybrid algorithm helps
in saving time and money of users up to 19.20% and 35%, respectively. This work can be extended by
adding more parameters like degree of imbalance, energy consumption, and throughput. The proposed
hybrid algorithm can be used to resolve other issues in cloud computing like VM allocation and load
balancing. More gradient-based optimization algorithms can be hybridized with CSA to evaluate its
performance in other engineering optimizations problems.
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