
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.021797

Article

Implementation and Validation of the Optimized Deduplication Strategy in
Federated Cloud Environment

Nipun Chhabra*, Manju Bala and Vrajesh Sharma

I. K. Gujral Punjab Technical University, Jalandhar, 144603, India
*Corresponding Author: Nipun Chhabra. Email: nipunchhabra5@gmail.com

Received: 15 July 2021; Accepted: 16 August 2021

Abstract: Cloud computing technology is the culmination of technical
advancements in computer networks, hardware and software capabilities
that collectively gave rise to computing as a utility. It offers a plethora of
utilities to its clients worldwide in a very cost-effective way and this feature
is enticing users/companies to migrate their infrastructure to cloud platform.
Swayed by its gigantic capacity and easy access clients are uploading replicated
data on cloud resulting in an unnecessary crunch of storage in datacenters.
Many data compression techniques came to rescue but none could serve the
purpose for the capacity as large as a cloud, hence, researches were made to
de-duplicate the data and harvest the space from exiting storage capacity
which was going in vain due to duplicacy of data. For providing better
cloud services through scalable provisioning of resources, interoperability
has brought many Cloud Service Providers (CSPs) under one umbrella and
termed it as Cloud Federation. Many policies have been devised for private
and public cloud deployment models for searching/eradicating replicated
copies using hashing techniques. Whereas the exploration for duplicate copies
is not restricted to any one type of CSP but to a set of public or private
CSPs contributing to the federation. It was found that even in advanced
deduplication techniques for federated clouds, due to the different nature of
CSPs, a single file is stored at private as well as public group in the same
cloud federation which can be handled if an optimized deduplication strategy
be rendered for addressing this issue. Therefore, this study has been aimed
to further optimize a deduplication strategy for federated cloud environment
and suggested a central management agent for the federation. It was perceived
that work relevant to this is not existing, hence, in this paper, the concept of
federation agent has been implemented and deduplication technique following
file level has been used for the accomplishment of this approach.

Keywords: Federation agent; deduplication in federated cloud; central
management agent for cloud federation; interoperability in cloud computing;
bloom filters; cloud computing; cloud data storage

http://dx.doi.org/10.32604/cmc.2022.021797
mailto:nipunchhabra5@gmail.com

2020 CMC, 2022, vol.71, no.1

1 Introduction

Cloud computing is a very progressive technology and, it is stretching its wings in all directions
due to its most applaudable feature “pay-as-you-use” [1]. It can be broadly classified into three
categories viz. Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS) [2,3]. Infrastructure as a Service utility provides servers and storage on demand,
hence deduplication strategies are employed on this service model. With the growing demand of
cloud storage, heterogeneous service providers are coming together under one coalition known as
Cloud Federation. Cloud Federation allows providers to share resources through Federation Level
Agreements (FLA) covered under federation strategy and if any of the providers in federation is not
able to meet the requirements, it is outsourced to other CSPs of federation. Moreover, resources which
are being less utilized by any service providers can be leased to other federation members, leading
to optimal usage of resources [4]. Despite the optimal utilization of storage and resources due to
federation, replication of data consumes most of the space that ought to be eliminated to optimize
the cloud storage capacity. To manage this issue, researchers presented many deduplication techniques
but most of them were not able to provide an optimal solution to harvest waste storage from CSPs.
Deduplication in federated clouds is a novel area to explore and has a lot of scope for researchers
to render innovative strategies to garner the storage with reduced time for lookup operations. Third-
party agents and brokers provide effective monitoring services that ensure that customers are getting
the most out of their cloud environment.

This paper is structured into various sections for better presentation of the study. Section 2 entails
a detailed literature survey over the advancement of cloud federation and potential of implementing
deduplication in it. Section 3 presents the research gap and existing system while Section 4 confers
the proposed system by implementing the concept of federation agent in optimized deduplication
approach for federated cloud environment. In Section 5, observations have been recorded and
discussions on results have been conducted. Section 6 concludes the paper and sheds light on the
future scope of this work.

2 Literature Survey

Recently, many researches are being conducted on interoperability in cloud computing and various
deployment models under one coalition to make the optimal usage of the cloud resources. This
literature survey has been divided into two sections to understand the progressive metamorphosis of
cloud federation and deduplication.

2.1 Progression in Cloud Federation

In the modern context, having limited physical resources is the primary limitation of clouds. If
a cloud has exhausted all the computational and storage resources, it cannot provide the service to
its clients [5]. All such situations can be addressed by the Inter-Cloud for providing computational
service, storage, or any kind of resources to the other clouds. Author in [6] proposed and established
Service Level Agreement (SLA) between the service providers and consumers for accessing the
resources in cloud federation. Federated cloud plays a major role and establishes a business deal where
service provider can sell resources. Authors in [7] rendered Two-level Federations i.e., horizontal level
and vertical level, where federation taking place at one level of the cloud is called horizontal level
while vertical federation spans across multiple levels. Authors in [8] deliberated the prerequisites for
federation architecture as Interface standards and a service broker which acts as a liaison between
various standards and interfaces of CSPs. Author in [9] presented a novel concept for establishing a

CMC, 2022, vol.71, no.1 2021

single common broker for all clouds participating in a federation. This acts a third party regulatory
body that checks the belongingness of the cloud to the federation. Authors in [10] have defined the
federation to be inter-clouds organization which should be dispersed geographically and must have
a structured marketing system based on federal SLAs. Authors in [11] have termed components of
this architecture as Cloud Coordinator, the Cloud Broker, and the Concentrator. Cloud Coordinator
(CC) is a module that interacts with cloud brokers and other cloud coordinators. In the federation,
it is the CC that deals with the broker during any event like scheduling of resources and manages the
execution, in its domain. Cloud broker mediates between cloud coordinators and consumers and it is
based on Service-Oriented Architecture. Its main task it to look for the services available in federated
Clouds and employ them for the optimal benefit.

Authors in [12] have projected cloud federation as a mesh of different clouds which are brought
together under open standards meant to offer a ubiquitous computing environment. In this decentral-
ized system, policies are well defined under agreeable SLAs that become the foundation for multi-
provider infrastructure to act as one entity. Authors in [13] have envisioned for the popularity of
cloud computing to be essential for day to day life. In this paper [14] for managing, creating and
using identities in the cloud infrastructure a provision has been proposed and named as Federated
Cloud Identity management where an application or user is recognized by its credentials. Authors
in [15] proposed the management of cloud storage which is heterogeneous in nature and propounds
deduplication management and access control. It proves to be a very flexible scheme and can adapt to
different scenarios and establishes economic principles.

2.2 Data Deduplication in Cloud

With the increased hand held electronic devices in the market and pervasive internet access,
gigantic amount of data is being generated which is stored at various cloud storages. Mostly it is
the same data being replicated at and from various locations. Even the regular backups which are
maintained at organizations and the identical files created by different departments of an organization
lead to data replication which further results in wastage of storage space. The technique through which
only a single instance of data is stored while a logical references of this single copy of data is passed as
and when required in future, to avoid the storage wastage, is known as deduplication. Categorization
of deduplication techniques is done on the basis of time, location and granularity. File level or block
level deduplication is observed under granularity based deduplication. Source side and destination side
deduplication are categorised under location based and deduplication can be post process or inline
process if implemented in reference to time [16]. For data access control in cloud environment [17]
authors have proposed to employ client side encryption for the data security across the network. It
was mentioned that with the increased amount of data being stored at cloud storages, to perform
deduplication on encrypted data was not possible and the solution fall flat. To overcome this issue
Message Locked Encryption technique [18] came out as a solution and subsequently it evolved into
Convergent Encryption. As CE suffered from Brute force attack in [19] authors have further proposed
DupLESS technique in which users encrypt their data using the keys obtained from a Key Server
(KS). Some data owners don’t let third party (KS) to manage their data. Splitting of CE and sharing
it into multiple CSPs was presented by Li et al. [20]. Cross-user deduplication scheme was proposed
by authors in [21] which involved client-side encryption by applying a password authenticated key
exchange protocol without any additional independent servers. Secure data deduplication technique
was proposed by authors in [22] where AES algorithm and MD5 were used. Hybrid data deduplication
mechanism was proposed by Fan et al. [23], where both storage and bandwidth utilization can be
improved by source-based approach. For confidentiality of data, a secret sharing technique has

2022 CMC, 2022, vol.71, no.1

been proposed by authors in [24] to encode fragmented data. This secret share shall be granted to
the authorized users only that can claim the ownership of the data. Content-identified convergent
encryption technique was proposed by authors in [25]. Client controlled deduplication scheme was
proposed in [26] that addresses the issues in deduplication from client side. An advanced technique
for lookup operations was proposed by Burton Howard that used a probabilistic data structure for
checking the membership of an element. This time and space efficient method does not yield any false
negatives but may return some false positives [27]. Authors in [28] presented a review on various data
deduplication techniques. From the deep study of technical literature, it was observed that with the
increased usage of computing devices the plead of storage and computing resources on cloud increased
exponentially, which brought many CSPs together to form a federation of clouds. With this increased
storage space, users started storing several copies of data that made deduplication a necessity to garner
duplicated storage. Moreover, the above schemes cannot flexibly manage data deduplication in various
situations and across multiple CSPs.

3 Problem Formulation and Research Gap
3.1 Research Gap

The literature survey revealed that many policies have been devised for deduplication in public and
private cloud deployment models with various hashing techniques. Owing to the need for load sharing
in cloud computing, interoperability has included many CSPs which are bound by Federation Level
Agreements (FLA), either private or public under an alliance known as Federated Cloud. Therefore,
during deduplication the search for duplicate copies is made in all the participating CSPs, whether
private group or public group, instead of single group. Also, in the optimized deduplication technique
in federated clouds, due to the different nature of CSPs, a single file is being stored at private group
as well as public group in the same cloud federation which can be further optimized if the central
management of the federation is possible. Deep study of technical literature suggests that it has a lot
of potential for further research, as not much work has been done, leading to a huge research gap in
this field and hence there is enough scope for further research.

3.2 Existing System

In the existing system (as shown in Fig. 1), encryption technique is used for access control followed
by deduplication using hashing, for lookup operations, in private and public cloud environment.

3.3 Optimized Data Duplication Strategy

Upon assessing the existing system, it was concluded that a better policy for deduplication can be
devised by deploying bloom filters for checking the membership of an element in federated cloud
environment instead of public/private cloud groups [29]. This probabilistic data structure (bloom
filters) proves very beneficial in the look up operation and brings results in relatively shorter time
duration than hashing. In this optimized deduplication strategy three public CSPs and two private
CSPs were included in one federation and bloom filters were employed for searching a file in the
federation. The proposed strategy establishes two principles as given below:

a) The same file can be stored only once from the same user in case of Private CSPs, whereas in
Public CSPs it can be stored once only irrespective of the user, as a reference can be passed to all the
other entries.

CMC, 2022, vol.71, no.1 2023

:

Start

Login/ Registration

Select Type of Storage

After authorization
1. File is encrypted
2. Encrypted file is sent to server

Private Cloud

Encrypted file received by server
and a ## (hash) is generated

User Id

After authorization file name is sent to
server for storage and a key is generated
which is sent back to client for encryption

Encrypted file received by server and
a ## (hash) is generated

Public Cloud

Hashing
1. ###
2. ###
3. ###
4. ###

FileFile

Cloud Storage Cloud Storage

Deduplication

Figure 1: Diagrammatic representation of the working of the existing system

b) On deleting a file which has many references in public CSPs, only a logical pointer is deleted
for that particular user not the original file.

The proposed optimized deduplication strategy yields excellent results and harvests storage from
duplicated data by saving a unique file in Private CSPs and a single copy of a file in Public CSPs.
Moreover, by implementing bloom filters, in addition to the space, the total time for lookup operations
has also reduced.

4 Proposed System
4.1 Further Optimization of Data Duplication Strategy Through Federation Agent

Though, the previously proposed system (optimized data duplication strategy for federated cloud
environment using Bloom Filters) had shown exceptional results and harvested memory from the
cloud storage while decreasing the total time during lookup operations, still, this system can be
advanced to gain more optimization in deduplication. We have seen that in proposed system one unique
file can be saved in Private Clouds group (CSP1 & CSP2) and the same file can also be saved in the
Public Clouds group (CSP3, CSP4, CSP5). Therefore, even in the same federation, due to different
nature of CSPs, a single file is being stored twice, once in private group and then in public group, in
the same cloud federation.

Deep analysis of technical literature suggests that if the central management of the federation is
governed by one agent that keeps the check for every entry in any CSP in one federation, this issue
can be managed and the agent can be referred as Federation Agent (as shown in Fig. 2). Federation

2024 CMC, 2022, vol.71, no.1

Agent records every entry in the federation management table and further the lookup operations are
performed on this federation management table instead of two separate tables as the case was for the
previously proposed system. This can be seen in the Tab. 5 (given ahead) where file ‘f1’ is stored only
one time and for the other times only a reference is passed instead of the saving the same file again
and again. The Comparative analysis of the existing system and proposed system has been tabulated
in Tab. 1 as given below:

Figure 2: Diagrammatic representation of federated clouds with federation table and federation agent

Table 1: Comparative analysis of existing system and proposed system in tabular form

S. No. Existing system Proposed system

1 In the existing system the
deduplication has been implemented
on either private or public clouds

The deduplication technique has been
optimized to accommodate federated
cloud environment

2 All the files stored by private users
are stored

Only Unique files stored by private users
are stored

3 Files by public users are not checked
for any entry made by private users

Files by public users are checked for any
entry in the Federation table, if it exists,
only the reference to the existing file is
passed

4 Due to storage of same file in
different CSPs the total memory
consumption is more and
redundancy factor is also high

With the implementation of federation
agent (central management agent) total
memory consumption and redundancy
factor is less than that of the existing
system

4.2 Methodology

An optimized data duplication strategy has been proposed and the methodology for the events
has been given as below:

CMC, 2022, vol.71, no.1 2025

1. Simulation is initialized by starting CloudSim 3.0.3 package that creates the datacenter broker,
virtual machines, cloudlets and Federation Agent.

Let cloud be a set of elements represented as follows:

cloud= {Dn, Nbw, Dm, Br}
where Dn is number of devices, Nbw is Network bandwidth, Dm is the Deployment Model and Br is
the Broker.

Further, Devices be a set of elements represented as,

Devices = {Nodes, Switches, Storage, Controller}
Storage be a set of elements represented as Storage = {fafm} where fa to fm are set of files

stored in datacenter.

Therefore, federation of clouds can be represented as

FedC = {{Pvt1, Pvt2} {Pub3, Pub4, Pub5}}
where Pvt1 and Pvt2 are Private Clouds and Pub3, Pub4, Pub5 are Public CSPs

For an instance any file (fn) belonging to any User (Un) can be represented as Unfn

private CSP

Hence, Unfn ∈ {{CSP1 U CSP2} || {CSP3 UCSP4 U CSP5}}
where CSP1 and CSP2 are Private CSPs and CSP3, CSP4, CSP5 are Public CSPs

2. Option 1: Private access: When an authorized user signs-in in a chosen Private CSP, its users’
credentials are used to encrypt the selected file and this encrypted file is sent to the server.

After Logging in by user U1, a key is generated based on his attributes U1 → keyG

A file f1 is selected for uploading and f1 is encrypted with KeyG → (Enc(f1))

The encrypted file Enc(f1) is transferred to cloud server and then a hash value is computed
Hash(Enc (f1))

Enc (f1) → ({CSP1, CSP2} = Hash (Enc (f1)))

Using Bloom Filters for checking membership of an element, BF(). This function contains set of
elements from 0 to n−1 where n is length of an array.

FA = Hash (Enc (f1)

For deduplication using Bloom Filters, a lookup operation is conducted against generated hash.

found = Hash (Enc (f1)) ∈ (BF ({CSP1, CSP2}))?1 : 0

If found == 0

set.add (element (f1))

f1 → {CSP1 || CSP2}
Storage = {fafm + f1}
Else

f1⊆ {CSP1 || CSP2}
FA.update (&reference (f1)) //‘&reference’ is passed instead of saving the file

2026 CMC, 2022, vol.71, no.1

Option 2: Public Access: When an authorized user logs-in in the selected Public CSP, the name of
the file which is to be uploaded is sent to the server where a key is generated and finally this key is sent
back to the client.

The key received at client side is used to encrypt the selected file.

After Logging in by Anonymous (Public) user, a file f1 is selected for uploading

f1 → ({CSP3, CSP4, CSP5} = KeyH))

This KeyH is used to encrypt the file fi and transferred to cloud server where a hash value is
computed.

(Enc(KeyH(f1))) → ({CSP3, CSP4, CSP5} = Hash(Enc(KeyH(f1)))

Using Bloom Filters for checking membership of an element, BF() For 0 to n−1 where n = length
of the array

For deduplication using Bloom Filters, lookup operation is conducted against generated hash.

Dedup()

{
found = Hash (Enc (KeyH (f1))) ∈ (BF ({CSP3, CSP4, CSP5}))?1 : 0

If found == 0

set.add (element)

f1 → {CSP3 || CSP4 || CSP5}
Else

f1 ⊆ {CSP3 || CSP4 || CSP5}
‘&reference’ is updated in the status instead of again saving the file

CSPk.update (f1)

Where CSPk may be CSP3, CSP4 or CSP5.

}
3. Federation Agent FA(), which feeds on Bloom Filters BF(), searches the file in the federation

table and checks for the replicated file.

The file can be Hash(Enc(f1)) in case of Private CSPs or Hash(Enc (KeyH (f1)) in case of Public
CSPs represented as Unfn.

Dedup()

{
found = (Unfn ∈ {FA [BF (FedC)]})?1 : 0

If found == 0

{
FA.update (Unfn)

set.add (element)

Unfn.. → {FedC}

CMC, 2022, vol.71, no.1 2027

Unfn.. ⊆ {FedC}
}
Else

Unfn ⊆ FA and ‘&reference’ is updated in the status instead of again saving the file

}
4. If the file doesn’t exist then a new file is stored otherwise a logical reference is passed.

4.3 Pseudocode for the Optimized Data Duplication Strategy Through Federation Agent

Step1: Initialize the cloudsim 3.0.3 and create datacenter broker, virtual machines and cloudlets.

Step2: If Private storage //Public Storage

Select CSP1 or CSP2

Step 3: User ‘U1’ logs in with his credentials.

Step 4: A key ‘KeyG’ is generated. //Authentication of user is checked from the server
side

Step 5: A file ‘f1’ is selected for uploading on cloud server.

Step 6: The selected file is encrypted and encrypted code E(f1) is generated using a KeyG.

Step 7: This encrypted file E(f1) is transferred to cloud server and then a hash value is computed

H(E(f1))

found= f_agent(H(E(f1))); // call function

If found == 0

Upload the new file on Cloud storage

Else

File already exists

Else //Public Storage

Select CSP3/CSP4/CSP5

Step 8: Authentication of user is checked // user login

Step 9: A file ‘f1’ is selected and file name is sent to server.

Step 10: A key ‘KeyH’ is generated for received file //User Authentication is checked from the server
side

Step 11: The file is encrypted using the ‘KeyH’ received from server.

Step 12: This encrypted file E(f1) is transferred to cloud server and a hash value is computed
H(E(f1))

found = f_agent(H(E(f1))); // call function

If found == 0

Upload the new file on Cloud storage

Else

File already exists

2028 CMC, 2022, vol.71, no.1

Step 13: Exit;

Step 14: Int f_agent(H(E(f1))) //function Federation agent

{
For j = 1 to k //k = number of hash value in Federation Table

{
If Hj(E(f)) == 1

File already present in cloud storage

Return 1;

Else

File not present

Return 0;

Next++;

End For

} }

5 Observations
5.1 Simulated Outcomes

Experimental results of the proposed system are stated in Tab. 2 and the diagrammatic represen-
tation of the proposed system has been given in the Fig. 3, given below:

Table 2: Actions performed during deduplication in federated clouds in Federated CSPs

Sr. No. Name of the
file

User_Id #code Cloud_name Action_status

1 File1 User1 #abc CSP1 Stored
2 File1 User2 #abc CSP1 &Reference
3 File1 User1 #abc CSP1 Denied
4 File1 User1 #abc CSP2 &Reference
5 File2 User1 #def CSP1 Stored
6 File3 – #ghi CSP3 Stored
7 File1 – #abc CSP3 &Reference
8 File2 – #def CSP3 &Reference
9 File1 – #abc CSP4 &Reference

CMC, 2022, vol.71, no.1 2029

User Id

Start

Login/ Registration

Federation of
Clouds

Private CSP Public CSP

After Authorization
Selected File is encrypted
at Client Side and then sent
to Server

Select

CSP1 CSP2

Encrypted |File received by
server and a ## (hash) is
generated

Select

CSP3 CSP4

CSP5

After Authorization File Name is sent
to Server and a key is generated by
server which is sent back to client for
encryption

DeduplicationBloom
Filters

No File
Name

User
Id

#code Cloud
Name

Action

1 F1 User1 #abc CSP1 Stored
2 F1 User2 #abc CSP1 &Reference
3 F1 User1 #abc CSP1 Denied
4 F1 User1 #abc CSP2 &Reference
5 F2 User1 #def CSP1 Stored
6 F3 - #ghi CSP3 Stored
7 F1 - #abc CSP3 &Reference
8 F2 - #def CSP3 &Reference
9 F1 - #abc CSP4 &Reference

Encrypted |File received by
server and a ## (hash) is
generated

Federation
Agent

File

CSP1 CSP2 CSP3 CSP4 CSP5

Figure 3: Diagrammatic representation of the optimized deduplication strategy, in federated cloud with
federation agent

2030 CMC, 2022, vol.71, no.1

Actions performed during deduplication in federated clouds using Federation Agent as shown in
the Tab. 2, are given below:

i. When a user ‘User1’ tries to upload file1 with hash code #abc for the first time on private
cloud service provider ‘CSP1’, the file1 is uploaded/stored and the status is shown as ’Stored’.

ii. When a user ‘User2’ tries to upload file1, with hash code #abc, at private cloud service provider
CSP1, then instead of saving the same file again the reference to file1 is passed and the status
of action is updated as ‘&Reference’.

iii. When a user ‘User1’ tries to upload file1, with hash code #abc, at private cloud service provider
CSP1, the action status is updated as ‘Denied’ as the same file already exists at CSP1 with same
user (User1).

iv. When a user ‘User1’ tries to upload file1, with hash code #abc, at private cloud service provider
CSP2, then instead of saving the same file again the reference to file1 is passed and the status
of action is updated as ‘&Reference’.

v. When a user ‘User1’ tries to upload file2, with hash code #def, for the first time at private
cloud service provider CSP1, the file2 is uploaded/stored and status of the action is shown as
‘Stored’.

vi. When a public user tries to upload file3, with hash code #ghi, for the first time at public cloud
service provider CSP3, the file3 is uploaded/stored and status of action is shown as ‘Stored’.

vii. When a public user tries to upload file1, with hash code #abc, at public cloud service provider
CSP3, then the reference to file1 is passed and the action status as ‘&Reference’ is updated.

viii. When a public user tries to upload file2, with hash code #def, at public cloud service provider
CSP3, then the reference to file2 is passed and the action status as ‘&Reference’ is updated.

ix. When a public user tries to upload file1, with hash code #abc, at public cloud service provider
CSP4, then the reference to file1 is passed and the action status as ‘&Reference’ is updated.

5.2 Results and Discussions

By implementing Federation Agent, which is centrally managing all the transactions in common
federation table, it becomes well aware about the existence of any file in any of its participating CSPs,
either Private or Public. As a result, it stores a single copy of each file and only the reference is passed
to all the other transactions where the same file is under consideration.

The outcomes of the proposed system are suggesting that this strategy is very beneficial in
harvesting the cloud storage by removing the duplicated data as shown in the Tab. 3 for Private CSPs
& Tab. 4 for Public CSPs, given ahead:

Table 3: Harvesting the memory from private CSPs without using federation agent in federated cloud

S. No. Name of
the file

File
size

User_id Cloud_name Action_status Space after
deduplication

1 File1 100 User1 CSP 1 Stored 100
2 File1 100 User2 CSP 1 Stored 100
3 File1 100 User1 CSP 1 Denied –
4 File1 100 User1 CSP 2 &Reference –
5 File2 200 User1 CSP 1 Stored 200

CMC, 2022, vol.71, no.1 2031

Table 4: Harvesting the memory from public CSPs without using federation agent in federated cloud

S. No. Name of
the file

File
size

User_id Cloud_name Action_status Memory after
deduplication

1. File11 200 – CSP3 Stored 200
2. File11 200 – CSP3 &Reference –
3. File11 200 – CSP4 &Reference –
4. File12 300 – CSP3 Stored 300
5. File1 100 – CSP3 Stored 100
6. File2 200 – CSP3 Stored 200
7. File1 100 – CSP4 &Reference –

As shown in the Tab. 3, before applying any deduplication strategy, the total memory needed
to store the above data was 600 kbs. After applying the proposed deduplication policy, the storage
requirement reduces to 400 kbs for the same data and 200 kbs of memory is saved.

As shown in the Fig. 4 a graphical (3-D Cluster-Column) representation of the simulation results
for memory optimisation in private storage, the total memory consumption for the set of files used in
the existing private storage was 600 kbs and for the same set of files with proposed deduplication
strategy the memory requirement was 400 kbs. It empirically proves that the proposed system is
harvesting 33.3% of memory from redundant storage in Private CSPs of Federated clouds.

0

200

400

600

Systems

600 kb

400kb

M
em

or
y

C
on

su
m

pt
io

n

Memory Optimisation in Private Cloud

Existing System

Proposed System

Figure 4: A graphical representation of the simulation results for memory optimization in private
storage

As shown in the Tab. 4 for public CSPs, after applying the proposed strategy the memory
requirement was reduced to 800 kbs which was otherwise 1300 kbs.

As shown in the Fig. 5 a graphical (3-D Cluster-Column) representation of the simulation results
for memory optimization in public storage, the total memory consumption for the set of files used
in the existing public storage was 1300 kbs and for the same set of files with proposed deduplication
strategy the memory requirement was 800 kbs. It indicates that the proposed system is conserving
38.46% of memory from redundant storage in Public CSPs of Federated clouds.

2032 CMC, 2022, vol.71, no.1

0

500

1000

1500

Systems

1300 kb

800 kb

M
em

or
y

C
on

su
m

pt
io

n

Memory Optimisation in Private Cloud

Existing
System

Proposed
System

Figure 5: A graphical (3-D Cluster-Column) representation of the simulation results for memory
optimization in public storage

As shown in the Tab. 5, after using Federation agent, it was observed that 1100 kbs of memory is
saved which is 400 kbs more as compared to the system without Federation Agent in the Federated
cloud environment. Moreover, as all the transactions are recorded in one federation table, lookup
operation also takes lesser time than the system without federation agent.

Table 5: Harvesting the memory using federation agent in federated cloud

S. No. Name of
the file

File_size User_id Cloud_name Action_status Memory after
Deduplication

1 File1 100 User1 CSP1 Stored 100
2 File1 100 User2 CSP1 &Reference –
3 File1 100 User1 CSP1 Denied –
4 File1 100 User1 CSP2 &Reference –
5 File2 200 User1 CSP1 Stored 200
6 File11 200 – CSP3 Stored 200
7 File11 200 – CSP3 &Reference –
8 File11 200 – CSP4 &Reference –
9 File12 300 – CSP3 Stored 300
10 File1 100 – CSP3 Stored –
11 File2 200 – CSP3 Stored –
12 File1 100 – CSP4 &Reference –

As shown in the Fig. 6 a graphical (3-D Cluster-Column) representation of the simulation results
for memory optimization in proposed system with federation agent, the total memory consumption
for the set of files used in the existing private and public storage was 1900 kbs and for the same set
of files with proposed deduplication strategy the memory requirement was 1200 kbs. After further
optimization with the federation agent, the memory requirement for the same set of file decreased
to 800 kbs which indicates that the proposed system with federation agent is conserving 57.89% of
memory from redundant storage in federated cloud storage as compared to the existing system.

CMC, 2022, vol.71, no.1 2033

0

500

1000

1500

2000

Systems

1900 kb

1200 kb

800 kb

M
em

or
y

C
on

su
m

pt
io

n

Memory Optimisation in Proposed System with
Federation Agent

Existing System

Optimised Deduplication
Strategy

Optimised Deduplication
with Federation Agent

Figure 6: A graphical (3-D Cluster-Column) representation of the simulation results for memory
optimization in proposed optimized deduplication strategy with federation agent

6 Conclusion

This paper presents the concept of Federation Agent to mollify the meagerness of the existing
system and to further improve the data duplication strategy in cloud environment. Federation Agent
is centrally managing all the transactions in common federation table and is well aware about the
existence of any file in any of its participating CSPs, either Private or Public. The simulation of the
proposed strategy has been performed on a cloud simulation tool, CloudSim 3.0.3, for implementing
and testing the algorithm. The outcomes of the proposed system are suggesting that this strategy
is very beneficial in harvesting the cloud storage by removing the duplicated data and conserving
considerable amount of memory. It has been empirically proven that the system without Federation
Agent is harvesting 33.3% memory from Private CSPs and 38.46% from Public CSPs than existing
system, whereas, the proposed system with Federation Agent is conserving 57.84% cloud storage. In
this study, file level deduplication technique has been used in the proposed system, in future, more
research can be done on block level deduplication techniques in federated cloud environment. In
addition to this, more alternatives can be sought for better indexing and faster lookup operations
for deduplication in federated clouds.

Acknowledgement: This paper and research behind it would not have been possible without the
exceptional support of my supervisor and research colleagues.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] V. Sharma and M. Bala, “An improved task allocation strategy in cloud using modified k-means clustering

technique,” Egyptian Informatics Journal, vol. 21, no. 4, pp. 201–208, 2020.
[2] G. Zangara, D. Terrana, P. P. Corso, M. Ughetti and G. Montalbano, “A cloud federation architecture,”

in 10th Int. Conf. on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, pp.
498–503, 2015.

[3] V. Sharma and M. Bala, “A credits based scheduling algorithm with k-means clustering,” in First Int. Conf.
on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, Punjab, India, pp. 82–86, 2018.

2034 CMC, 2022, vol.71, no.1

[4] R. N. Calheiros, A. N. Toosi, C. Vecchiola and R. Buyya, “A coordinator for scaling elastic applications
across multiple clouds,” Future Generation Computer Systems, vol. 28, no. 8, pp. 1350–1362, 2012.

[5] B. K. Rani, B. P. Rani and A. V. Babu, “Cloud computing and inter-clouds–types, topologies and research
issues,” Procedia Computer Science, vol. 50, pp. 24–29, 2015.

[6] P. Sowmaya and R. Kumar, “An efficient approach to implement federated clouds,” Asian Journal of
Pharmaceutical and Clinical Research, vol. 10, no. 13, pp. 40–44, 2017.

[7] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai et al., “Cloud federation,” in 2nd Int. Conf. on Cloud
Computing GRIDs, and Virtualization, Rome, Italy, pp. 32–38, 2011.

[8] D. G. Kogias, M. G. Xevgenis and C. Z. Patrikakis, “Cloud federation and the evolution of cloud
computing,” Computer, vol. 49, no. 11, pp. 96–99, 2016.

[9] A. Kayed and O. Shareef, “Survey on federated clouds,” International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 5, no. 2, pp. 83–92, 2015.

[10] N. Grozev and R. Buyya, “Inter-cloud architectures and application brokering: Taxonomy and survey,”
Software Practice and Experience, vol. 44, no. 3, pp. 369–390, 2012.

[11] R. Buyya, R. Ranjan and R. N. Calheiros, “InterCloud: Utility-oriented federation of cloud computing
environments for scaling of application services,” Lecture Notes in Computer Science, vol. 6081, pp. 13–31,
2010.

[12] A. Kertesz, “Characterizing cloud federation approaches,” in Cloud Computing, Computer Communications
and Networks, Springer, Cham, pp. 277–296, 2014. https://doi.org/10.1007/978-3-319-10530-7_12.

[13] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the 5th utility,” Future Generation Computer Systems,
vol. 25, no. 6, pp. 599–616, 2009.

[14] E. Birrell and F. B. Schneider, “Federated identity management systems: A privacy-based characterization,”
IEEE Security & Privacy, vol. 11, no. 5, pp. 36–48, 2013.

[15] Z. Yan, L. Zhang, W. Ding and Q. Zheng, “Heterogeneous data storage management with deduplication
in cloud computing,” IEEE Transactions on Big Data, vol. 5, no. 3, pp. 393–407, 2017.

[16] N. Chhabra and M. Bala, “A comparative study of data deduplication strategies,” in First Int. Conf. on
Secure Cyber Computing and Communication (ICSCCC), Jalandhar, Punjab, India, pp. 68–72, 2018.

[17] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon and M. Theimer, “Reclaiming space from duplicate files in
a serverless distributed file system,” in 22nd Int. Conf. on Distributed Computing Systems, Vienna, Austria,
pp. 617–624, 2002.

[18] M. Bellare, S. Keelveedhi and T. Ristenpart, “Message-locked encryption and secure deduplication,” in
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol. 7881, pp. 296–312, 2013. https://doi.
org/10.1007/978-3-642-38348-9_18.

[19] M. Bellare, S. Keelveedhi and T. Ristenpart, “DupLESS: Server aided encryption for deduplicated storage,”
in 22nd USENIX Conf. on Security, Washington, D.C, pp. 179–194, 2013.

[20] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee et al., “Secure deduplication with efficient and reliable convergent
key management,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6, pp. 1615–1625,
2014.

[21] J. Liu, N. Asokan and B. Pinkas, “Secure deduplication of encrypted data without additional independent
servers,” in 22nd ACM SIGSAC Conf. on Computer and Communications Security-CCS ’15, Denver,
Colorado, USA, pp. 874–885, 2015.

[22] M. L. Dhore, K. M. Varpe and R. M. Dhore, “Secure deduplication of encrypted data in cloud,”
International Journal of Future Generation Communication and Networking, vol. 13, no. 1, pp. 1594–1600,
2020.

[23] C. Fan, S. Huang and W. Hsu, “Hybrid data deduplication in cloud environment,” in Int. Conf. on
Information Security and Intelligent Control, Yunlin, Taiwan, pp. 174–177, 2012.

[24] J. Li, X. Chen, X. Huang, S. Tang, Y. Xiang et al., “Secure distributed deduplication systems with improved
reliability,” IEEE Transactions on Computers, vol. 64, no. 12, pp. 3569–3579, 2015.

https://doi.org/10.1007/978-3-319-10530-7_12
https://doi.org/10.1007/978-3-642-38348-9_18

CMC, 2022, vol.71, no.1 2035

[25] J. Wu, Y. Li, T. Wang and Y. Ding, “A confidentiality-preserving deduplication cloud storage with public
cloud auditing,” IEEE Access, vol. 7, pp. 160482–160497, 2019.

[26] X. Liang, Z. Yan and R. H. Deng, “Game theoretical study on client-controlled cloud data deduplication,”
Computers & Security, vol. 91, no. 2, pp. 101730, 2020.

[27] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of the ACM,
vol. 13, no. 7, pp. 422–426, 1970.

[28] R. Kaur, I. Chana and J. Bhattacharya, “Data deduplication techniques for efficient cloud storage
management: A systematic review,” The Journal of Supercomputing, vol. 74, no. 5, pp. 2035–2085, 2018.

[29] N. Chhabra and M. Bala, “An optimized data duplication strategy for federated clouds using bloom filters,”
International Journal of Future Generation Communication and Networking, vol. 13, no. 4, pp. 2684–2693,
2020.

	Implementation and Validation of the Optimized Deduplication Strategy in Federated Cloud Environment
	1 Introduction
	2 Literature Survey
	3 Problem Formulation and Research Gap
	4 Proposed System
	5 Observations
	6 Conclusion

