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Abstract:Metamaterial Antenna is a special class of antennas that uses meta-
material to enhance their performance. Antenna size affects the quality factor
and the radiation loss of the antenna. Metamaterial antennas can overcome
the limitationof bandwidth for small antennas.Machine learning (ML)model
is recently applied to predict antenna parameters. ML can be used as an alter-
native approach to the trial-and-error process of finding proper parameters
of the simulated antenna. The accuracy of the prediction depends mainly on
the selected model. Ensemble models combine two or more base models to
produce a better-enhanced model. In this paper, a weighted average ensemble
model is proposed to predict the bandwidth of the Metamaterial Antenna.
Two base models are used namely: Multilayer Perceptron (MLP) and Sup-
port Vector Machines (SVM). To calculate the weights for each model, an
optimization algorithm is used to find the optimal weights of the ensemble.
DynamicGroup-BasedCooperativeOptimizer (DGCO) is employed to search
for optimal weight for the base models. The proposed model is compared
with three based models and the average ensemble model. The results show
that the proposed model is better than other models and can predict antenna
bandwidth efficiently.

Keywords: Metamaterial antenna; machine learning; ensemble model;
multilayer perceptron; support vector machines

1 Introduction

Metamaterial antenna is extensively reported in the literature because of its unusual prop-
erties [1]. Metamaterials are artificially engineered materials to add extra properties that do not
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exist in the original materials [2]. They derive their extraordinary properties not from the base
material, but the internal structure after manipulating their internal structure. The new properties
may enhance the way the material manipulates electromagnetic waves or change its permittivity
index. These properties improve the capabilities of the original material and their engagement in
the industry.

To design an antenna, the dimension of the antenna can be calculated by researchers by using
a mathematical formula. Then a simulator can be employed to find the parameters such as band-
width. In case that the parameters don’t meet the expectation, the simulated antenna’s dimension
should be adjusted. This is repeated until the desired parameters are reached. Researchers are
doing this process usually by trial-and-error method and this process can take long time [3,4].

Metamaterials are widely used in various applications such as Metamaterial absorber [5],
Metamaterial Lens [6], Wireless Power Transfer [7], and Ultrasensitive sensor [8]. Because of their
wide range of applications, Metamaterials have received a huge research interest in different sci-
ences. Applications of Metamaterial also include Metamaterial Antenna [9] which is a special class
of antennas that uses metamaterial to enhance their performance. An antenna is used to propagate
energy into free space. It is a fact that antenna size affects the quality factor and the radiation
loss of the antenna [10]. However, a small size antenna that has low cost and good efficiency
is preferred for the integrated antenna. The metamaterial can improve the performance of small
antennas as it could improve their bandwidth and gain. Moreover, it can reduce their electrical
size and it can improve their directivity. Metamaterial antennas can overcome the limitation of
bandwidth for small antennas.

To estimate the effect of metamaterial, simulation software is used [11]. CST Microwave
Studio is an example of electromagnetic simulation software that can simulate complex structures.
After the simulation process, antenna parameters can be estimated such as bandwidth, gain, Volt-
age Standing Wave Ration (VSWR), and return loss. During the simulation process, researchers
may use trial and error to adjust Metamaterial Antenna to meet the expectation of antenna
parameters. This process could take an unpredicted long time. The alternative approach is to use
a Machine learning model to predict antenna parameters [12].

Machine Learning (ML) is a very popular research topic that has been extensively used
in several applications in literature [13]. ML is a subfield of artificial intelligence that cares
about building models based on data to make decisions or predictions. These models are not
explicitly programmed to do so but they learn from training data. Examples of applications of
ML are Computer Vision [14], Forecasting Solar Radiation [15], Disease Classification [16] and
Robotics [17].

In Metamaterial simulation, ML can be used as an alternative approach to the trial-and-
error process of finding proper parameters of the simulated antenna. ML model can be a quick
prediction if it has been trained using a dataset. The accuracy of the prediction depends mainly on
the selected model. Many machine learning models are reported in the literature such as Artificial
Neural Networks (ANN) [18], Support Vector Machines (SVM) [19], Decision Tree (DT) [20], and
K-Nearest Neighbor (KNN) [21]. In Metamaterial Antenna, researchers have used these models
to predict different parameters of Antenna. Ensemble models combine two or more base models
to produce a better-enhanced model. There are some methods for combing base models such as
average ensemble, boosting, bagging, and weighted average ensemble.

In this paper, a weighted average ensemble model is proposed to predict the bandwidth of
the Metamaterial Antenna. Two base models are used namely: Multilayer Perceptron (MLP)
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and Support Vector Machines (SVM). To calculate the weights for each model, an optimization
algorithm is used to find the optimal weights of the ensemble. In this paper, Dynamic Group-
Based Cooperative Optimizer (DGCO) [22] is used to search for optimal weight for the base
models. The proposed model is compared with three based models and the average ensemble
model. The results show that the proposed model is better than other models and can predict
antenna bandwidth efficiently.

This paper is structured as follows: Literature review is presented in Section 2. Data pre-
processing and the proposed ensemble model is explained in Section 3. Results are shown and
discussed in Section 4. Finally, the conclusion of the presented work is discussed in Section 6.

2 Literature Review

Machine learning models have been extended in several areas such as telecommunication [23],
Computer Vision [24], Disease Classification [25], Solar Energy [26], and Network Security [27].
These models learn from data. It can classify or predict the target data without being explicitly
programmed.

2.1 Machine Learning Models
There are many machine learning algorithms such as Artificial Neural Network (ANN) [18],

Support Vector Machines (SVM) [19], K-Nearest Neighbor (KNN) [21], and Decision Tree
(DT) [20]. These algorithms apply different techniques to build a model that can generalize and
predict hidden data that the model did not see in the training phase. For instance, ANN is an
intelligent mathematical model that is inspired by the biological nervous system [18]. Multilayer
Perceptron (MLP) is one of the most popular architectures of feedforward ANN. MLP consists
of one input layer, one or more hidden layers, and one output layer. Fig. 1 depicts the structure
of MLP. As shown in the figure, each layer consists of a group of neurons that are connected
to the neurons in the next layer using connection weights. These weights are adjusted during the
learning process of MLP.

Figure 1: Structure of multilayer perceptron
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ANN has been used in various applications in the literature. For instance, in [28], the authors
used ANN to build a smart antenna capable of tracking the angles of arrival of multiple sources.
In [29], ANN is used to optimize the dimensions of the microstrip patch antenna. Additionally,
in [30], ANN is trained to replace the full-wave analysis to optimize the bandwidth of the dual-
ring antenna. In [31], the authors trained ANN using geometric parameters of the broadband
antenna to predict the input impedance.

Support Vector Machines (SVM) [19] is a robust machine learning algorithm that has been
highly reported in the literature. It builds a model by finding the optimal hyperplane that can
maximize the margin and minimize the error [32]. Recently, SVM has been used in various tasks
of communications. In [33], SVM has been used with multiple antennas in multiuser communica-
tion systems. The authors proposed an antenna allocation system based on SVM. This allocation
system reduced computation complexity in the online antenna. In [34], the authors used data
collected from a microwave simulator to train SVM to design the feed section of a microstrip
patch antenna.

2.2 Machine Learning Ensemble
In literature, researchers combine two or model machine learning models to enhance the

performance and overcome the disadvantages of single weak learners (base models). These model
combinations are called ensemble models [35]. The simple form of the ensemble is an average
ensemble that calculates its output using the average of outputs of base models. In the average
ensemble, each base model has the same weight and strength in the calculation. This may result
in an undesired performance because the average ensemble deals with all base models equally.
On the other hand, the weighted average ensemble is the smart version of the average ensemble
that gives weight to each model. These weights give importance to good base models and low
importance to other models. To calculate these weights efficiently, an optimization algorithm can
be used. In the next section, the DGCO optimizer is discussed in detail.

In [36], the authors have used an ensemble model of multiple neural networks to calculate the
optimal dimensions of the circular fractal patch antenna. Their model could reduce the size of the
fractal antenna by 41.64% and has been used to design a 3.8 GHz WLAN antenna. In [37], an
ensemble of neural networks has been used to minimize the design of the circular fractal antenna.
Their model has been used to develop an antenna at 2.45 GHz.

2.3 DGCO Optimizer
Dynamic Group-Based Cooperative Optimization algorithm (DGCO) [22] is a recently pro-

posed optimization algorithm that is influenced by the cooperative behavior adopted by swarm
individuals to achieve their global goals. DGCO is a population-based optimization algorithm
that starts the optimization process with initial random individuals. These individuals act as a
candidate solution to the optimization problem. Then, DGCO calculates the fitness value for
each individual in the population. Based on the fitness values, the leader solution (leader) can
be estimated. After that, DGCO divides the population into exploitation group and exploration
group. Each group is responsible for a specific task in the optimization process. The exploration
group is responsible for discovering and exploring the search space to find promising locations.
To perform this task, individuals in this group uses two strategies. The first strategy is to search
around the solution. In this strategy, a solution moves randomly to a random location near its
current location. This strategy is modeled using the following formulas:

�D= r1.(�S (t)− 1) (1)



CMC, 2022, vol.71, no.1 203

�S (t+ 1)= �S (t)+ �D.
(
2 �r2− 1

)
(2)

where �r1 and �r2 are vectors within [0, 2] and [0, 1] respectively, t represents the current itera-
tion, vector �S indicates the current solution, and �D is the distance. The other exploration strategy
is a mutation in which the solutions move, in the search space, to a random location. This strategy
improves the diversity of the population and helps to avoid local optima stagnation.

On the other hand, the exploitation group is responsible for improving existing solutions by
finding more promising locations around them. To achieve that, individuals in the exploration
group apply two strategies. The first strategy is to move towards the best solution using random
walks. This strategy is modeled as follows:

�D= �r3.(�L (t)− �S (t)) (3)

�S (t+ 1)= �S (t)+ �D (4)

where vector �r3 has a random value within [0, 2] which controls the movement to the leader
solution and the vector �L represents the best solution. The other strategy is to search around the
best solution. In this strategy, the solution changes its location to a random location near the best
solution. This technique is modeled as follows:

�D= �L (t) ∗ (�k− r4) (5)

�S (t+ 1)= �S (t)+ �D.
(
2 �r5− 1

)
(6)

�k= 2− 2× t2

iters_count2
(7)

where vectors �r4 and �r5 have random values within [0, 1], �k has values that are decreasing
exponentially from 2 to 0 during iterations and �D represents the diameter of the circle in which
the solution will look for better solutions.

One of the merits of the DGCO algorithm is its ability to perform a good balance between
exploration and exploitation. In each iteration, DGCO dynamically changes the number of indi-
viduals in each group based on the convergence history. It starts with a higher number of
individuals in the exploration group (70% for instance) then over the course of iterations this
number decreases and the number of individuals in the exploitation group increases. Based on the
convergence history of the last three iterations, DGCO decides whether to increase the number
of individuals in the exploration group or note. This balance helps in enhancing the performance
of the optimization process as well as avoiding local optima stagnation. Finally, DGOC randomly
interchanges the roles of individuals of each group in each iteration to enhance the diversity of
the population. The flow chart of the DGCO algorithm is presented in Fig. 2.
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Figure 2: Flow chart of DGCO optimization algorithm

3 Proposed Ensemble Model

In this section, the proposed ensemble model will be presented and explained in detail. First,
the dataset is presented. An expletory analysis of the dataset is presented. Then, the preprocessing
techniques applied to the dataset will be discussed. Second, for the calculation of the weights for
base models, the Dynamic Group-Based Cooperative Optimizer (DGCO) algorithm is used to find
the optimal weights of the ensemble model as shown in Fig. 3.

Data Preprocessing

Decision Tree K-Nearest Neighbor Support Vector Machine

Ensemble Model

W1
W2

W3

Figure 3: Weight average ensemble model

3.1 Data Preprocessing
The dataset used in this work contains 11 features of the Metamaterial Antenna project. The

dataset has been downloaded from Kaggle [38]. It contains 572 records. Each record contains
parameters of the metamaterial antenna as follows: width and height of split ring resonator,
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the distance between rings, the width of rings, the gap between rings, the distance between
antenna patch and array, number of split ring resonator cells in an array, gain of antenna, the
distance between split ring resonator cells in the array, the bandwidth of the antenna and return
loss, and voltage standing wave ration of the antenna. To control its magnetic susceptibility of
metamaterial, Split Ring Resonator (SRR) structure is shown in Fig. 4. The SRR formulation
contains two rings which are separated by a gap. The SRR importance in a metamaterial antenna
is to enhance the bandwidth and reduce mutual coupling [39]. Tab. 1 describes each feature of
the dataset. These features will be used to predict the bandwidth of the antenna using a machine
learning model.

Figure 4: Shape of SRR [39]

Table 1: Description of features of the dataset

# Feature Description

1 Wm Split ring resonator’s width and height
2 W0m Gap between rings
3 Dm Distance between rings
4 Tm Width of rings
5 SRR_num # Split ring resonator cells
6 Xa Distance between antenna patch and array
7 Ya Distance between split ring resonator cells
8 Gain Gain of antenna
9 VSWR Antenna’s voltage standing wave ration
10 Bandwidth Antenna’s bandwidth
11 S11 Return loss

Tab. 2 provides a statistical description of the dataset. Summary of the distribution, central
tendency, and dispersion is presented in Tab. 2. Fig. 5 shows the correlation matrix of the dataset.
As can be seen in the figure, Xa and Ya are highly correlated with the bandwidth. Then, Tm and
Wm are slightly correlated with the bandwidth. The histogram for each feature is presented in
Fig. 6. From this figure, the distribution of each feature can be studied and analyzed. Moreover,
a Principal Component Analysis (PCA) has been performed on the dataset to study the responsi-
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bility of features for the variance. PCA showed that Ya is responsible for 17.21% of the variance
while W0m is responsible for 15.3% of the variance. Distance between rings is responsible for
13.21% of the variance in the Metamaterial Antenna dataset.

In order to prepare data for the machine learning model, some preprocessing tasks have been
applied. First, the null values in the bandwidth values have been handled by taking the average of
the non-missing values of previous and next values of the missing value. In machine learning, data
value ranges may affect the learning process and as a result the performance of the model will
be impacted. For instance, KNN used Euclidean distance to measure the distance between data
points. Features with higher bound will dominate and affect the calculation process. Therefore, it
is an essential process to scale and normalize data to guarantee that all features lay in the same
bounds and will be treated similarly by the machine learning model. One of the simple ways to
scale data is the min-max scaler in which data features are scaled and bounded between the range
of 0 and 1 using the min-max scaler. The following equation is used by the min-max scaler to
perform its task.

Table 2: Description statistics of metamaterial dataset

Feature Wm W0m dm tm Xa

Count 572.0000 572.0000 572.000 572.0000 572.00000
Mean 2244.0482 400.5941 275.4257 224.4048 4063.2463
Std 691.5788 184.9052 150.901130 69.157890 3287.8620
Min 2142.9000 162.8600 77.1430 214.2900 0.000
25% 2142.9000 162.8600 77.14300 214.2900 1132.8000
50% 2142.9000 325.7100 214.2900 214.2900 3543.5000
75% 2142.9000 488.5700 351.4300 214.2900 5954.3000
Max 6964.3000 651.4300 488.5700 696.4300 10776.000

Feature Ya Gain vswr Bandwidth S11

Count 572.000000 572.0000 572.0000 572.0000 572.0000
Mean 6947.4697 2.6785 2.09492 117.8989 −16.1049
Std 5136.193313 0.683242 1.914750 11.233272 7.897142
Min 2142.9000 −5.6543 1.041183 32.7599 −33.9031
25% 2142.9000 2.815006 1.187911 116.9174 −21.3215
50% 6964.3000 2.876220 1.438023 122.2199 −14.9108
75% 11786.000 2.921877 1.725260 123.0597 −11.4982
Max 16607.000 3.238539 8.377999 124.7401 −2.08343

Table 3: MSE results for base models and ensemble models

DT KNN SVM Average ensemble Weight average ensemble

0.014926 0.015987 0.015529 0.014368 0.014080



CMC, 2022, vol.71, no.1 207

Figure 5: Correlation matrix of metamaterial antenna dataset

Xscaled =
Xval −Xmin
Xmax−Xmin

(8)

3.2 Weight Average Ensemble Model
The proposed weighted average ensemble model is based on optimize the weights for base

models and then calculate the average ensemble on the weighted results. The Dynamic Group-
Based Cooperative Optimizer (DGCO) algorithm is used to get the optimal weights for the
ensemble model. As shown in Fig. 3, the DGCO algorithm optimize weights of three base models
named Decision Tree (DT), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM).
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W1 indicated the optimized weight of the DT model, W2 represents the optimized weight of the
KNN model, and W3 is the optimized weight of the SVM model. After calculating the optimized
weights of the three base models, the average ensemble is then calculated to get the final output
result. The initial parameters of the DGCO algorithm are the population is set to 20 agents,
maximum number of iterations equals 20, and number of runs are 20 for the tested dataset.

4 Results and Discussion

The Mean Square Error (MSE) is employed in this work as the main performance metric.
The MSE metric can be calculated as follow to assess the performance.

MSE = 1
n

n∑

i=1

(Yi−Y∗
i )2 (9)

where Yi represents a predicted value and Y∗
i indicates the actual measured value. The total

number of values is indicated as n parameter.

The prediction of regression by the proposed weighted average ensemble model and the
original values are shown in Fig. 7. The figure shows that the proposed model results are almost
fitted to the original values. The proposed model is compared with three based models of the
decision tree, K-nearest neighbor, and support vector machine models, in addition to, the average
ensemble model as shown in Tab. 3. The results show that the proposed weight average ensemble
model can achieve an MSE of (0.014080) which is better than other base and average ensemble
models. This confirms that the proposed model can predict antenna bandwidth efficiently.
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Figure 6: Distribution of dataset features (histogram)

Figure 7: Original and estimated values

Fig. 8 shows the predicted and the actual residual values using residual, homoscedasticity, and
QQ plots. Different plots confirm the performance of the proposed weighted average ensemble
model to predict antenna bandwidth efficiently. The heat map is also represented in Fig. 8. The
heat map is also confirming the stability of the proposed model. Tab. 4 shows a one-way analysis
of variance (ANOVA) test results. ANOVA test is applied in this work for the measurement of the
statistical differences between the proposed weighted average ensemble model and other models.
Two hypotheses are formulated in this test. First, the null hypothesis (H0 : µA =µB =µC =µD =
µE), where A: Proposed weighted average ensemble model, B: Average ensemble model, C: DT
model, D: KNN model, and E: SVM model. The second hypothesis (H1: µ is not equal for all).
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The second hypothesis H1 based on the results of the test is preferred. The results explain the
superiority of the proposed weight average ensemble model and indicate the statistical significance
of the algorithm.

Figure 8: Residual, homoscedasticity, and QQ plots of the predicted and actual values

Table 4: ANOVA test for base models and ensemble models

SS DF MS F (DFn, DFd) P value

Treatment (between columns) 4.67E−05 4 1.17E−05 F (4, 90) = 148.4 P < 0.0001
Residual (within columns) 7.08E−06 90 7.87E−08 – –
Total 5.38E−05 94 – – –

5 Conclusion

In this paper, a weighted average ensemble model is proposed to predict the bandwidth of
the Metamaterial Antenna. To calculate the weights for base models, an optimization algorithm is
used to find the optimal weights of the ensemble. Dynamic Group-Based Cooperative Optimizer
(DGCO) is employed to search for optimal weight for the base models. The proposed model is
compared with three based models and the average ensemble model. The results show that the
proposed model is better than other models and can predict antenna bandwidth efficiently. The
predicted and the actual residual values using residual, homoscedasticity, and QQ plots confirm
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the performance of the proposed weighted average ensemble model to predict antenna bandwidth
efficiently. ANOVA test confirms the statistical differences between the proposed weighted average
ensemble model and other models. In the future work, justification of the proposed model results
compared to the EM simulation based on the optimized design parameters from other models
as well as the proposed model will be considered. The proposed model will also be compared
to other antenna optimization approaches such as antenna optimization using particle swarm
optimization algorithm and genetic algorithm.
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